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Abstract. We prove the existence and uniqueness of a positive solution to a
logistic system of differential difference equations that arises as a population
model for a single species which is composed of several habitats connected by
linear migration rates. Our proof is based on the proof of a similar result for a
reaction-advection-diffusion equation.
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Resumen. En este art́ıculo probamos la existencia y unicidad de una solución
positiva a un sistema loǵıstico de ecuaciones diferenciales y de diferencias finitas
que surge como un modelo de la población de una especie localizada en un
conjunto discreto de hábitats interconectados por tasas lineales de migración.
Nuestra prueba está basada en la prueba de un resultado similar para ecuaciones
de reacción-advección-difusión.

1. Introduction

We consider the system of differential equations

u′i(t) =
∑

j∈Ii

[dijuj(t)− djiui(t)]+ui(t)Fi

(
ui(t)

)
, i = 1, · · · , n, t ≥ 0. (1.1)

Here dij are positive constants, and Ii is a nonempty subset of {1, 2, · · · , n}
such that j ∈ Ii implies i ∈ Ij , i, j = 1, · · · , n. We also assume that there is
not a non-empty and proper subset I $ {1, 2, · · · , n} such that Ii ⊂ I for all
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i ∈ I. This condition on Ii accounts for assuming that the matrix A = (aij) of
the linear part of (1.1),

aij =





dij , i 6= j and j ∈ Ii,
0, i 6= j and j /∈ Ii,
−∑

j∈Ii
dij , i = j,

(1.2)

is irreducible. The functions Fi(s), i = 1, · · · , n, verify the following hypothesis:

Hypotheses 1.1.

(1) Fi is continuously differentiable.
(2) ri := Fi(0) > 0, and −αi ≤ F ′i (s) ≤ −βi for given positive constants

αi, βi, and any s ≥ 0.

This problem arises as a population model for a single species which is
composed of several habitats connected by linear migration rates and having
logistic growth (see [4] and the references therein). In this case ui(t) is the
population in habitat i at time t; the coefficients dij are the rates at which the
individuals migrate from habitat j to habitat i; and Fi represents the net rate of
population supply at habitat i. The second condition in Hypothesis 1.1 implies
that there exists 0 < Ki < ∞, such that fi is positive in (0,Ki) and negative in
(Ki,+∞), for i = 1, · · · , n. The value Ki > 0 is called the carrying capacity of
the population because it represents the population size that available resources
can continue to support. The value ri > 0 is called the intrinsic growth rate
and represents the per capita growth rate achieved if the population size were
small enough to ensure negligible resource limitations. For the standard logistic

growth, introduced by P.F. Verhulst [7], Fi(s) = ri

(
1− s

Ki

)
.

Continuous time models with multi-patch formulation have also been pro-
posed in the study of the spatial dynamics of epidemics (see [1] and the refer-
ences therein).

The first condition in Hypothesis 1.1 is technical and is needed together with
the second condition to ensure, given initial data, the existence and uniqueness
of solutions for (1.1) globally defined for t ≥ 0, c.f. [3]. Since dij > 0 and the
matrix A is irreducible, (1.1) is a cooperative and irreducible system in IRn

+.
This implies that the set C := {ξ ∈ IRn

+ : limt→∞ u(t; ξ) exists} of convergent
points of (1.1) contains an open and dense subset of IRn

+, c.f. [5, Theorem 4.1.2,
page 57]. Here, u(t; ξ) denotes the solution of (1.1) such that u(0; ξ) = ξ. Thus
the dynamics of (1.1) is largely determined by its equilibria.

It is clear that u ≡ 0 is a steady state solution of (1.1). Since Fi(0) > 0, i =
1, · · · , n, it follows that u ≡ 0 is unstable. Hence, by the above argument there
exists at least one nontrivial equilibria ū such that limt→∞ u(t; ξ) = ū for some
ξ in an open subset of C. In fact it is not difficult to see that when∑

j∈Ii

dijKj =
∑

j∈Ii

djiKi, i = 1, · · · , n, (1.3)
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the only nontrivial equilibrium of (1.1) is ū = (K1,K2, · · · ,Kn) (see [4, Theo-
rem 1]). The purpose of this paper is to prove the following theorem regarding
the existence and uniqueness of a nontrivial steady state for (1.1).

Theorem 1.1. There exists one and only one positive steady state solution for
(1.1).

This result is well known for reaction-advection-diffusion equations (see [2,
Proposition 3.3, page 148]). Since (1.1) can be seen as a spatially discrete model
analogous to an advection-diffusion equation, the same result was expected to
be true for (1.1). Nevertheless, to the best of our knowledge, its proof has not
yet appeared in the literature. In order to stress the similarity of (1.1) to a
reaction-advection-diffusion equation, we present a proof that is based on the
corresponding proof for the PDE model.

2. Preliminary results

Consider the linear system
∑

j∈Ii

dij(xj − xi) + bixi = fi, i = 1, · · · , n. (2.1)

Here bi, and fi are given constants.

Theorem 2.1 (Strong Maximum Principle). Suppose that bi ≤ 0, i = 1, · · · , n.
Let x ∈ IRn be a solution of (2.1), m := min

1≤i≤n
xi, and M := max

1≤i≤n
xi. If

fi ≤ 0, i = 1, · · · , n, and m ≤ 0 (resp. fi ≥ 0, i = 1, · · · , n, and M ≥ 0), then
xi = m (resp. xi = M), and fi = mbi = 0, i = 1, · · · , n. In particular, if
fi ≤ 0 (resp. fi ≥ 0), i = 1, · · · , n, and f 6≡ 0 or b 6≡ 0, then m ≥ 0 (resp.
M ≤ 0).

Remark 2.1. This theorem is a particular version of more general maximum
principles for monotone matrices (see [6, Theorem 2]). We will give an inde-
pendent proof.

Proof of Theorem 2.1. Suppose that fi ≤ 0, i = 1, · · · , n and m ≤ 0, (the case
that fi ≥ 0, i = 1, · · · , n and M ≥ 0 can be solved similarly). Let I := {i :
xi = m}. Clearly, I is non-empty. Suppose that I $ {1, · · · , n}. Hence, by
our original assumption on the sets Ii’s, there exists i ∈ I such that Ii

⋂
Ic is

non-empty. Here, Ic denotes the complement of I over the set {1, · · · , n}. For
such i we have

fi =
∑

j∈Ii

dij(xj − xi) + bixi

=
∑

j∈Ii
⋂

Ic

dij(xj −m) + bim

> 0.
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which is a contradiction. This proves that xi = m, i = 1, · · · , n. It follows, by
introducing this value for xi in (2.1), that fi = mbi = 0, i = 1, · · · , n. ¤X

We will apply the Strong Maximum Principle to obtain a monotone iteration
scheme for constructing solutions to the general nonlinear system

∑

j∈Ii

dij(xj − xi) + eixi + fi(xi) = 0, i = 1, · · · , n. (2.2)

Here fi, i = 1, · · · , n are given functions. We will say that x0 is an upper
solution of (2.2) if x0 satisfies

∑

j∈Ii

dij

(
x0

j − x0
i

)
+ eix

0
i + fi

(
x0

i

) ≤ 0, i = 1, · · · , n. (2.3)

We will also assume that x0 is not a solution. Similarly we define lower
solution by interchanging the order of the inequalities in (2.3).

Theorem 2.2. Suppose that fi ε C1(R) for all i, and that x0 and y0 are
respectively upper and lower solutions of (2.2) with y0

i ≤ x0
i , i = 1, · · · , n. Then

there exist solutions x̄ and ȳ of (2.2) such that y0
i ≤ ȳi ≤ x̄i ≤ x0

i , i = 1, · · · , n.
Moreover, x̄ and ȳ are, respectively, maximal and minimal solutions of (2.2), in
the sense that if x is any solution of (2.2) such that y0

i ≤ xi ≤ x0
i , i = 1, · · · , n

then ȳi ≤ xi ≤ x̄i, i = 1, · · · , n.

Proof. Let m := min
0≤i≤n

y0
i and M := max

0≤i≤n
x0

i . Let k > 0 be a constant such

that k > ei, i = 1, · · · , n, and

f ′i(s) + k > 0, 0 ≤ i ≤ n, s ∈ [m, M ].

Define the application T : IRn → IRn by β = Tα where β is the solution of
the problem

∑

j∈Ii

dij(βj − βi) + (ei − k)βi = −(fi(αi) + kαi), i = 1, · · · , n. (2.4)

The matrix of the linear system (2.4) is of the form A − kI where A is the
matrix given in (1.2). By the Gershgorin circle theorem we know that A has
non-positive eigenvalues. Hence, since ei − k < 0, i = 1, · · · , n, the matrix
A− kI is invertible, and T is well defined.

We will see that T is a monotonic application in the sense that if α1 ≤ α2

then Tα1 ≤ Tα2, provided that m ≤ α1, α2 ≤ M . Here α1 ≤ α2 means
α1

i ≤ α2
i for all i. We also write α1 < α2 if α1 ≤ α2 and α1

i < α2
i for some i,

and we write α1 ¿ α2 if α1
i < α2

i for all i. To see this let βi = Tαi, i = 1, 2.
Then∑

j∈Ii

dij

((
β2

j − β1
j

)− (
β2

i − β1
i

))
+ (ei − k)

(
β2

i − β1
i

)

= − (
fi

(
α2

i

)− fi

(
α1

i

)
+ k

(
α2

i − α1
i

))
, i = 1, · · · , n.

(2.5)
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If we assume that α1 ≤ α2, then by the choice of k we have
∑

j∈Ii

dij

((
β2

j − β1
j

)− (
β2

i − β1
i

))
+ (ei − k)

(
β2

i − β1
i

) ≤ 0, i = 1, · · · , n. (2.6)

This implies that β1 ¿ β2. It is clear that β1 ≤ β2. Suppose that there exists
i such that β1

i = β2
i . By the Strong Maximum Principle β1 ≡ β2. In this case,

the left hand side of (2.5) is zero. It follows by the choice of k that α1 ≡ α2.
Hence, T is monotonic in a stronger sense, i.e. if α1 < α2 then Tα1 ¿ Tα2.

Let us see now that Tα ¿ α if α is an upper solution of (2.2). Let β = Tα,
then∑

j∈Ii

dij

(
(βj − αj)− (βi − αi)

)
+ (ei − k) (βi − αi)

= −

∑

j∈Ii

dij (αj − αi) + fi (αi)


 ≥ 0, i = 1, · · · , n.

(2.7)

Again, by the Strong Maximum Principle β ¿ α, otherwise β ≡ α. This last
option is not possible since by the definition of T , α would be a solution of
(2.2) and we assumed that this was not the case.

This observations allow us to defined inductively two sequences {xn} and
{yn} by letting

(
x1, y1

)
:=

(
Tx0, T y0

)
and (xn, yn) :=

(
Txn−1, T yn−1

)
for

n > 1.
Since x0 is an upper solution, x1 = Tx0 ¿ x0, and by the monotonicity of

T , Tx1 ¿ Tx0 = x1. Hence xn−1 À xn for each n. Similarly, yn À yn−1 for
each n. Also, since x0 > y0, we obtain by induction that xn À yn.

This allow us to conclude that {xn} is a decreasing sequence bounded below
by y0. Hence

x̄i = lim
n→∞

xn
i , i = 1, · · · , n,

exists.
Now,

x̄ = lim
n→∞

xn = lim
n→∞

Txn−1 = T lim
n→∞

xn−1 = T x̄.

Then x̄ is solution of (2.2).
Similarly we can construct a solution ȳ of (2.2) such that y0 < ȳ <≤ x̄ < x0.
Suppose now that x is another solution of (2.2) such that y0 < x < x0. This

implies that x = Tx ¿ Tx0 = x1. By induction x ¿ xn for all n. Hence x ≤ x̄.
Similarly, one shows that ȳ ≤ x. This finishes the proof of the theorem. ¤X

3. Proof of the main Theorem

The proof of Theorem 1.1 relies in the following lemmas

Lemma 3.1. If x is a solution of (2.2) with fi(s) := sFi(s), then xi ≤ a∗, i =
1, · · · , n, where a∗ := max1≤i≤n

{
ri

βi
, ei+ri

βi

}
.
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Proof. Suppose that there exists i such that xi > a∗. Let i0 such that xi0 =
max

1≤i≤n
xi > a∗. Hence ei0xi0 + fi0(xi0) < 0. It follows that

∑

j∈Ii0

di0j (xj − xi0) + ei0xi0 + fi0 (xi0) ≤ ei0xi0 + fi0 (xi0)

< 0.

This is a contradiction which proves the lemma. ¤X

The steady state solutions of (1.1) are solutions of a system of the form
∑

j∈Ii

dij(xj − xi) + eixi + xiFi(xi) = 0, i = 1, · · · , n. (3.1)

Lemma 3.2. If the principal eigenvalue λ1 is positive in the problem∑

j∈Ii

dij (ψj − ψi) + eiψi + riψi = λψi, i = 1, · · · , n, (3.2)

where ri = Fi(0), then system (3.1) has one and only one positive solution.

By a positive solution of (3.1) we mean a solution x ∈ IRn such that xi >
0, i = 1, · · · , n.

Proof. To prove the existence of a positive solution of (3.1) we first notice that
a∗ := max1≤i≤n

{
ri

βi
, ei+ri

βi

}
is an upper solution of (3.1).

Let ψ a positive eigenvector corresponding to the main eigenvalue λ1 of
(3.2). It follows that εψ satisfies the equation
∑

j∈Ii

dij(εψj−εψi)+eiεψi+εψiFi(εψi) = εψi

(
λ1−ri+Fi(εψi)

)
, i = 1, · · · , n.

Since λ1 + Fi(εψi) − Fi(0) ≥ λ1 − αiεψi we obtain, by choosing ε > 0 small
enough, that εψ is a positive lower solution of (3.1). We can assume without
loss of generality that εψi < a∗, i = 1, · · · , n. It follows by Theorem 2.2 that
(3.1) has a positive solution.

Let x̄ be the maximal solution of (3.1) given by Theorem 2.2 for the upper
solution a∗. Suppose that x is another positive solution of (3.1). By Lemma 3.1
xi ≤ a∗, i = 1, · · · , n. Since x̄ is a maximal solution, it follows that 0 ≤ xi ≤ x̄i,
i = 1, · · · , n. We will show that this implies that x = x̄.

Since x is a positive solution of (3.1) it follows that the principal eigenvalue
λ1 is zero for the problem∑

j∈Ii

dij(ψj − ψi) + eiψi + Fi(xi)ψi = λψi, i = 1, · · · , n, (3.3)

Similarly, since x̄ is a positive solution of (3.1) it follows that the principal
eigenvalue λ̄1 is zero for the problem∑

j∈Ii

dij(ψj − ψi) + eiψi + Fi(x̄i)ψi = λψi, i = 1, · · · , n. (3.4)
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Assume that there exists i such that xi < x̄i. This implies that Fi(x̄i) <
Fi(xi). Hence, applying the monotonicity property of the principal eigenvalue
of nonnegative irreducible matrices to problems (3.3)-(3.4), it follows that λ̄1 <
λ1. This is a contradiction, since λ̄1 = λ1 = 0. We conclude that x = x̄. This
finished the proof of the theorem. ¤X

Proof of Theorem 1.1. Since the principal eigenvalue of the matrix A is zero
then the principal eigenvalue of the problem∑

j∈Ii

[dijψj − djiψi] + riψi = λψi, i = 1, · · · , n, (3.5)

is positive. The theorem follows by applying Lemma 3.2 to (1.1) with ei =∑
j∈Ii

(dij − dji). ¤X
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