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Abstract. We define and study semimatroids, a class of objects which abstracts
the dependence properties of an affine hyperplane arrangement. We show that
geometric semilattices are precisely the posets of flats of semimatroids. We
define and investigate the Tutte polynomial of a semimatroid. We prove that
it is the universal Tutte-Grothendieck invariant for semimatroids, and we give
a combinatorial interpretation for its non-negative integer coefficients.
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Resumen. En este art́ıculo definimos y estudiamos las semimatroides, una clase
de objetos que abstraen las propiedades de dependencia de un arreglo de hiper-
planos afines. Demostramos que un semiret́ıculo es geométrico si y sólo si es
el semiret́ıculo de conjuntos cerrados de una semimatroide. Definimos e inves-
tigamos el polinomio de Tutte de una semimatroide. Demostramos que es la
invariante universal de Tutte-Grothendieck para la clase de semimatroides, y
presentamos una interpretación combinatoria de sus coeficientes, que son en-
teros no negativos.

1. Introduction.

The goal of this paper is to define and study a class of objects called semi-
matroids. A semimatroid can be thought of as a matroid-theoretic abstrac-
tion of the dependence properties of an affine hyperplane arrangement. Many
properties of hyperplane arrangements are really facts about their underlying
matroidal structure. Therefore, the study of such properties can be carried out
much more naturally and elegantly in the setting of semimatroids.

The paper is organized as follows. In Section 2 we define semimatroids, and
show how a hyperplane arrangement determines a semimatroid. The follow-
ing sections provide different ways of thinking about semimatroids. Section
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3 shows how a semimatroid “extends” to a matroid, and determines a mod-
ular ideal inside it. The semimatroid can be recovered from the matroid and
its modular ideal. Section 4 describes the close relationship between semima-
troids and strong maps. Semimatroids are described in terms of elementary
preimages and single-element coextensions. Section 5 gives a bijection between
semimatroids and pointed matroids. Section 6 gives a new characterization of
geometric semilattices as posets of flats of semimatroids, extending the classical
correspondence between geometric lattices and simple matroids.

The final sections are geared towards the study of the Tutte polynomial of
a semimatroid. Section 7 defines the concepts of duality, deletion and contrac-
tion. Section 8 defines the Tutte polynomial, and shows that it is the unique
Tutte-Grothendieck invariant for the class of semimatroids. Finally, Section
9 gives a combinatorial interpretation for the non-negative coefficients of the
Tutte polynomial.

It is worth pointing out that Kawahara discovered semimatroids indepen-
dently, and described their Orlik-Solomon algebra in [14]. Las Vergnas’s work
on the Tutte polynomial of a quotient map [17] also overlaps with our work;
we say more about this at the end of Section 8.

It is also worth remarking that the semimatroids of [32] are the same ones
that we are studying; their name is justified by the correspondence between
simple semimatroids and geometric semilattices. The “semimatroids” in [15]
and [27] are different objects.

Throughout the paper, we will assume a basic knowledge of matroid theory.
For a good introduction to the subject, see [20].

2. Semimatroids.

Definition 2.1. A semimatroid is a triple (S, C, rC) consisting of a finite set S,
a non-empty simplicial complex C on S, and a function rC : C → N, satisfying
the following five conditions.
(R1) If X ∈ C, then 0 ≤ rC(X) ≤ |X |.
(R2) If X, Y ∈ C and X ⊆ Y , then rC(X) ≤ rC(Y ).
(R3) If X, Y ∈ C and X∪Y ∈ C, then rC(X)+rC(Y ) ≥ rC(X∪Y )+rC(X∩Y ).
(CR1) If X, Y ∈ C and rC(X) = rC(X ∩ Y ), then X ∪ Y ∈ C.
(CR2) If X, Y ∈ C and rC(X) < rC(Y ), then X ∪ y ∈ C for some y ∈ Y − X.

Note that a semimatroid with C = 2S is precisely a matroid, since (CR1)
and (CR2) hold trivially.

We call S, C and rC the ground set, collection of central sets and rank function
of the semimatroid (S, C, rC), respectively. Sometimes we will slightly abuse
notation and denote the semimatroid C, when its ground set and rank function
are clear. We will denote subsets of S by upper case letters, and elements of S
by lower case letters.

Figure 1 shows an example of a semimatroid. The ground set is [3] =
{1, 2, 3}, the collection of central sets is C = {∅, 1, 2, 3, 13, 23}, and rC(A) = |A|
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Figure 1. A semimatroid.

for A ∈ C. We draw C as a poset ordered by containment, and next to each
node we indicate its rank.
There is a well-known connection between matroids and central hyperplane
arrangements, described below. We describe it below, and show that it extends
to a connection between semimatroids and affine hyperplane arrangements.

Given a field k and a positive integer n, an affine hyperplane in kn is an
(n − 1)-dimensional affine subspace of kn. A hyperplane arrangement A in kn

is a finite set of affine hyperplanes in kn. An arrangement is central if all its
hyperplanes have a non-empty intersection.

The rank function rA is defined for the central subarrangements B ⊆ A by
the equation rA(B) = n − dim∩B. If A is central, then rA is defined on all of
its subsets, and it is the rank function of a matroid MA on A. [23, Lect. 3]

Definition 2.2. For a central arrangement A, let MA be the matroid of A,
with ground set A and rank function rA.

Similarly, if A is a hyperplane arrangement which is not necessarily central,
then its rank function determines a semimatroid:

Proposition 2.3. Let A be an affine hyperplane arrangement in kn. Let CA
be the collection of central subarrangements of A, and let rA : CA → N, defined
by

rA(B) = n − dim∩B,

be the rank function of A. Then (A, CA, rA) is a semimatroid.

Proof. To each hyperplane Hi ∈ A we can associate a vector vi ∈ kn (or
equivalently a linear functional in the dual vector space) and a constant ci ∈
k, so that Hi is the set of points x ∈ kn such that vi · x = ci, with the
usual inner product on kn. It is easy to see that the rank of a central subset
{Hi1 , . . . , Hik

} ∈ CA is equal to the rank of the set {vi1 , . . . , vik
} in kn.
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From this point of view, axioms (R1), (R2), (R3) are standard facts of linear
algebra applied to the vector space kn. We now check axioms (CR1) and (CR2).

To check axiom (CR1), assume that X, Y ∈ C and rA(X) = rA(X ∩Y ). Let
A = ∩X be the intersection of the hyperplanes in X , and similarly let B = ∩Y .
Since X∩Y ⊆ X and rA(X∩Y ) = rA(X), we must have ∩(X∩Y ) = ∩X = A.
Also, X ∩ Y ⊆ Y implies ∩(X ∩ Y ) ⊇ ∩Y = B. Therefore A ⊇ B, and every
hyperplane in X ∪ Y contains B. It follows that X ∪ Y ∈ C.

To check axiom (CR2), assume that X, Y ∈ C and rA(X) < rA(Y ). Let
LX = {vi |Hi ∈ X} and define similarly LY . Since rank(LY ) > rank(LX),
there exists a vector v ∈ LY , corresponding to a hyperplane y ∈ Y , which is
not in the span of LX . Thus y has a non-empty intersection with ∩X . �X

Corollary 2.4. For positive integers k ≤ n, let S be [n] = {1, 2, . . . , n}, let C
consist of the subsets of [n] of size at most k, and let the rank of a set S (with
|S| ≤ k) be its size:

S = [n], C =

(
[n]

≤ k

)
, rC(S) = |S|.

Then (S, C, rC) is a semimatroid.

Proof. This is clearly the semimatroid of n generic affine hyperplanes in Rk. �X

We will need the fact that semimatroids satisfy a “local” version of (R1) and
(R2) and a stronger version of (CR1) and (CR2), as follows.

Proposition 2.5. Semimatroids satisfy the following alternative axioms:
(R2’) If X ∪ x ∈ C then rC(X ∪ x) − rC(X) = 0 or 1.
(CR1’) If X, Y ∈ C and rC(X) = rC(X ∩Y ), then X∪Y ∈ C and rC(X∪Y ) =
rC(Y ).
(CR2’) If X, Y ∈ C and rC(X) < rC(Y ), then X ∪ y ∈ C and rC(X ∪ y) =
rC(X) + 1 for some y ∈ Y − X.

Proof. (R2’): From (R2) we know that rC(X ∪ x) ≥ rC(X). From (R3) we
know that rC(X ∪ x) − rC(X) ≤ rC(x) − rC(∅), and this is 0 or 1 by (R1).

(CR1’): The hypotheses imply that X ∪ Y ∈ C. Then (R2) says that
rC(Y ) ≤ rC(X ∪ Y ), while (R3) says that rC(Y ) ≥ rC(X ∪ Y ).

(CR2’): By applying (CR2) repeatedly, we see that we can keep on adding
elements y1, . . . , yk of Y to the set X , until we reach a set X ∪ y1 ∪ · · · ∪ yk ∈ C
such that rC(X∪y1∪· · ·∪yk) = rC(Y ). Now we claim that rC(X∪yi) = rC(X)+1
for some i. If that was not the case then, since rC(X ∪ y1) = rC(X), (CR1’)
applies to X ∪ y1 and X ∪ y2. Therefore X ∪ y1 ∪ y2 ∈ C and rC(X ∪ y1 ∪ y2) =
rC(X ∪ y2) = rC(X). Then (CR1’) applies to X ∪ y1 ∪ y2 and X ∪ y3, so
X ∪ y1 ∪ y2 ∪ y3 ∈ C and rC(X ∪ y1 ∪ y2 ∪ y3) = rC(X). Continuing in this way,
we conclude that X ∪ y1 ∪ · · · ∪ yk ∈ C and rC(X ∪ y1 ∪ · · · ∪ yk) = rC(X), a

contradiction. �X
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Semimatroids, like matroids, have several equivalent definitions. In their
context, it is possible to talk about flats, independent sets, spanning sets, bases,
circuits, and most other basic matroid concepts. We will say more about this
in Section 9. Until then, we will use the rank function approach of Definition
2.1 throughout most of our treatment. We will also need some facts about the
closure approach, which we now present.

Definition 2.6. For a semimatroid C = (S, C, rC) and a set X ∈ C, the closure
of X in C is clC(X) = {x ∈ S |X ∪ x ∈ C, rC(X ∪ x) = rC(X)}.

We will sometimes drop the subscript and write cl(X) instead of clC(X)
when it causes no confusion.

Proposition 2.7. The closure operator of a semimatroid satisfies the following
properties, for all X, Y ∈ C and x, y ∈ S.
(CLR1) cl(X) ∈ C and rC(cl(X)) = rC(X).
(CL1) X ⊆ cl(X).
(CL2) If X ⊆ Y then cl(X) ⊆ cl(Y ).
(CL3) cl(cl(X)) = cl(X).
(CL4) If X∪x ∈ C and y ∈ cl(X∪x)−cl(X), then X∪y ∈ C and x ∈ cl(X∪y).

Proof. To check (CLR1), let cl(X) = {x1, . . . , xk}. We repeat the argument of
the proof of (CR2’). Since rC(X ∪ x1) = rC(X), (CR1’) applies to X ∪ x1 and
X ∪ x2, so X ∪ x1 ∪ x2 ∈ C and rC(X ∪ x1 ∪ x2) = rC(X). (CR1’) then applies
to X ∪ x1 ∪ x2 and X ∪ x3, so X ∪ x1 ∪ x2 ∪ x3 ∈ C and rC(X ∪ x1 ∪ x2 ∪ x3) =
rC(X). Continuing in this way, we conclude that X ∪ x1 ∪ · · · ∪ xk ∈ C and
rC(X ∪ x1 ∪ · · · ∪ xk) = rC(X).

(CL1) is trivial.
To check (CL2), let x ∈ cl(X). Then X ∪ x ∈ C and rC(X ∪ x) = rC(X).

Applying (CR1’) to X ∪x and Y , we conclude that Y ∪x ∈ C and rC(Y ∪x) =
rC(Y ). Therefore x ∈ cl(Y ).

We know that cl(X) ⊆ cl(cl(X)); so to prove (CL3) it suffices to check the
reverse inclusion. Let x ∈ cl(cl(X)). Then cl(X) ∪ x ∈ C and rC(cl(X) ∪ x) =
rC(cl(X)) = rC(X). Therefore, since cl(X)∪x ⊇ X∪x ⊇ X and C is a simplicial
complex, we have X ∪ x ∈ C and rC(X ∪ x) = rC(X) also; i.e., x ∈ cl(X).

Finally, we check (CL4). The assumption that y ∈ cl(X ∪ x) implies that
X ∪ x ∪ y ∈ C and rC(X ∪ x ∪ y) = rC(X ∪ x) ≤ rC(X) + 1. Since X ∪ y ∈ C,
the assumption that y /∈ cl(X) implies that rC(X) + 1 = rC(X ∪ y). These two

results together give rC(X ∪ x ∪ y) = rC(X ∪ y); i.e., x ∈ cl(X ∪ y). �X

We will later need the following definitions.

Definition 2.8. A flat of a semimatroid C is a set A ∈ C such that cl(A) = A.
The poset of flats K(C) of a semimatroid C is the set of flats of C, ordered by
containment.
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3. Modular ideals.

In Sections 3, 4 and 5 we will present bijections between the class of semima-
troids and other important classes of objects. Figure 2, which we will slowly get
to understand by the end of Section 4, is a useful illustration of these bijections.

2 31 3Ø2 31 11 02 1 21 2 31 22 32 31 3Ø2 31 11 02 1 21 1 2 31 2 2

2 31 32 31 11 02 1 22 31 2 2 3 41 3 442 4 3 41 4 22 1 2 32 3 1 2 3 41 2 4 3
Ø

1 2 3~N

2 31 3Ø2 31 11 0 12 2C ’
M N

Figure 2. The semimatroid C and its corresponding matroids.

In this section, we show that a semimatroid is equivalent to a pair (M, I)
of a matroid M and one of its modular ideals I. We start by showing how we
can naturally construct a matroid MC from a given semimatroid (S, C, rC), by
extending the rank function rC from C to 2S. (In Figure 2, this amounts to
extending the semimatroid C of Figure 1 to the matroid M . In Section 4 we

will explain what N and Ñ are.)
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Proposition 3.1. Let C = (S, C, rC) be a semimatroid. For each subset X ⊆ S,
let r(X) = max{rC(Y ) |Y ⊆ X , Y ∈ C}. Then r is the rank function of a
matroid MC = (S, r).

Proof. It is clear, but worth remarking explicitly, that r(X) = rC(X) if X ∈ C.
It will be most convenient to check the three local axioms (R1’)-(R3’) for the
rank function of a matroid [7]. Let X ⊆ S and a, b ∈ S be arbitrary.
(R1’) r(∅) = 0.

This is trivial.
(R2’) r(X ∪ a) − r(X) = 0 or 1.

This is easy. It is immediate from the definition that r(X ∪a) ≥ r(X). Now
let r(X ∪ a) = rC(Y ) for Y ⊆ X ∪ a, Y ∈ C. Then Y − a ⊆ X is also in C, so
r(X) ≥ rC(Y − a) ≥ rC(Y ) − 1 = r(X ∪ a) − 1.
(R3’) If r(X ∪ a) = r(X ∪ b) = r(X), then r(X ∪ a ∪ b) = r(X).

This takes more work. Assume that r(X ∪ a) = r(X ∪ b) = r(X) = s but
r(X ∪ a ∪ b) = s + 1. Let W ⊆ X ∪ a ∪ b, W ∈ C be such that rC(W ) = s + 1.
Notice that W must contain a; otherwise we would have W ⊆ X ∪ b and
rC(W ) > r(X ∪ b). Similarly, W contains b. So let W = Z ∪ a ∪ b; clearly
Z ⊆ X .

We have s + 1 = rC(Z ∪ a ∪ b) ≤ rC(Z ∪ a) + 1 ≤ r(X ∪ a) + 1 = s + 1.
Therefore rC(Z ∪ a) = s. Similarly, rC(Z ∪ b) = s. Then, by the submodularity
of rC , rC(Z) = s − 1.

Now, since r(X) = s, we can find V ⊆ X , V ∈ C such that rC(V ) = s. So
we have V, Z ∈ C with s = rC(V ) > rC(Z) = s − 1. By (CR2’), we can add
an element of V to Z and obtain a set Y ∈ C with X ⊇ Y ⊇ Z such that
rC(Y ) = s. Notice that Z ∪ a ⊆ Y ∪ a ⊆ X ∪ a and r(Z ∪ a) = r(X ∪ a) = s.
Thus r(Y ∪ a) = s. Similarly, r(Y ∪ b) = s and r(Y ∪ a ∪ b) = s + 1.

Now we have Y, Z ∪ a∪ b ∈ C with s + 1 = rC(Z ∪ a∪ b) > rC(Y ) = s. Once
again, (CR2’) guarantees that we can add an element of Z∪a∪b to Y to obtain
an element of rank s + 1 in C. But Z ⊆ Y , so the only elements of Z ∪ a ∪ b
which may not be in Y are a and b. Also, we saw that r(Y ∪a) = r(Y ∪ b) = s.

This is a contradiction. �X

The following definitions will be important to us.

Definition 3.2. A pair {X, Y } of subsets of S is a modular pair of the matroid
M = (S, r) if r(X) + r(Y ) = r(X ∪ Y ) + r(X ∩ Y ).

Definition 3.3. [13] A modular ideal I of a matroid M = (S, r) is a non-
empty collection of subsets of S satisfying the following three conditions.
(MI1) I is a simplicial complex.
(MI2) {a} ∈ I for every non-loop a of M .
(MI3) If {X, Y } is a modular pair in M and X, Y ∈ I, then X ∪ Y ∈ I.

Proposition 3.4. For any semimatroid (S, C, rC), the collection C is a modular
ideal of MC.
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Proof. We denote the rank function of MC by r and the rank function of C by
rC . Of course, rC is just the restriction of r to C.

Axioms (MI1) and (MI2) of a modular ideal are satisfied trivially. We refor-
mulate (MI3) as follows:
(MI3) If A, B, C ⊆ S are pairwise disjoint, A ∪ B, A ∪ C ∈ C and r(A ∪ B ∪
C) − r(A ∪ B) = r(A ∪ C) − r(A), then A ∪ B ∪ C ∈ C.

We can assume that B and C are non-empty; if one of them is empty, the
claim is trivial. We prove (MI3) by induction on |B| + |C|.

The first case is |B| + |C| = 2; let B = {b} and C = {c}. First assume that
r(A ∪ b) and r(A ∪ c) are different; say, rC(A ∪ b) < rC(A ∪ c). By (CR2), we
can add some element of A∪ c to A∪ b and obtain a set in C. This element can
only be c, so A ∪ b ∪ c ∈ C.

Assume then that rC(A∪b) = rC(A∪c) = s. If rC(A) = s, (CR1) implies that
A∪b∪c ∈ C. Assume then that rC(A) = s−1, and therefore r(A∪b∪c) = s+1
by hypothesis. There is a subset of A∪ b∪ c in C of rank s + 1; since it cannot
be contained in A∪ b or A∪ c, it must be of the form B∪ b∪ c for some B ⊆ A.
But then we have rC(A ∪ b) < rC(B ∪ b ∪ c). By (CR2), we can add some
element of B ∪ b ∪ c to A ∪ b and obtain a set in C. This element can only be
c, so A ∪ b ∪ c ∈ C.

Having established the base case of the induction, we proceed with the
inductive step. Assume that |B| + |C| ≥ 3 and, without loss of generality,
|B| ≥ 2. Let b ∈ B. Applying the submodularity of r twice, we get that
d = r(A∪B ∪C)− r(A ∪B) ≤ r(A∪ b∪C)− r(A∪ b) ≤ r(A ∪C)− r(A) = d.
It follows that r(A ∪ b ∪ C) − r(A ∪ b) = d also.

We can apply the induction hypothesis to the sets A, {b}, C, since A∪ b, A∪
C ∈ C and |{b}|+ |C| < |B|+ |C|. We conclude that A∪b∪C ∈ C. We can then
apply the induction hypothesis to the sets A∪b, B−b, C, since A∪B, A∪b∪C ∈ C
and |B− b|+ |C| < |B|+ |C|. We conclude that A∪B ∪C ∈ C, as desired. �X

Propositions 3.1 and 3.4 show us how to obtain a pair (M, I) of a matroid
M and one of its modular ideals I, given a semimatroid C. Now we show that
it is possible to recover C from the pair (M, I).

Proposition 3.5. Let M = (S, r) be a matroid, and let I be a modular ideal
of M . Let rI be the restriction of the rank function of M to I. Then (S, I, rI)
is a semimatroid.

Proof. The rank function rI inherits axioms (R1)-(R3) from rM . (CR1) is easy.
If X, Y ∈ I and rI(X) = rI(X ∩ Y ), then r(Y ) = r(X ∪ Y ) by submodularity.
Thus {X, Y } is a modular pair in M , and X ∪ Y ∈ I.

Now we check (CR2). We start by showing that I must contain every
independent set of M . In fact, assume that I is a minimal independent set
which is not in I. Since I contains all non-loop elements, I has at least two
elements a and b. Then I contains the modular pair {I−a, I−b}, so it contains
their union I, a contradiction.
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Now take X, Y ∈ I with r(X) < r(Y ), and pick y ∈ Y such that r(X ∪ y) =
r(X) + 1. Let X ′ be an independent subset of X of rank r(X); then X ′ ∪ y is
an independent set of rank r(X) + 1. Therefore I contains the modular pair

{X ′ ∪ y, X}, so it contains their union X ∪ y. �X

Theorem 3.6. Let S be a finite set. Let Semimat(S) be the set of semimatroids
on S. Let MatId(S) be the set of pairs (M, I) of a matroid M on S and a
modular ideal I of M .

(1) The assignment (S, C, rC) 7→ (MC , C) is a map Semimat(S) → MatId(S).
(2) The assignment (M, I) 7→ (S, I, rI) is a map MatId(S) → Semimat(S).
(3) The two maps above are inverses of each other, and give a one-to-one

correspondence between Semimat(S) and MatId(S).

Proof. The first and second parts are restatements of Propositions 3.1 and 3.4
and Proposition 3.5, respectively.

Denote the maps Semimat(S) → MatId(S) and MatId(S) → Semimat(S)
above by f and g respectively. It is immediate that g ◦ f is the identity map in
Semimat(S). To check that f ◦ g is the identity map in MatId(S), we need to
show the following. Given a matroid M = (S, r) and a modular ideal I of M ,
r(X) = max{r(Y ) |Y ⊆ X , Y ∈ I} for all X ⊆ S. But this is easy: it is clear
that r(X) ≥ max{r(Y ) |Y ⊆ X , Y ∈ I}. Equality is attained because X has

an independent subset X ′ of rank r(X); since X ′ is independent, it is in I. �X

Before we continue our analysis, we state explicitly a simple property of
semimatroids and modular ideals which is implicit in the proofs above.

In a semimatroid (S, C, rC), all the maximal sets in C have the same rank,
which we denote rC . In a modular ideal I of a matroid M = (S, r), all the
maximal sets have maximum rank r = r(S).

4. Elementary preimages and single-element coextensions.

Now we show that a semimatroid is also equivalent to a pair (M, Ñ) of a

matroid M and one of its rank-increasing single-element coextensions Ñ . To do
it, we outline the correspondence between the modular ideals, the elementary
preimages and the rank-increasing single-element coextensions of a matroid.

This correspondence is just the dual of the well understood correspondence
between the modular filters, the elementary quotients, and the rank-preserving
single-element extensions of a matroid [10], [13], [16]. Therefore we omit all
the proofs of these results, and refer the reader to the relevant literature.

The reader may want to to keep in mind Figure 2. Recall C is a semima-
troid, and M is its extension to a matroid. From C and M we will obtain
an elementary preimage of M , which is the matroid N , and a rank-increasing

single-element coextension of M , which is the matroid Ñ .

Definition 4.1. A quotient map N → M is a pair of matroids M, N on the
same ground set such that every flat of M is a flat of N .
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There are several other equivalent definitions of quotient maps, including
the following.

Proposition 4.2. [16, Proposition 8.1.6] Let M and N be two matroids on the
set S. The following are equivalent:
(i) N → M is a quotient map.
(ii) For any A ⊆ S, clN (A) ⊆ clM (A).
(iii) For any A ⊆ B ⊆ S, rN (B) − rN (A) ≥ rM (B) − rM (A).

Definition 4.3. An elementary quotient map is a quotient map N → M such
that r(N) − r(M) = 0 or 1.

We will focus our attention on elementary quotient maps. Their importance
is the following. Perhaps the most useful notion of a morphism in the category
of matroids is that of a strong map. Every strong map between matroids
can be regarded essentially as a quotient map, followed by an embedding of a
submatroid into a matroid. Also, every quotient map can be factored into a
sequence of elementary quotient maps. Therefore, elementary quotient maps
are essentially the building blocks of strong maps. For more information on
this topic, we refer the reader to [16].

Definition 4.4. An elementary preimage of a matroid M is a matroid N on
the same ground set such that N → M is an elementary quotient map.

Elementary preimages are relevant in our investigation because they are
equivalent to modular ideals:

Theorem 4.5. [13, Proposition 6.5] Let M = (S, rM ) be a matroid. Let
ModId(M) be the set of modular ideals of M and let Preim(M) be the set
of elementary preimages of M .

(1) Given I ∈ ModId(M), define the rank function rN : 2S → N by:

rN (A) =

{
rM (A) if A ∈ I

rM (A) + 1 if A /∈ I

Then N = (S, rN ) is a matroid, and N ∈ Preim(M).
(2) Given N ∈ Preim(M), let I = {A ∈ S : rM (A) = rN (A)}. Then

I ∈ ModId(M).
(3) The two maps ModId(M) → Preim(M) and Preim(M) → ModId(M)

defined above are inverses of each other. They establish a one-to-one
correspondence between ModId(M) and Preim(M).

Corollary 4.6. Given a finite set S, let MatPreim(S) be the set of pairs (M, N)
of a matroid M on S and one of its elementary preimages N . Then there are
one-to-one correspondences between Semimat(S), MatId(S) and MatPreim(S).

Proof. Combine Theorems 3.6 and 4.5. �X
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Definition 4.7. Let M be a matroid on the ground set S and let p be an

element not in S. A single-element coextension of M by p is a matroid Ñ on

the set S ∪ p such that M = Ñ/p. Ñ is rank-increasing if r(Ñ ) > r(M).

It is worth remarking that most single-element coextensions of M by p are

rank-increasing. The only one which is not rank-increasing is the matroid Ñ
on S ∪ p such that rÑ (A ∪ p) = rÑ (A) = rM (A) for all A ⊆ S; i.e., the one
where p is a loop.

Theorem 4.8. [16, dual of Theorem 8.3.2] Let M be a matroid and p be an
element not in its ground set. Let Coext(M, p) be the set of rank-increasing
single-element coextensions of M by p.

(1) Given N ∈ Preim(M), define rÑ : 2S∪p → N by

rÑ (A) = rN (A)

rÑ (A ∪ p) = rM (A) + 1

for A ⊆ S. Then Ñ = (S ∪ p, rÑ ) is a matroid, and Ñ ∈ Coext(M, p).

(2) If Ñ ∈ Coext(M, p), then the matroid N = Ñ − p is in Preim(M).
(3) The two maps Preim(M) → Coext(M, p) and Coext(M, p) → Preim(M)

defined above are inverses of each other. They establish a one-to-one
correspondence between Preim(M) and Coext(M, p).

Corollary 4.9. Given a finite set S and an element p /∈ S, let MatCoext(S, p)

be the set of pairs (M, Ñ), where M is a matroid on S and Ñ is one of its rank-
increasing single-element coextensions by p. Then there are one-to-one corre-
spondences between Semimat(S), MatId(S), MatPreim(S) and MatCoext(S, p).

Proof. Combine Theorems 3.6, 4.5 and 4.8. �X

We briefly mention that given a matroid M , there are other objects in corre-
spondence with the modular ideals of M . Two such examples are the modular
cocuts of M and the colinear subclasses of M . They are the duals of modular
cuts and linear subclasses, respectively.

A modular cocut U of M is a collection of circuit unions of M satisfying
two conditions. First, if U1 ⊆ U2 are circuit unions and U2 ∈ U , then U1 ∈ U .
Second, if U1, U2 ∈ U and {U1, U2} is a modular pair in M , then U1 ∪ U2 ∈ U .

A colinear subclass C of M is a set of circuits of M such that if C1, C2 ∈ C
and r(C1 ∪ C2) = |C1 ∪ C2| − 2, and C3 ⊆ C1 ∪ C2 is a circuit, then C3 ∈ C.

The details and proofs of the (dual) correspondences appear in [20, Theorem
7.2.2] and [10], respectively.

We end this section by summarizing the correspondences and objects of
Sections 3 and 4 in Figure 2, which we can now understand completely.

To the semimatroid C, we have assigned a pair (M, I) ∈ MatId(S), a pair

(M, N) ∈ MatPreim(S) and a pair (M, Ñ) ∈ MatCoext(S). To obtain the
matroid M , we add the subsets of [3] not in C to get the Boolean algebra 2[3].
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In Figure 2, we have placed big nodes on the sets of this poset which are in the
diagram of C, and small nodes on the new sets. To obtain the rank function of
M , we copy the rank function of C on the big nodes. On each small node, we
put the largest number that we can find on a big node below it. The big nodes
form the modular ideal I of M .

To obtain the matroid N , we simply leave the rank function of M fixed on
the big nodes, and increase it by 1 on the little nodes.

Finally, to obtain the matroid Ñ , we glue two Boolean algebras 2[3], to
obtain a Boolean algebra 2[4] on 4 elements. (We have omitted most of the
“diagonal” edges of this poset for clarity.) On the lower copy of the Boolean
algebra, we put the rank function of N . On the upper copy, we put the rank
function of M , increased by 1.

5. Pointed matroids.

We now establish a correspondence between semimatroids and pointed ma-
troids.

Definition 5.1. [5] A pointed matroid is a pair (M, p) of a matroid M and a
distinguished element p of its ground set.

Pointed matroids are a combinatorial tool often used in the study of affine
hyperplane arrangements. The connection between them is the following. Con-
sider an affine arrangement A = {H1, . . . , Hk} in Rn, where Hi is defined by
the equation vi · x = ci.

Definition 5.2. The cone over A is the arrangement cA = {H ′
1, . . . , H

′
k, H}

in R
n+1, where H ′

i is defined 1 by the equation vi · x = cixn+1 for 1 ≤ i ≤ k,
and H is the additional hyperplane xn+1 = 0.

Being a central arrangement, cA has a matroid McA on the ground set cA
associated to it. To the arrangement A, we associate the pointed matroid
(McA, H).

Theorem 5.3. Let S be a set and let p /∈ S. Let Pointedmat(S, p) be the
set of pointed matroids (M, p) on S ∪ p such that p is not a loop of M . There
are one-to-one correspondences between Semimat(S), MatId(S), MatPreim(S),
MatCoext(S, p) and Pointedmat(S, p).

Proof. It suffices to show a correspondence between MatCoext(S, p) and

Pointedmat(S, p). The elements of MatCoext(S, p) are the pairs (Ñ/p, Ñ) for

all matroids Ñ on S ∪ p such that r(Ñ ) > r(Ñ/p); i.e., such that p is not a

loop. The map (Ñ/p, Ñ) 7→ (Ñ , p) establishes the desired bijection. �X

At this point, given a set S and an element p /∈ S, we have bijections between
Semimat(S), MatId(S), MatPreim(S), MatCoext(S, p) and Pointedmat(S, p),

1with a slight abuse of notation
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provided by Theorems 3.6, 4.6, 4.9, and 5.3. The bijection Pointedmat(S, p) →
Semimat(S) is an important one. We have obtained it as the composition of
four bijections, and now we wish to describe it explicitly.

Theorem 5.4. Let S be a set and let p /∈ S.

(1) For (Ñ , p) ∈ Pointedmat(S, p), let C = {A ⊆ S | p /∈ clÑ (A)} and let
rC be the restriction of rÑ to C. Then (S, C, rC) is a semimatroid.

(2) For (S, C, rC) ∈ Semimat(S), define rÑ : 2S∪p → N by

rÑ (A) =

{
rC(A) if A ∈ C

max{rC(B) |B ⊆ A, B ∈ C} + 1 if A /∈ C

rÑ (A ∪ p) =

{
rÑ (A) + 1 if A ∈ C

rÑ (A) if A /∈ C

for A ⊆ S. Then rÑ is a rank function on S ∪ p, and (Ñ , p) ∈
Pointedmat(S, p).

(3) The two maps Pointedmat(S, p) → Semimat(S) and Semimat(S) →
Pointedmat(S, p) defined above are inverses. They establish a one-to-
one correspondence between Pointedmat(S, p) and Semimat(S).

Proof. We will show that, if we start with (Ñ , p) ∈ Pointedmat(S, p) and
trace the bijections of Theorems 5.3, 4.8, 4.5 and 3.6, we obtain the semima-

troid C(Ñ, p). Under the bijection of Theorem 5.3, (Ñ , p) ∈ Pointedmat(S, p)

corresponds to (Ñ/p, Ñ) ∈ MatCoext(S, p). Under the bijection of Theo-

rem 4.8, Ñ ∈ Coext(Ñ/p) corresponds to Ñ − p ∈ Preim(Ñ/p). Ñ − p ∈

Preim(Ñ/p), under the bijection of Theorem 4.5, corresponds to the mod-

ular ideal C = {A ⊆ S | rÑ/p(A) = rÑ−p(A)} ∈ ModId(Ñ/p). Since p is

not a loop of Ñ , rÑ/p(A) = rÑ (A ∪ p) − 1 and rÑ−p(A) = rÑ (A). There-

fore C = {A ⊆ S | p /∈ clÑ (A)}. Finally, under the bijection of Theorem 3.6,

(Ñ/p, C) ∈ MatId(S) corresponds to (S, C, rC) ∈ Semimat(S). Similarly, if we
start with a semimatroid (S, C, rC) and keep track of its successive images un-
der the bijections of Theorems 3.6, 4.5, 4.8 and 5.3, we get the pointed matroid

(Ñ , p) described. This theorem then becomes a consequence of the previous

ones. �X

It is not difficult to see that, under the coning construction, the central
subsets of a hyperplane arrangement A correspond to the subsets of cA whose
closure in McA does not contain the additional hyperplane H . Theorem 5.4
shows that, for semimatroids, the natural analog of the cone of a semimatroid

C is the matroid Ñ of the pointed matroid (Ñ , p) corresponding to it.

The triple of matroids (Ñ , Ñ − p, Ñ/p) = (Ñ , N, M) is sometimes called

the triple of the pointed matroid (Ñ , p). We will also call it the triple of the
semimatroid C.
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6. Geometric semilattices.

We now discuss geometric semilattices and their relationship to semima-
troids. We start by recalling some poset terminology. For more background
information, see for example [22, Chapter 3].

A meet semilattice is a poset K such that any subset S ⊆ K has a greatest
lower bound or meet ∧S: an element such that ∧S ≤ s for all s ∈ S, and
∧S ≤ t for any t ∈ K such that t ≤ s for all s ∈ S. Such posets have a
minimum element 0̂.

Notice that if a set S of elements of a meet semilattice has an upper bound,
then it has a least upper bound, or join ∨S. It is the meet of the upper bounds
of S.

A lattice is a poset L such that any subset S ⊆ L has a greatest lower
bound and a least upper bound. Clearly, if a meet semilattice has a maximum
element, then it is a lattice.

A meet semilattice K is ranked with rank function r : K → N if, for all
x ∈ K, every maximal chain from 0̂ to x has the same length r(x). An atom is
an element of rank 1. A set of atoms A is independent if it has an upper bound
and r(∨A) = |A|.

Definition 6.1. A geometric semilattice is a ranked meet semilattice satisfying
the following two conditions.
(G1) Every element is a join of atoms.
(G2) The independent sets of atoms are the independent sets of a matroid.
A geometric lattice is a ranked lattice satisfying (G1) and (G2).

Geometric lattices arise very naturally in matroid theory from the following
result. Recall that a matroid M = (S, r) is simple if r(x) = 1 for all x ∈ S and
r({x, y}) = 2 for all x, y ∈ S, x 6= y.

Theorem 6.2. [3], [12] A poset is a geometric lattice if and only if it is iso-
morphic to the poset of flats of a matroid. Furthermore, each geometric lattice
is the poset of flats of a unique simple matroid, up to isomorphism.

From this point of view, semimatroids are the “right” generalization of ma-
troids, as the following theorem shows.

Definition 6.3. A semimatroid C = (S, C, rC) is simple if {x} ∈ C and rC(x) =
1 for all x ∈ S, and rC({x, y}) = 2 for all {x, y} ∈ C with x 6= y.

Theorem 6.4. A poset is a geometric semilattice if and only if it is isomorphic
to the poset of flats of a semimatroid. Furthermore, each geometric semilattice
is the poset of flats of a unique simple semimatroid, up to isomorphism.

To prove Theorem 6.4 we use the following two propositions.
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Proposition 6.5. [28] A poset K is a geometric semilattice if and only if there

is a geometric lattice L with an atom p such that K = L−[p, 1̂]. 2 Furthermore,
L and p are uniquely determined by K.

Proposition 6.6. Let C = (S, C, rC) be a semimatroid, and let (Ñ , p) be the
pointed matroid on S ∪ p corresponding to it under the bijection of Theorem

5.4. Let K(C) and L(Ñ) be the posets of flats of C and Ñ . Then K(C) =

L(Ñ) − [p, 1̂].

Proof. Since both posets are ordered by containment, we only need to show

the equality of the sets K(C) and L(Ñ) − [p, 1̂].

First we show that K(C) ⊆ L(Ñ) − [p, 1̂]. Let X ∈ K(C). Then for all
x /∈ X such that X ∪x ∈ C, rC(X ∪x) = rC(X)+1, and therefore rÑ (X ∪x) =

rÑ (X) + 1. To check that X is a flat in Ñ , we need to show that this equality
still holds if X ∪ x /∈ C. This is not difficult: if that is the case and x 6= p, then
rÑ (X ∪ x) = max{rC(Y ) |Y ⊆ X ∪ x, Y ∈ C} + 1 ≥ rC(X) + 1 = rÑ (X) + 1.
Clearly then equality must hold. The case x = p is easier, but needs to be

checked separately. Hence K(C) ⊆ L(Ñ), and since no element of C contains

p, K(C) ⊆ L(Ñ) − [p, 1̂].

The inverse inclusion is easier. If X is a flat in Ñ not containing p, then
rÑ (X ∪x) = rÑ (X)+1 for all x /∈ X . When X ∪x ∈ C, this equality says that

rC(X ∪ x) = rC(X) + 1. Therefore X is a flat in C also. �X

Proof of Theorem 6.4. It is not difficult to check that the bijection of Theorem
5.4 restricts to a bijection between simple pointed matroids (pointed matroids

(Ñ , p) ∈ Pointedmat(S, p) such that Ñ is simple) and simple semimatroids.
The result then follows combining this fact with Theorem 6.2 and Propositions
6.5 and 6.6. �X

7. Duality, deletion and contraction.

Like matroids, semimatroids have natural notions of duality, deletion and
contraction, which we now define.

Definition 7.1. Let C = (S, C, rC) be a semimatroid. Extend the function rC to
a matroid rank function r : 2S → N as in Proposition 3.1. Define the simplicial
complex C∗ = {X ⊆ S |S − X /∈ C}, and the rank function r∗ : C∗ → N by
r∗(X) = |X | − r + r(S − X). The dual of C is the triple C∗ = (S, C∗, r∗).

Proposition 7.2. C∗ is a semimatroid.

Proof. It is possible to simply check that C∗ satisfies the axioms of a semima-
troid. It is shorter to proceed as follows.

Consider the pair (M, N) ∈ MatPreim(S) associated to C under Corollary
4.6. It is known [16, Proposition 8.1.6(f)] that if N is an elementary preimage

2Here [p, 1̂] denotes the interval of elements greater than or equal to p in the poset L.
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of M , then M∗ is an elementary preimage of N∗. From the pair (N∗, M∗) ∈
MatPreim(S), we then get a semimatroid using Corollary 4.6 again. It is

straightforward to check that this semimatroid is precisely C∗. �X

Proposition 7.3. For any semimatroid C, we have that (C∗)∗ = C.

Proof. This is easy to check directly from the definition. �X

Definition 7.4. Let C = (S, C, rC) be a semimatroid and let e ∈ S be such
that {e} ∈ C. Let C/e = {A ⊆ S − e |A ∪ e ∈ C} and, for A ∈ C/e, let
rC/e(A) = rC(A ∪ e) − rC(e). The contraction of e from C is the triple C/e =
(S − e, C/e, rC/e).

Proposition 7.5. C/e is a semimatroid.

Proof. Checking the axioms of a semimatroid is straightforward. �X

Definition 7.6. Let C = (S, C, rC) be a semimatroid and let e ∈ S be such that
{e} ∈ C. Let C − e = {A ∈ C | e /∈ A} and, for A ∈ C − e, let rC−e(A) = rC(A).
The deletion of e from C is the triple C − e = (S − e, C − e, rC−e).

Proposition 7.7. C − e is a semimatroid.

Proof. Checking the axioms of a semimatroid is straightforward. �X

Again, as with matroids, there are two special kinds of elements that we
need to pay special attention to when we perform deletion and contraction.

Definition 7.8. A loop of a semimatroid C = (S, C, rC) is an element e ∈ S
such that {e} ∈ C and rC(e) = 0.

Definition 7.9. An isthmus of a semimatroid C = (S, C, rC) is an element
e ∈ S such that, for all A ∈ C, A ∪ e ∈ C and rC(A ∪ e) = rC(A) + 1.

Lemma 7.10. If e ∈ S is a loop of the semimatroid C = (S, C, rC), then
rC/e = rC. Otherwise, rC/e = rC − 1.

Proof. Clearly rC/e ≤ rC . If e is a loop, consider any A ∈ C. (CR1’) applies to
{e} and A, so A∪e ∈ C and rC(A∪e) = rC(A). Therefore the maximum rank rC
in C is achieved for some A ∈ C/e. But then we have rC/e(A) = rC(A∪e)−0 =
rC , so rC/e = rC .

If e is not a loop, then for all A ∈ C/e we have rC/e(A) = rC(A ∪ e) − 1, so
rC/e ≤ rC − 1. Equality holds: if we start with {e} ∈ C and repeatedly apply
(CR2’) with an element of C of rank rC , we can obtain a set A ∪ e of rank rC .

Then rC/e(A) = rC − 1. �X

Lemma 7.11. If e ∈ S is an isthmus of the semimatroid C = (S, C, rC), then
rC−e = rC − 1. Otherwise, rC−e = rC .
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Proof. Clearly rC−e ≤ rC . If e is an isthmus then it is clear from the definition
that rC−e = rC − 1.

If e is not an isthmus, there are two cases. If there is an A ∈ C such
that A ∪ e /∈ C, take a maximal one. It is also a maximal set in C, so it has
maximum rank rC ; and A ∈ C − e, so rC−e = rC . The other possibility is that
for all A ∈ C, we have A ∪ e ∈ C and r(A ∪ e) = r(A). In this case it is also

clear that rC−e = rC . �X

Lemma 7.12. If e ∈ S is a loop or an isthmus of the semimatroid C =
(S, C, rC), then C − e = C/e.

Proof. This is clear from Lemmas 7.10 and 7.11 and their proofs. �X

8. The Tutte polynomial.

With the background results that we have established, we are now able
to define and study the Tutte polynomial of a semimatroid. We follow the
treatment of Tutte polynomials of matroids given in [8].

Definition 8.1. The Tutte polynomial of a semimatroid C = (S, C, rC) is
defined by

TC(x, y) =
∑

X ∈C

(x − 1)rC−rC(X)(y − 1)|X|−rC(X). (8.1)

If C = 2S , then C is a matroid and TC is its usual Tutte polynomial. If A is
a hyperplane arrangement and CA is the semimatroid determined by it, then
the Tutte polynomial of the semimatroid CA is precisely the Tutte polynomial
of the arrangement A, as defined and studied in [2]. That paper focuses on
enumerative aspects arising from the computation of these polynomials; here
we will concentrate our attention on matroid-theoretical considerations.
Example. Figure 3 shows a hyperplane arrangement A in R3, consisting of the
five planes x1 + x2 + x3 = 0, x1 = x2, x2 = x3, x3 = x1 and x1 + x2 + x3 = 1.

1 5

4
3

2

Figure 3. The arrangement A.

Table 1 shows all the central subsets of A, and their contributions to the
Tutte polynomial of A.
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Table 1. Computing the Tutte polynomial TA(x, y).

central subset of A contribution to TA(x, y)

∅ (x − 1)3(y − 1)0

1, 2, 3, 4, 5 (x − 1)2(y − 1)0

12, 13, 14, 23, 24, 25, 34, 35, 45 (x − 1)1(y − 1)0

123, 124, 134, 235, 245, 345 (x − 1)0(y − 1)0

234 (x − 1)1(y − 1)1

1234, 2345 (x − 1)0(y − 1)1

We find that

TA(x, y) = (x − 1)3 + 5(x − 1)2 + 9(x − 1) + 6 + (x − 1)(y − 1) + 2(y − 1)

= x3 + 2x2 + xy + x + y.

As in the matroid setting, the Tutte polynomial of a semimatroid satisfies the
following simple recursive formula, known as the deletion-contraction relation.

Proposition 8.2. Let C = (S, C, rC) be a semimatroid, and let e ∈ S. If
{e} /∈ C then T(S,C,rC)(x, y) = T(S−e,C,rC)(x, y). If {e} ∈ C, then

(i) TC(x, y) = TC−e(x, y)+TC/e(x, y) if e is neither an isthmus nor a loop,
(ii) TC(x, y) = xTC−e(x, y) if e is an isthmus, and
(iii) TC(x, y) = y TC/e(x, y) if e is a loop.

Proof. The first statement is clear from the definitions. Now, when {e} ∈ C,
we have

TC(x, y) =
∑

X ∈C

e/∈X

(x − 1)rC−rC(X)(y − 1)|X|−rC(X) +

∑

X∪e∈C

(x − 1)rC−rC(X∪e)(y − 1)|X∪e|−rC(X∪e).

Notice that, if rC = rC−e, the first sum in the right hand side is exactly
the Tutte polynomial of C − e. If, on the other hand, rC = rC−e + 1, the only
difference is that we get an extra factor of (x − 1). More precisely, in view of
Lemma 7.11, the first sum of the right hand side is TC−e(x, y) if e is not an
isthmus, and (x− 1)TC−e(x, y) if it is an isthmus. Similarly, from Lemma 7.10,
the second sum is TC/e(x, y) if e is not a loop, and (y − 1)TC/e(x, y) if it is a
loop. These two observations, together with Lemma 7.12, complete the proof
of (i)-(iii). �X

Definition 8.3. Two matroids (S1, C1, rC1
) and (S2, C2, rC2

) are isomorphic if
there is a bijection f : S1 → S2 which induces an isomorphism of simplicial
complexes f : C1 → C2 such that rC1

(c) = rC2
(f(c)) for all c ∈ C1.
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A function f on the class S of semimatroids is called a semimatroid invariant
if f(C1) = f(C2) for all C1

∼= C2. An invariant is called a Tutte-Grothendieck
invariant (or T-G invariant) if it satisfies the conditions of Proposition 8.2. The
following theorem shows that the Tutte polynomial is not only a T-G invariant;
in fact it is the universal T-G invariant on the class of semimatroids. Any
other generalized T-G invariant, that is, an invariant satisfying the conditions
of Theorem 8.5, is an evaluation of the Tutte polynomial. This result is well-
known for matroids [6], [19].

Definition 8.4. For a semimatroid C = (S, C, r), let #C be the number of
elements x ∈ S such that {x} ∈ C. A semimatroid is non-trivial if #C 6= 0.

Theorem 8.5. Let S be the class of non-trivial semimatroids. Let k be a field
and a, b ∈ k; and let R be a commutative ring containing k. Let f : S → R be
a generalized T-G invariant; that is, suppose:

(i) If C1
∼= C2 then f(C1) = f(C2).

(ii) If e ∈ S is neither an isthmus nor a loop in C = (S, C, rC) and {e} ∈ C,
then f(C) = af(C − e) + bf(C/e).

(iii) If e is an isthmus in C, then f(C) = f(I)f(C − e).
(iv) If e is a loop in C, then f(C) = f(L)f(C/e).
(v) If e ∈ S and {e} /∈ C then f(S, C, rC) = f(S − e, C, rC).

Then the function f is given by f(C) = a#C−rC brC TC(f(I)/b, f(L)/a) for C =
(S, C, rC).

Here I = ({i}, {∅, {i}}, r) denotes the semimatroid consisting of a single
isthmus i, and L = ({l}, {∅, {l}}, r) denotes the semimatroid consisting of a
single loop l.

Proof. We can proceed by induction. The only non-trivial semimatroids which
cannot be decomposed using (ii), (iii), (iv) and (v) are I and L, in which
case the formula for f(C) holds trivially. It simply remains to show that
a#C−rC brCTC(f(I)/b, f(L)/a) satisfies the relations (ii), (iii), (iv) and (v). This

is straightforward from Proposition 8.2. �X

We conclude this section with some remarks about the relationship between
the Tutte polynomial of a semimatroid C, the Tutte polynomials of its asso-

ciated triple (Ñ , N, M), and the Tutte polynomial of the dual semimatroid
C∗.

Recall that the characteristic polynomial χA(q) of an affine hyperplane ar-
rangement A in an n-dimensional vector space is given by

χA(q) =
∑

B⊆A

B central

(−1)|B|qn−r(B).

Characteristic polynomials behave nicely with respect to the coning construc-
tion of Definition 5.2.
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Proposition 8.6. ([18, Proposition 2.51]) For any arrangement A,

χcA(q) = (q − 1)χA(q).

This proposition tells us that, to study characteristic polynomials of arrange-
ments, we can essentially focus our attention on central arrangements.

Proposition 8.6 generalizes immediately to semimatroids. As we saw in

Theorem 5.4, the analog of the cone cA of an arrangement A is the matroid Ñ
of the semimatroid C. If, in analogy with the definition for arrangements, we
define the characteristic polynomial of the semimatroid C to be

χC(q) = (−1)rTC(1 − q, 0) =
∑

X∈C

(−1)|X|qr−r(X).

We have the following proposition.

Proposition 8.7. For any semimatroid C,

χÑ (q) = (q − 1)χC(q).

We might wonder if this result generalizes to the Tutte polynomial. It turns
out that this situation is not so simple. Let

UC(x, y) =
∑

X /∈C

(x − 1)rM−rM(X)(y − 1)|X|−rM(X). (8.2)

Then, by looking at the defining sums of TM , TN and TÑ , it is easy to see
that TM = TC +UC, TN = (x−1)TC +UC/(y−1), and TÑ = xTC +y/(y−1)UC.
(The third of these equations proves Proposition 8.7.) This means that we
can express the Tutte polynomial of C in terms of the Tutte polynomials of

these three matroids M, N and Ñ , by solving for TC in any two of these three
equations. However, TC does not only depend on TÑ . The relation between the
characteristic polynomials is very simple because, when we substitute x = 1−q
and y = 0, the second term in the expression of TÑ vanishes

We conclude that the Tutte polynomial of a semimatroid is closely related to

the Tutte polynomials of its associated triple (Ñ , N, M). However, the relation-
ship is not simple enough that we can derive our results on Tutte polynomials
of semimatroids as simple consequences of the analogous results for matroids.

Now let us discuss duality and the Tutte polynomial. For matroids M , we
know that TM∗(x, y) = TM (y, x). This is not the case for a semimatroid C. In
fact, it is not difficult to see that TC∗(x, y) = UC(y, x)/(x − 1).

It is possible to define a three-variable Tutte-like polynomial of a semima-
troid which is more compatible with duality. In a slightly different language,
this was done by Las Vergnas [17], who defined the concept of the Tutte poly-
nomial of a quotient map. In fact, if the semimatroid C corresponds to the
quotient map N → M under Corollary 4.6, then our definition of the Tutte
polynomial of C coincides with the coefficient of z in Las Vergnas’s definition
of the Tutte polynomial of the quotient map N → M . In particular, the up-
coming Theorem 9.5 can be derived from his analogous theorem for quotient
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maps. His argument uses the deletion-contraction relation; our approach will
give us additional information about the structure of a semimatroid.

9. Basis activity.

We now show that the Tutte polynomial of a semimatroid has nonnegative
coefficients, by giving a combinatorial interpretation of them. Crapo showed
that the coefficients of the Tutte polynomial of a matroid count the bases with
a given internal and external activity [11]. Our interpretation in the case of
semimatroids is analogous, and our proof is similar to his. There are some
subtleties involved in extending this result to semimatroids, so we will need to
give slightly different definitions of internal and external activity.

In this section we will work with a fixed semimatroid C = (S, C, r). As
mentioned after Definition 2.1, we will sometimes call the sets in C central
sets. Proposition 3.1 shows that the rank function r extends to a matroid
rank function on 2S , which we will also call r. No confusion arises from this
notation because the semimatroid and matroid rank functions have the same
value where they are both defined.

A basis of C = (S, C, r) is a set B ∈ C such that |B| = r(B) = r. A set
X ∈ C is dependent if r(X) < |X | and independent otherwise. A circuit C of
C is a minimal dependent set in C. Clearly such a set satisfies r(C) = |C| − 1.
A cocircuit D is a minimal subset of S whose deletion from C makes the rank
of C decrease; i.e., one such that r(S − D) < r, where r = r(S) is the rank of
C. Clearly a cocircuit satisfies r(S − D) = r − 1.

Lemma 9.1. Let B be a basis of C, and let e /∈ B be such that B ∪ e ∈ C.
Then B ∪ e contains a unique circuit.

Proof. Since B ∪ e ∈ C is dependent, it contains a circuit. Now assume that it
contains two different circuits C1 and C2. By (R3) we know that

r(C1 ∩ C2) + r(C1 ∪ C2) ≤ r(C1) + r(C2)

= |C1| − 1 + |C2| − 1

= |C1 ∩ C2| − 1 + |C1 ∪ C2| − 1.

But r(B ∪ e) = |B ∪ e| − 1 so, by (R2’), r(X) ≥ |X | − 1 for all X ⊆ B ∪ e.
Therefore r(C1 ∩ C2) = |C1 ∩ C2| − 1 and r(C1 ∪ C2) = |C1 ∪ C2| − 1. Thus
C1 ∩ C2 is a dependent set in C, and it is a proper subset of the circuit C1.
This is a contradiction. �X

Lemma 9.2. Let B be a basis of C, and let i ∈ B. Then S − B ∪ i contains a
unique cocircuit.

Proof. The deletion of S − B ∪ i from C makes the rank of C decrease, so this
set contains a cocircuit. Assume that it contains two different cocircuits B1
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and B2. Then

r(S − (B1 ∩ B2)) = r((S − B1) ∪ (S − B2))

≤ r(S − B1) + r(S − B2) − r((S − B1) ∩ (S − B2))

= (r − 1) + (r − 1) − r(S − (B1 ∪ B2)).

But S − (B1 ∪B2) ⊇ B − i and r(B − i) = r − 1, so r(S − (B1 ∪B2)) ≥ r − 1.
It follows that r(S − (B1 ∩B2)) ≤ r − 1. Hence the removal of B1 ∩ B2 makes
the rank of the semimatroid decrease, and B1 ∩ B2 is a proper subset of the
cocircuit B1. This is a contradiction. �X

From now on, we will fix a linear order on S. Now each k-subset of S
corresponds to a strictly increasing sequence of k numbers between 1 and |S|.
For each 0 ≤ k ≤ |S|, order the k-subsets of S using the lexicographic order on
these sequences.

Definition 9.3. Let B be a basis of C. An element e /∈ B is an externally
active element for B if B ∪ e ∈ C and e is the smallest element3 of the unique
circuit in B ∪ e. Let E(B) be the set of externally active elements for B, and
let e(B) = |E(B)|. We call e(B) the external activity of B.

Definition 9.4. Let B be a basis of C. An element i ∈ B is an internally active
element in B if i is the smallest element of the unique cocircuit in S − B ∪ i.
Let I(B) be the set of internally active elements for B, and let i(B) = |I(B)|.
We call i(B) the internal activity of B.

Now we are in a position to state the main theorem of this section.

Theorem 9.5. For any semimatroid C,

TC(x, y) =
∑

B basis of C

xi(B)ye(B).

Theorem 9.5 shows that the coefficients of the Tutte polynomial are non-
negative integers. The coefficient of qite is equal to the number of bases of C
with internal activity i and external activity e.

We still have some work to do before we can prove Theorem 9.5. The next
step will be to give a very useful characterization of internally and externally
active elements. From now on, when proving results about internally and
externally active elements, we will always use Lemmas 9.6 and 9.7 instead of
the original definitions.

Given X ⊆ S and an element e, let X>e = {x ∈ X |x > e}. Define X<e

analogously.

Lemma 9.6. Let B be a basis of C and let e /∈ B be such that B∪ e ∈ C. Then
e is externally active for B if and only if r(B>e ∪ e) = r(B>e).

3according to the fixed linear order
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Proof. First assume that r(B>e ∪e) = r(B>e). Then B>e∪e ∈ C is dependent,
so it contains a circuit C; e is clearly the smallest element in this circuit. But C
must also be the unique circuit contained in B∪ e. Therefore e is an externally
active element for B.

Now assume that e is externally active for B. The unique circuit in B ∪ e
obviously contains e; call it C ∪ e. Then C ⊆ B>e. By submodularity, we have
r(B>e) + r(C ∪ e) ≥ r(B>e ∪ e) + r(C). But r(C ∪ e) = r(C), so r(B>e) ≥
r(B>e ∪ e) and the desired result follows. �X

Lemma 9.7. Let B be a basis and i ∈ B. Then i is internally active in B if
and only if r(B − i ∪ S<i) < r.4

Proof. First assume that r(B− i ∪S<i) < r. Then the removal of (S−B)>i∪ i
makes the rank of the semimatroid drop, so (S −B)>i ∪ i contains a cocircuit.
This cocircuit must contain i; call it D∪ i, where D ⊆ (S−B)>i. The smallest
element of this cocircuit is i, and this cocircuit must also be the unique cocircuit
contained in S − B ∪ i. Therefore i is an internally active element of B.

Now assume that i is internally active in B. Let S − D ∪ i be the unique
cocircuit in S − B ∪ i, where D ⊇ B. Since i is the smallest element in this
cocircuit, D ⊇ S<i. Therefore B ∪ S<i ⊆ D and, since S −D ∪ i is a cocircuit,
r(B − i ∪ S<i) < r(D − i) < r. �X

Now we wish to present a different description of sets in C. To do it, we
need two definitions. For each X ⊆ S, let dX be the lexicographically largest
basis of X . For each independent set X , which is necessarily in C, let uX be
the lexicographically smallest basis of C which contains X .5 Notice that, for
any X ⊆ S, udX is a basis of C.

Definition 9.8. Let T be the set of triples (B, I, E) such that B is a basis of
C, I ⊆ I(B) is a set of internally active elements for B, and E ⊆ E(B) is a
set of internally active elements of B.

We will establish a bijection between T and C. Define two maps φ1 and φ2

as follows. Given (B, I, E) ∈ T , let φ1(B, I, E) = B − I ∪E. Given X ∈ C, let
φ2(X) = (udX, udX − dX, X − dX). We will show that the maps φ1 and φ2

give the desired bijection: every set X ∈ C can be written uniquely in the form
X = B − I ∪ E where B is a basis of C, I ⊆ I(B) and E ⊆ E(B).
Example. Recall the arrangement A introduced at the beginning of Section
8. Table 2 illustrates the bijection between T and C in that case. Theorem
9.5 and Table 2 imply that TA(x, y) = x3 + 2x2 + xy + x + y, confirming our
computation at the beginning of Section 8.

Lemma 9.9. The map φ1 maps T to C.

4In fact, this is true if and only if r(B − i ∪ S<i) = r − 1.
5We will extend the definition of uX to all X ⊆ S after the proof of Lemma 9.14. For

simplicity, we postpone the full definition until then.
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Table 2. The bijection between T and C.

B I(B) E(B) possible B − I ∪ E

123 123 - ∅, 1, 2, 3, 12, 13, 23, 123

124 12 - 4, 14, 24, 124

134 1 2 34, 134, 234, 1234

235 23 - 5, 25, 35, 235

245 2 - 45, 245

345 - 2 345, 2345

Proof. Let (B, I, E) ∈ T . For all e ∈ E, B ∪ e is central and r(B ∪ e) = r(B),
so e ∈ cl(B). Therefore E ⊆ cl(B) and B ∪ E ⊆ cl(B). Since cl(B) ∈ C, this

implies that B ∪ E ∈ C, and B − I ∪ E ∈ C as well. �X

Lemma 9.10. The map φ2 maps C to T .

Proof. Let X ∈ C. Let D = dX and U = udX , so that φ2(X) = (U, U−D, X−
D). We need to show three things.

First, we need U to be a basis for X . This is immediate.
Next, we need the elements of U − D to be internally active in U . Let

x ∈ U − D. Since U is the smallest basis for C containing D, for any element
x′ < x not in U we have r(U − x∪ x′) = r − 1 = r(U − x) . By submodularity,
we can conclude that r(U −x∪S<x) = r−1, which is exactly what we wanted.

Finally, we need to show that the elements of X − D are externally active
in U . Let x ∈ X − D. First notice that x /∈ U , because D ∪ x is dependent:
r(D ∪ x) ≤ r(X) = r(D). Also notice that U ∪ x is central, applying (CR1)
to D ∪ x and U . Now observe the following. We know that D is the largest
basis for X . Therefore r(D − x′ ∪ x) = r(D) − 1 for all x′ ∈ D<x. By
submodularity, it follows that r(D−D<x ∪x) = r(D)− |D<x|. We can rewrite
this as r(D>x ∪ x) = r(D>x) since D is independent. Since D>x ⊆ U>x,
submodularity implies that r(U>x ∪ x) = r(U>x). This shows that x is an

externally active element in U . �X

Proposition 9.11. The map φ1 is a bijection from T to C, and the map φ2 is
its inverse.

Proposition 9.11 is the main ingredient of our proof of Theorem 9.5. Before
proving it, we need some lemmas.

Lemma 9.12. For all (B, I, E) ∈ T , we have r(B − I ∪ E) = r − |I|.

Proof. We start by showing that r(B− i ∪ e) = r−1 for all i ∈ I(B), e ∈ E(B).
If e < i, do the following. Since i is internally active, r(B − i ∪S<i) = r− 1 =
r(B − i), and therefore r(B − i ∪ e) = r − 1. Otherwise, if i < e, then
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B>e ⊆ B− i. Since e is externally active, r(B>e ∪e) = r(B>e). Submodularity
then implies that r(B − i ∪ e) = r(B − i) = r − 1.

Now that we know this, submodularity implies that r(B − i∪E) = r− 1 for
all i ∈ I(B), E ⊆ E(B). Applying submodularity again, we get r(B − I ∪E) =

r − |I| for all I ⊆ I(B), E ⊆ E(B). �X

Lemma 9.13. For all (B, I, E) ∈ T , we have d(B − I ∪ E) = B − I.

Proof. Lemma 9.12 tells us that B − I is a basis for B − I ∪ E; we need to
show that it is the largest one. Consider an arbitrary (r − |I|)− subset X of
B − I ∪E with X > B − I. We will show that X is not a basis for B − I ∪ E.

Let X = (B − I) − (b1 ∪ · · · ∪ bk) ∪ (e1 ∪ · · · ∪ ek), where the bi’s are in
B − I and the ei’s are in E. Since X > B − I we can assume, without loss of
generality, that b1 < e1, . . . , ek.

From Lemma 9.12 we know that r(B−I∪ei) = r−|I| for all 1 ≤ i ≤ k. Also,
as we saw in the proof of Lemma 9.12, having b1 ∈ B, ei ∈ E(B) and b1 < ei

implies that r(B− b1∪ ei) = r−1. Combining these two inequalities and using
submodularity, we get that r(B − I − b1 ∪ ei) = r − |I| − 1 for all 1 ≤ i ≤ k.
Invoking submodularity once again, we get that r((B−I)−b1∪(e1∪· · ·∪ek)) =
r − |I| − 1. Therefore r(X) = r((B − I) − (b1 ∪ · · · ∪ bk) ∪ (e1 ∪ · · · ∪ ek)) ≤
r − |I| − 1 < r(B − I ∪ E). It follows that X is not a basis for B − I ∪ E. �X

Lemma 9.14. For all (B, I, E) ∈ T , we have ud(B − I ∪ E) = B.

Proof. In view of Lemma 9.13, we need to show that u(B − I) = B. Clearly B
is a basis of C containing B − I; now we show that it is the smallest one.

Let X = B − (b1 ∪ · · · ∪ bk) ∪ (c1 ∪ · · · ∪ ck) be an r-tuple smaller than B,
where the bi’s are in I (since X must contain B − I) and the ci’s are in S. We
will show that X is not a basis for C. Once again we can assume, without loss
of generality, that c1 < b1, . . . , bk.

Since each bi is internally active, r(B − bi ∪ S<bi
) = r − 1, and hence r(B −

bi ∪c1) = r−1. Submodularity gives r(B−(b1∪· · ·∪bk)∪c1) = r−k, which in

turn gives r(X) = r(B−(b1∪· · ·∪bk)∪(c1∪· · ·∪ck)) ≤ (r−k)+(k−1) < r. �X

So far we have only defined uX for independent sets X of C. We can extend
the definition to arbitrary subsets X ⊆ S as follows. If X is dependent, then
there is no basis of C containing it. Instead, we consider all the minimal sets
of rank r which contain X . Let uX be the lexicographically smallest of those
sets. Then we can say even more.

Lemma 9.15. For all (B, I, E) ∈ T , we have u(B − I ∪ E) = B ∪ E and
du(B − I ∪ E) = B.

We will not need Lemma 9.15 to prove Proposition 9.11 and Theorem 9.5.
We state it for completeness, but we omit its proof, which is very similar to
the proofs of Lemmas 9.13 and 9.14.
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Proof of Proposition 9.11. Checking that φ1 ◦ φ2 is the identity map in C is
immediate, and Lemmas 9.13 and 9.14 imply that φ2 ◦ φ1 is the identity map
in T . 2

Proof of Theorem 9.5. Using the bijection of Proposition 9.11, the sets in C are
precisely the sets of the form B − I ∪ E, where B is a basis, I ⊆ I(B) and
E ⊆ E(B). Also, from Lemma 9.12, r(B − I ∪ E) = r − |I|.

Therefore we have

TC(x, y) =
∑

X∈C

(x − 1)r−r(X)(y − 1)|X|−r(X)

=
∑

B basis

∑

I⊆I(B)

∑

E⊆E(B)

(x − 1)r−r(B−I ∪E)(y − 1)|B−I ∪E|−r(B−I ∪E)

=
∑

B basis

∑

I⊆I(B)

∑

E⊆E(B)

(x − 1)|I|(y − 1)|E|

=
∑

B basis

(1 + (x − 1))|I(B)|(1 + (y − 1))|E(B)|

=
∑

B basis

xi(B)ye(B).

as desired. �X

12 13 23 14 24 34 25 35 45

23451234

345123 124 134 234 235 245

32 4 51

Ø

Figure 4. The decomposition of C into intervals.

Regard the simplicial complex C as a poset, ordering its faces by inclusion.
There is a nice way to understand Theorem 9.5 in terms of this poset. Propo-
sition 9.11 gives us a way of classifying the faces of C according to the basis
of C that they correspond to under the map ud (or du). This classification
decomposes the poset into disjoint intervals, where each interval is a Boolean
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algebra of the form [B − I(B), B ∪ E(B)] for a basis B. This is illustrated
in Figure 4 for the arrangement A considered at the beginning of Section 8;
recall Table 2. If we look at the interval corresponding to basis B, and add the
contributions of its elements to the right-hand side of (8.1), we simply get the
monomial qi(B)te(B).

Note that this decomposition is well-known for matroids. [4, Prop. 7.3.6]
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