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Abstract. In this paper we use the theory of compensated compactness cou-
pled with some basic ideas of the Kinetic formulation to establish an existence
theorem for global entropy solutions to the non-strictly hyperbolic system with
a source. {

ρt + (ρu)x = U(ρ, u, x, t)
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+ P (ρ))x = V (ρ, u, x, t)
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Resumen. En este art́ıculo usamos la teoŕıa de la compacidad compensada
asociada con algunas ideas básicas de formulación Kinetica para establecer un
teorema de existencia para soluciones de entroṕıa global del sistema no estric-
tamente hiperbólico con fuente

{
ρt + (ρu)x = U(ρ, u, x, t)

ut + (u2

2
+ P (ρ))x = V (ρ, u, x, t)

1. Introduction

In this paper, we are concerned with the following Cauchy problem (1.1), (1.2)
for the nonlinear, inhomogeneous, non-strictly hyperbolic system

{
ρt + (ρu)x = U(ρ, u, x, t)

ut +
(

u2

2 + P (ρ)
)

x
= V (ρ, u, x, t) (1.1)

(ρ(x, 0), u(x, 0)) = (ρ0(x), u0(x)) (1.2)
53
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or, {
vt + f(v)x = H(v, x, t)

v |t=0 = v0(x, t) (1.3)

where f(v) =
(
ρu, u2

2 + P (ρ)
)T

, H(v, x, t) = (U(ρ, u, x, t), V (ρ, u, x, t))T , v =

(ρ, u)T , u0(x) and ρ0(x) ≥ 0( 6≡ 0) are bounded measurable functions. For
polytropic gas, P (ρ) = θ

2ρr−1, θ = r−1
2 and r > 3 is a constant.

System (1.1) is a model of gas dynamics of nonconservative form with a
source. For instance, if H(v, x, t) = (0, α(x, t))T , α(x, t) represents body force,
usually gravity acting on all the fluid in any volume, when

H(v, x, t) =

(
−a

′
(x)

a(x)
ρu, 0

)
,

the Cauchy problem models transonic nozzle flow through a variable-area duct.
An essential feature of the system is a non-strictly hyperbolicity, that is, a

pair of wave speed coalesce on the vacuum ρ = 0.
The homogeneous system corresponding to system (1.1) is

{
ρt + (ρu)x = 0

ut + (u2

2 + P (ρ))x = 0
(1.4)

System (1.4) was first derived by S.Earnshaw [4] in 1858 for isentropic flow,
where ρ denotes the density, u the velocity and P (ρ) the pressure of fluid. As to
the study of the existence of global weak solutions for the Cauchy problem (1.4),
(1.2), we can see [3, 10, 13]. Diperna [3] is the first one to study the Cauchy
problem for the case of 1 < r < 3 by using the Glimm’s scheme method [5].
However,for the case r > 3, the strict hyperbolicity of system (1.4) fails since
ρ could be zero at a finite time. In order to use the theory of compensated
compactness, Lu[10] added a small perturbation δ to the nonlinear function
P (ρ) so that system (1.4) has a strictly convex entropy for any fixed δ ≥ 0
and hence both strong and weak entropy-entropy flux pairs of the perturbation
system of (1.4) satisfy the H−1 compactness condition. Therefore the existence
of entropy solutions is obtained for this perturbation system. Later in [13], Lu
constructed three groups strong-weak entropy combination, and solved this
problem completely.

The results concerned of the existence of global weak solution for the general
inhomogeneous hyperbolic system comparatively less, which have been found
in the works [1, 2, 6, 9]. In [9], T.P. Liu first studied existence and qualita-
tive behavior of solutions for near constant data to resonant systems of this
type by using Glimm’s random choice method [5]. Chen and Glimm [1] intro-
duced a Godunov shock capturing scheme to obtain L∞ estimates and compen-
sated compactness of corresponding approximate solutions to the compressible
euler equations with geometrical structure. Their method incorporates natu-
ral building blocks from Riemann solutions and the existence theory of global
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weak entropy solutions for measurable initial data in L∞; Klingenberg and Lu’s
method in [6] is vanishing viscosity together with compensated compactness.

In this paper, we use the theory of compensated compactness coupled with
some basic ideas of the Kinetic formulation from [7, 8, 13] to establish an ex-
istence theorem for global entropy solutions to a more general inhomogeneous,
non-strictly hyperbolic system (1.1),(1.2). The main results are as follows:

We assume that the functions U and V satisfy the following conditions:
A1 Both U and V are continuous functions, and

V |ρ=0 or u=0= 0 (1.5)

A2 There exists a continuous function F (ω, z) and constants h0 > 0, such
that

X(ω, z, x, t) ≤ F (ω, z) Y (ω, z, x, t) ≥ −F (ω, z), (1.6)

for ω − z ≥ 0, 0 ≤ t ≤ h0, where



X(ω, z, x, t) = θρθ−1U(ρ, u, x, t) + V (ρ, z, x, t)|
ρ=(ω−z

2 )
1
θ , u= ω+z

2

Y (ω, z, x, t) = −θρθ−1U(ρ, u, x, t) + V (ρ, z, x, t)|
ρ=(ω−z

2 )
1
θ , u= ω+z

2

ωF (ω, z) ≤ Φ(r)r + c, zF (ω, z) ≤ Φ(r)r + c, (1.7)

where c is a positive constant, r =
√

ω2 + z2 and Φ(r) is a nondecreas-

ing positive function of r ≥ 0 satisfying the condition
∞∫
0

dτ
Φ(τ) = ∞

A3

|H(v2, x, t)−H(v1, x, t)| ≤ CK |v2 − v1|σ , 0 < σ ≤ 1 (1.8)

Remark 1.1. For (U, V ) = (α(x, t)ρ, α(x, t)u), (0, α(x, t)) and (0, α(x, t)u
ln (|u|+ 1)), where |α(x, t)| ≤ α0 < ∞, it is easy to check that they satisfy the
condition (A1-A3).

Theorem 1.1. Assume that the conditions (A1-A3) hold and the initial data
(ρ0(x), u0(x)) be bounded measurable and ρ0(x) ≥ 0, then the Cauchy problem
(1.1)-(1.2) has a global bounded entropy solution.

Remark 1.2. A pair of functions (ρ(x, t), u(x, t)) is called an entropy weak
solution of the Cauchy problem (1.1)-(1.2) if



∫∞
0

∫ +∞
−∞

(
ρφ(x, t)t + (ρu)φ(x, t)x + U(ρ, u, x, t)φ

)
dxdt

+
∫ +∞
−∞ ρ0(x)φ(x, 0) dxdt = 0∫∞

0

∫ +∞
−∞

(
uφ(x, t)t +

(
u2

2 + P (ρ)
)

φ(x, t)x + U(ρ, u, x, t)φ
)

dxdt

+
∫ +∞
−∞ u0(x)φ(x, 0) dxdt = 0

for any test function φ(x, t) ∈ C1
0 (R×R+) and

η (ρ(x, t), u(x, t))t + q (ρ(x, t), u(x, t))x ≤ 0 (1.9)

in the sense of distributions for any convex entropy η(ρ, u) of system (1.1).
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The rest of this paper is organized as follows: In Section 2, we give a priori-
L∞ estimate for the approximate solutions of the Cauchy problem (1.1),(1.2).
In Sections 3 and 4, we use this estimate coupled with some basic ideas of
Kinetic formulation in [7, 8, 13] to prove the main theorem.

2. L∞L∞L∞ estimates of viscosity solutions

To prove theorem, we first consider the following perturbation system
{

ρt + ((ρ− δ)u)x = U(ρ, u, x, t)
ut +

(
u2

2 +
∫ ρ

δ
θ2(t− δ)tr−3dt

)
x

= V (ρ, u, x, t) (2.1)

where δ > 0 is the perturbation constant.
By simple calculations,two eigenvalues of system (2.1) are

λ1 = u− θρθ−1(ρ− δ), λ2 = u + θρθ−1(ρ− δ), (2.2)

and the two corresponding Riemann invariants are the same as system (1.1)

z = u− ρθ, ω = u + ρθ (2.3)

Adding viscosity terms to the right-hand side of the (2.1) yields the following
parabolic system:

{
ρt + ((ρ− δ)u)x = U(ρ, u, x, t) + ερxx

ut +
(

u2

2 +
∫ ρ

δ
θ2(t− δ)tr−3dt

)
x

= V (ρ, u, x, t) + εuxx
(2.4)

with the initial data

(ρε(x, 0), uε(x, 0)) = (ρε
0, u

ε
0), (2.5)

where

ρε
0(x) =

1
ε

∫ +∞

−∞
H

(
x− y

ε

)
(ρ0(y) + δ)dy (2.6)

uε
0(x) =

1
ε

∫ +∞

−∞
H

(
x− y

ε

)
u0(y)dy

and H(x) is a mollifier.
Therefore, by virtue of the condition in theorem, we have:

(ρε
0(x), uε

0(x)) ∈ C∞0 × C∞0 (2.7)

‖ρε
0(x)‖∞ + ‖uε

0(x)‖∞ ≤ ‖ρ0(x)‖∞ + ‖u0(x)‖∞ + δ (2.8)

and
(ρε

0(x), uε
0(x)) −→ (ρ0(x), u0(x)) a. e. on R.

We first give the L∞ estimate of the viscosity solution for perturbation
system (2.1).
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Lemma 2.1. Assume that the conditions in Theorem 1.1 are satisfied and
the solutions

(
ρε,δ(x, t), uε,δ(x, t)

)
of the Cauchy problem (2.4), (2.5) exist in

R× [0, +∞), then
(
ρε,δ(x, t), uε,δ(x, t)

)
satisfy the following estimates:

ω
(
ρε,δ(x, t), uε,δ(x, t)

) ≤ M(T ), (2.9)

z
(
ρε,δ(x, t), uε,δ(x, t)

) ≥ −M(T ),

where M(T ) is a constant independent of ε, δ for arbitrary fixed T > 0.

For simplicity, in the following we still take (ρ, u) for
(
ρε,δ, uε,δ

)
.

Proof. We multiply (2.4) by (ωρ, ωu) and (zρ, zu) respectively, and we obtain:

ωt + λ2ωx = εωxx − εθ(θ − 1)ρθ−2ρ2
x + θρθ−1U(ρ, u, x, t) + V (ρ, u, x, t)

≤ εωxx + X(ω, z, x, t)

≤ εωxx + F (ω, z); (2.10)

and

zt + λ1zx = εzxx + εθ(θ − 1)ρθ−2ρ2
x − θρθ−1U(ρ, u, x, t) + V (ρ, u, x, t)

≥ εzxx + Y (ω, z, x, t)

≥ εzxx − F (ω, z). (2.11)

For the inequality

ωt + λ2ωx ≤ εωxx + F (ω, z), (2.12)

we make the transformation ω = φ(v), where the function φ satisfies the equa-
tion

∫ φ(ξ)

c
dτ

Φ(
√

2τ)
= ln ξ, then we have

vt + λ2vx ≤ ε

[
φ
′′
(v)

φ′(v)
(vx)2 + vxx

]
+

F (ω, z)
φ′(v)

. (2.13)

Also let v = v̂eλt, λ > 0, we have the inequality

v̂t + λ2v̂x − εv̂xx ≤ ε
φ
′′
(v)

φ′(v)
(v̂x)2eλt − λv̂ +

F (ω, z)
φ′(v)

e−λt. (2.14)

If v̂ takes its greatest value at some interior point (x0, t0), suppose that v̂(x0, t0) ≥
e−λt0 (in fact, if v̂ < e−λt0 , then v = v̂eλt < eλ(t−t0) ≤ 1. By virtue of the
continuity and monotonicity of φ, we can get the boundedness of ω). Then on
the basis of (2.14), we have at this point v̂t ≥ 0, v̂x = 0, v̂xx < 0, hence

λv̂ |(x0,t0)≤
F (ω, z)
φ′(v)

e−λt
∣∣
(x0,t0) (2.15)

λv̂φ
′
(v) |(x0,t0)≤ F (ω, z)e−λt

∣∣
(x0,t0) (2.16)

Since by assumption: v̂(x0, t0) ≥ e−λt0 , we have v(x0, t0) ≥ 1 and hence
ω(x0, t0) ≥ 0.
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Multiplying (2.16) by ω (x0, t0), we obtain:

ωλvφ
′
(v)− Φ(r)r − c |(x0,t0)≤ 0. (2.17)

Since φ
′
(v) 1

Φ(
√

2φ(v)) = 1
v we have,

ωΦ(0)
(
λ−

√
2
)
≤ C (2.18)

namely for λ >
√

2,

ω(x0, t0) ≤ Ceλt0

Φ(0)
(
λ−√2eλt

) (2.19)

Also by virtue of the condition (2.7), (2.8) and the Theorem 2.1 in [11], we
have

ω(x, 0) ≤ M, lim
|x|→∞

ω(x, t) = 0. (2.20)

Hence there exists a R > 0, such that if |x| ≥ R, for arbitrary T and t ∈ [0, T ],
we have ω(x, t) ≤ M .

According to all of the above, we obtain the estimate ω (ρ(x, t), u(x, t)) ≤
M(T ) for arbitrary (x, t) ∈ (−∞, +∞) × [0, T ]. Similarly we can get the
estimates z (ρ(x, t), u(x, t)) ≥ −M(T ). This completes the proof of Lemma
2.1. ¤X

From lemma 2.1, we can obtain the following lemma directly.

Lemma 2.2. If the conditions in Theorem 1.1 are satisfied, the solutions of
the cauchy problem (2.4), (2.5) have a prior-L∞ estimate for arbitrary T > 0
and t ∈ [0, T ],

δ ≤ ρε,δ ≤ M(T ),
∣∣uε,δ(x, t)

∣∣ ≤ M(T ) (2.21)

where M(T ) is a positive constant depending only on the initial data and fixed
T .

Notice that the system (1.1) has a strictly convex entropy

η∗ =
1
2
u2 +

r − 1
4(r − 1)

ρr−1. (2.22)

Consequently we have the following lemma:

Lemma 2.3. If the conditions in Theorem 1.1 are satisfied, then for arbitrary

fixed ε > 0,
√

εθ
(
ρε,δ

) r−3
2 ρε,δ

x and
√

εuε,δ
x are uniformly bounded in L2

loc(R ×
R+) in the sense of distribution.
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3. Entropy Waves

This section is concerned with entropy wave for the system (1.1).
One family of weak entropies of system (1.1) (also system (2.1)) is given by

η0(ρ, u) =
∫

R

g(ξ)G0 (ρ, ξ − u) dξ (3.1)

and the weak entropy flux q0 of system (1.1) associated with η0 is

q0(ρ, u) =
∫

R

g(ξ) [θξ + (1− θ)u] G0(ρ, ξ − u)dξ (3.2)

two families of strong entropies of system (1.1) are given as follows (cf.[7, 8,
13])

η±(ρ, u) =
∫

R

g(ξ)G±(ρ, ξ − u)dξ (3.3)

and the strong entropy fluxes q± of system (1.1) associated with η± are

q±(ρ, u) =
∫

R

g(ξ) [θξ + (1− θ)u] G±(ρ, ξ − u)dξ (3.4)

where g(ξ) is a smooth function with a compact support set in (−∞, +∞) and
the fundamental solutions




G0(ρ, ξ − u) = [(ω − ξ)(ξ − z)]λ+
G+(ρ, ξ − u) = (ξ − z)λ(ξ − ω)λ

+

G−(ρ, ξ − u) = (ω − ξ)λ(z − ξ)λ
+

(3.5)

and λ = 3−r
2(r−1) > − 1

2 . Here we use the notation x+ = max(0, x).

Lemma 3.1. For the viscosity solutions
(
ρδ,ε(x, t), uε,δ(x, t)

)
of the Cauchy

problem (2.4) and (2.5), if the entropy η(ρ, u) of system (1.1) satisfies that

ηρ(0, u) = 0,
∂iη(ρ, u)

∂ui
, i = 0, 1, 2, 3 (3.6)

are bounded in 0 ≤ ρ ≤ M, |u| ≤ M , then

η
(
ρε,δ(x, t), uε,δ(x, t)

)
t
+ q

(
ρε,δ(x, t), uε,δ(x, t)

)
x

(3.7)

is compact in H−1
loc (R × R+) as ε and δ tends to zero, where q is the entropy

flux of system (1.1) associated with η.

Lemma 3.2. For the viscosity solutions
(
ρε,δ(x, t), uε,δ(x, t)

)
of the Cauchy

problem (2.4) and (2.5)

ηj

(
ρε,δ(x, t), uε,δ(x, t)

)
t
+ qj

(
ρε,δ(x, t), uε,δ(x, t)

)
x

, j = 1, 2, 3 (3.8)

are compact in H−1
loc (R×R+) as ε and δ tends to zero, where

C = −2λθ
∫∞
0

(s + 2)λ−1sλds∫ 1

−1
(1− s2)λds

> 0 (3.9)
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η1 = η+ + Cη0, η2 = η− + Cη0, η3 = η+ − η−, (3.10)

η±, η0 being given by (3.1),(3.3), and qj are corresponding entropy fluxes of ηj.

Proof. See [13]. ¤X

4. Proof of Theorem 1.1

In this section, we are going to prove Theorem 1.1 by using the estimate in
Section 2 together with some ideas of Kinetic Formulation in [7, 8, 13].

Consider a compactly supported probability measure ν on R2. By using
Lemma 3.2,we have the following measure equation:

< ν, ηi >< ν, qj > − < ν, ηj >< ν, qi >=< ν, ηiqj − ηjqi > (4.1)
i, j = 1, 2, 3

By virtue of the arbitrariness of the function g and h, we have

Gi(ξ1) [θξ2 + (1− θ)u]Gj(ξ2)−Gj(ξ2) [θξ1 + (1− θ)u]Gi(ξ1)

= Gi(ξ1)[θξ2 + (1− θ)u]Gj(ξ2)−Gj(ξ2)[θξ1 + (1− θ)u]Gj(ξ1)

= θ(ξ2 − ξ1)Gi(ξ1)Gj(ξ2) (4.2)

where Gi are fundamental solutions corresponding to the entropies ηi and
G(ξ) =

∫
G(ρ, u − ξ)dνx,t(ρ, u) indicate the usual integration with respect to

the Young measure.
In what follows, we shall prove that the positive measures νx,t must be Dirac

measures by using compensated compactness theory. Now we discuss it from
two respects. Let

ξ+ = inf
(ρ,u)∈suppνx,t

ω(ρ, u), ξ− = sup
(ρ,u)∈suppνx,t

z(ρ, u) (4.3)

Proof. Case 1: ξ− ≤ ξ+.
If ξ− ≤ ξ+, we choose Gi = Gj = G3 and ξ1, ξ2 ∈ (ξ+,∞). Since G−(ξ1) =
G−(ξ2) = 0, we may rewrite (4.2) as

θ

1− θ

[
G+(ξ1)G+(ξ2)

G+(ξ1) G+(ξ2)
− 1

]
=

1
ξ2 − ξ1

[
uG+(ξ2)
G+(ξ2)

− uG+(ξ1)
G+(ξ1)

]
. (4.4)

Similarly

θ

1− θ

[
G−(ξ1)G−(ξ2)

G−(ξ1) G−(ξ2)
− 1

]
=

1
ξ2 − ξ1

[
uG−(ξ2)
G−(ξ2)

− uG−(ξ1)
G−(ξ1)

]
(4.5)

for ξ1, ξ2 ∈ (−∞, ξ−).

As done in [8, 13], we can obtain uG+(ξ)

G+(ξ)
and uG−(ξ)

G−(ξ)
are both non-increasing.
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However,

u = lim
ξ→∞

uG+(ξ)
G+(ξ)

≤ lim
ξ→ξ+

uG+(ξ)
G+(ξ)

≤ ξ+ + ξ−
2

≤ lim
ξ→ξ−

uG−(ξ)
G−(ξ)

≤ lim
ξ→−∞

uG−(ξ)
G−(ξ)

= u (4.6)

then uG+(ξ2)

G+(ξ2)
and uG−(ξ1)

G−(ξ1)
are both constant on ξ2 ∈ (ξ+,∞), ξ1 ∈ (−∞, ξ−).

Let Iα(ξ) be a nonnegative smooth function with compact set in
(− 1

α , 1
α

)
and Iα(ξ) → 1 as α → 0+, ψα(ξ) ≥ 0 be a unit mass mollifier, denote G±α =
(G±Iα) ∗ ψα, using (4.4), (4.5) again, we have

G±α (ξ1)G±α (ξ) = G±α (ξ1) G±α (ξ). (4.7)

Letting ξ1 → ξ in (4.7), we get

(G±α (ξ))2 =
(
G±α (ξ)

)2

, (4.8)

which implies that
(
G±α (ξ)−G±α (ξ)

)2

= 0 (4.9)

on (ω, z) ∈ supp νx,t and hence G±α (ω, z, ξ)−G±α (ξ) = 0 on the support of νx,t,

and by letting α → 0, so does G±(ω, z, ξ) = G±(ξ). This shows that νx,t is a
Dirac mass.
Case 2: ξ− > ξ+.
If ξ− > ξ+ similarly we have that

uG+(ξ2)
G+(ξ2)

,
uG−(ξ1)
G−(ξ1)

(4.10)

are both non-increasing for ξ2 ∈ (ξ−,∞), ξ1 ∈ (−∞, ξ+).
However since the following estimates from (4.6),

lim
ξ→∞

uG+(ξ)
G+(ξ)

= u, lim
ξ→−∞

uG−(ξ)
G−(ξ)

= u, (4.11)

we have the following inequality

uG+(ξ−)
G+(ξ−)

≥ uG−(ξ+)
G−(ξ+)

. (4.12)

Now we choose Gi = G1, Gj = G2 and ξ1 = ξ2 = ξ in (4.2) to obtain

uG+(ξ)G−(ξ) + CuG0(ξ) G−(ξ) + CuG+(ξ) G0(ξ)

= uG−(ξ) G+(ξ) + CuG0(ξ) G+(ξ) + CuG−(ξ) G0(ξ) (4.13)

where C is given by (3.9).
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Let

ω+ = sup
(ρ,u)∈suppνx,t

ω(ρ, u), z− = inf
(ρ,u)∈suppνx,t

z(ρ, u). (4.14)

If we choose ξ ∈ (ξ−, ω+), then uG−(ξ) = G−(ξ) = 0 and hence by (4.13)

uG+(ξ)
G+(ξ)

=
uG0(ξ)
G0(ξ)

(4.15)

for ξ ∈ (ξ−, ω+). In particular,

uG+(ξ−)
G+(ξ−)

=
uG0(ξ−)
G0(ξ−)

(4.16)

Similarly, if choosing ξ ∈ (z−, ξ+), we have

uG−(ξ)
G−(ξ)

=
uG0(ξ)
G0(ξ)

(4.17)

for ξ ∈ (z−, ξ+). In particular,

uG−(ξ+)
G−(ξ+)

=
uG0(ξ+)
G0(ξ+)

. (4.18)

using (4.13), we have

uG+(ξ)
G+(ξ)

+ C
uG0(ξ)
G+(ξ)

+ C
uG+(ξ)
G+(ξ)

G0(ξ)
G−(ξ)

=
uG−(ξ)
G−(ξ)

+ C
uG0(ξ)
G−(ξ)

+ C
uG−(ξ)
G−(ξ)

G0(ξ)
G+(ξ)

(4.19)

Below we use ξ+0 to indicate the right limit and ξ−0 the left limit at ξ. Letting
ξ → ξ− in (4.19) and using (4.16), we have

uG+(ξ−)
G+(ξ−)

(
1 + C

G0(ξ−)
G+(ξ−)

)
=

uG−
(
ξ−0
−

)

G−
(
ξ−0
−

)
(

1 + C
G0(ξ−)
G+(ξ−)

)
, (4.20)

which implies

uG+(ξ−)
G+(ξ−)

=
uG−

(
ξ−0
−

)

G−
(
ξ−0
−

) . (4.21)

Similarly, letting ξ → ξ+ in (4.19) and using (4.18), we have

uG+

(
ξ+0
+

)

G+

(
ξ+0
+

) =
uG−(ξ+)
G−(ξ+)

. (4.22)
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Let Gi = Gj = G1 in (4.2). By the same treatment in Case 1, we have that
uG1(ξ)

G1(ξ)
is non-increasing for ξ ∈ (ξ+, ξ−). However

lim
ξ→ξ−

uG1(ξ)
G1(ξ)

=
uG+(ξ−)
G+(ξ−)

, (4.23)

where (4.16) is used in the last equality, and

lim
ξ→ξ+

uG1(ξ)
G1(ξ)

=
uG−(ξ+)
G−(ξ+)

, (4.24)

where (4.18) and (4.22) are used in the last equality. Thus

uG+(ξ−)
G+(ξ−)

≤ uG−(ξ+)
G−(ξ+)

. (4.25)

(4.25) and (4.12) imply thatuG+(ξ)

G+(ξ)
is a constant for ξ ∈ (ξ+,∞) and uG−(ξ)

G−(ξ)

is a constant for ξ ∈ (−∞, ξ−). Hence Young measure ν is also a Dirac mass
from the proof in Case 1. This is contrary to the assumption ξ+ < ξ− since
ω ≥ z. Therefore only Case 1, i. e., ξ+ ≥ ξ− is permitted, and ν is a Dirac
mass. So we end the proof of the Theorem 1.1. ¤X
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