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2Universidad Nacional de Colombia, Medelĺın, Colombia

Abstract. The Milnor number is a fundamental invariant of the biholomor-
phism type of the singularity of the germ of a holomorphic function f defined
on an open neighborhood W of 0 ∈ C

n, and such that 0 is the only critical
point of f in W . The present article describes a conjecture that would provide
an interpretation of this invariant, in the case n = 2, as a sharp lower bound
for the number of factors in any factorization in terms of right-handed Dehn
twists of the monodromy around the singular fiber of f . Also, towards the end
of the paper, an analogue conjecture for proper holomorphic maps f : E → D0

r

where E is a complex surface with boundary, D0

r is {z ∈ C : |z| < r}, and f

has f−1(0) as its unique singular fiber and all other fibers are closed and con-
nected 2-manifolds of (necessarily the same) genus g ≥ 0, is briefly described.
The latter conjecture has been proved recently by the authors in the case when
the regular fiber of f has genus 1 ([3]), and in ([5]), that author provides for
each g ≥ 2 an fg : Eg → D0

1 having genus g regular fiber and violating this
conjecture.
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Resumen. El número de Milnor es un invariante fundamental del tipo de biholo-
morfismo de un germen de una función holomorfa f definida en una vecindad
abierta W de 0 ∈ C

n, tal que 0 es el único punto cŕıtico de f en W . En
este art́ıculo presentamos una conjetura que daŕıa una interpretación de este
invariante en el caso n = 2, como una cota inferior exacta para el número de
factores de cualquier factorización en términos de giros de Dehn derechos de
la monodromı́a alrededor de la fibra singular de f. Además, hacia el final del
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art́ıculo, se describe brevemente una conjetura análoga para el caso en que te-
nemos una función holomorfa propia f : E → D0

r donde E es una superficie
compleja con frontera, D0

r es {z ∈ C : |z| < r}, f tiene a f−1(0) como su
única fibra singular y todas las otras fibras son 2-variedades cerradas conexas
de género, necesariamente constante, g ≥ 0. Esta última conjetura ha sido
demostrada recientemente por los autores en el caso en que el género de la fibra
regular es 1 ([3]), y en ([5]), ese autor construye, para cada g ≥ 2, una fibración
fg : Eg → D0

1 cuya fibra regular tiene género g y que viola esta conjetura.

Palabras y frases clave. Número de Milnor, monodromı́a, giro de Dehn derecho,
morsificación.

1. Introduction

Let f : W → C be a holomorphic function defined on an open neighborhood
of 0 ∈ Cn, and let us assume that f(0) = 0, and that 0 is the only critical
point of f in W . Then f determines a singular germ at the origin, denoted by
f0. The Milnor number is a very fundamental invariant of the biholomorphism
type of the singularity f0 and has been intensely studied since its introduc-
tion by Milnor in [7]. Several interpretations of the Milnor number have been
discovered (see, for instance, [7] and [11]). The present article describes a con-
jecture that would provide an interpretation of Milnor’s number, in the case
n = 2, as a sharp lower bound for the number of factors in any factorization in
terms of right-handed Dehn twists of the monodromy around the singular fiber
of f . Also, towards the end of the paper, an analogue conjecture for proper
holomorphic maps f : E → D0

r where E is a complex surface with boundary,
D0
r is {z ∈ C : |z| < r}, and f has f−1(0) as its unique singular fiber and all

other fibers are closed (i.e. compact without boundary) connected 2-manifolds
of (necessarily the same) genus g ≥ 0, is briefly described. The latter conjec-
ture has been proved recently by the authors in the case when the regular fiber
of f has genus 1 ([3]), and in ([5]), that author provides for each g ≥ 2 an
fg : Eg → D0

1 having genus g regular fiber and violating this conjecture.
The conjectural interpretation of Milnor’s number we formulate here seems

at first sight to be another manifestation of the Topological Economy Principle
in Algebraic Geometry, proposed by Arnold and his school. In what follows
we will quote comments and facts from the beautiful article [1]. The principle
says that “if you have a geometrical or topological phenomenon, which you can
realize by algebraic objects, then the simplest algebraic realizations are topo-
logically as simple as possible”. This principle has been used to formulate a
number of conjectures, many of which have become theorems. Let us mention
two examples of this that seem closer in spirit to our prediction.

• Thom’s Conjecture. Let C be a smooth algebraic curve in CP 2,
and let us denote by [C] the homology class of H2

(
CP 2,Z

)
it rep-

resents. Then Thom’s Conjecture says that if Σ is a closed oriented
smoothly embedded surface in CP 2 so that [Σ] = [C], then the genus
of Σ is at least that of C. The efforts of several authors, including
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Kronheimer, Mrowka, Taubes, Morgan, Fintushel, Stern, Szabó and
Ozsváth (see the Introduction of [9]) culminated in the proof of a vast
generalization of Thom’s Conjecture known as the Symplectic Thom
Conjecture: an embedded symplectic surface in a closed, symplectic 4-
manifold is genus-minimizing in its homology class. As a corollary an
embedded holomorphic curve in a Kaehler surface is genus-minimizing
in its homology class (see [9]).

• Milnor’s Conjecture. Let f(z, w) ∈ C[z, w] be an irreducible poly-
nomial sending the origin 0 = (0, 0) to 0. Let V = f−1(0) be the
curve defined by f . Suppose that 0 is one of the (necessarily isolated)
singular points of V and that exactly r branches of V pass through 0.
Choose a small ball Bǫ(0) centered at the origin and having radius ǫ
with the property that for each 0 < ǫ′ ≤ ǫ the sphere Sǫ′(0) intersects
V transversely. The intersection K = V ∩ Sǫ(0) is a link in the sphere
Sǫ(0). There is an invariant number, associated to the singularity of
V at 0 and usually denoted by δ0, which measures the number of or-
dinary double points of V concentrated at 0. This means that if one
perturbs a local parametrization (xi(t), yi(t)) with i = 1, . . . , r of V

near 0, one generically obtains a curve Ṽ with irreducible components
(x̃i(t), ỹi(t)), i = 1, . . . , r, having exactly δ0 ordinary double points and
no other singularities. The intersection K ′ between these curves and
Sǫ(0) is a link having the same type as the original link K. Let us
choose one such perturbation with the extra property that there is an
ǫ0 so that no ordinary double point of Ṽ is contained in the closed ball

Bǫ0(0). If we consider the intersections Ṽ ∩ Sǫ′ with 0 < ǫ0 ≤ ǫ′ ≤ ǫ,
as a movie starting at time ǫ and ending at time ǫ0, we see the link
K ′ passing through itself δ0 times, and becoming the link formed by r
unlinked copies of the unknot. In [7] Milnor conjectured that any other
way to transform K ′ into the link formed by r unlinked copies of the
unknot, by allowing strands of K ′ to pass through each other, would
have at least δ0 crossings. This conjecture has already been proven as
an almost direct consequence of Thom’s Conjecture.

On the other hand, since the Topological Economy Principle is just a prin-
ciple, i.e., there is no known precise recipe to decide whether a particular phe-
nomenon fits the principle or not, it is not clear to us whether the conjecture
formulated in this article is a genuine instance of the Topological Economy
Principle, and consequently, whether Ishizaka’s counterexample undermines
the principle or not.

In our opinion, this state of affairs prompts a number of interesting questions.
For instance, is it possible to unify the Topological Economy Principle, at least
partially, e.g. to formulate and prove a general theorem, so that a subset of
the known manifestations of the principle were particular cases of it? Also,
since all known instances of the principle seem to take place in a fixed ambient
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space, it would be interesting to discover a manifestation which is ambient free
(our conjecture seems to have this character).

This article is organized as follows. In Section 2, the situation where the Mil-
nor number originated is described and its classical definition is given. Section
3 provides an algebro-geometric formulation of the Milnor number. It relates
the Milnor number with the number of critical points in a deformation of f .
Section 4 sketches the notion of monodromy representation. Section 5 defines
right-handed Dehn twists. Section 6 makes precise the notions of deformation,
morsification and simple morsification of a map f . Section 7 generalizes the
Milnor number and proposes a conjecture conducing to a new interpretation of
this notion.

The article is a summary of the ideas presented in the “XV Congreso de
Matemáticas” (2005). It is intended only as a survey of some results and con-
jectures by the authors. Proofs are omitted and only a sketch or an indication
of how any particular argument would go is given.

The authors wish to express their sincere thanks to the Sociedad Colombiana
de Matemáticas, and in particular to the organizers of this event where these
ideas were first presented.

2. The classical definition of the Milnor number

Let f : W → C be a holomorphic function defined in an open neighborhood
W ⊂ C

n of the origin, with f(0) = 0, and having a singularity only at 0, i.e.,
all the partial derivatives ∂f/∂zi, i = 1, . . . , n vanish simultaneously only at 0.
Let

Bρ = {(z1, . . . , zn) : |z1|
2 + · · · + |zn|

2 ≤ ρ2} ⊂ C
n

be the closed ball in Cn of radius ρ and centered at the origin. Bρ is a smooth
manifold with boundary of (real) dimension 2n. Let

Sρ =
{
(z1, . . . , zn) : |z1|

2 + · · · + |zn|
2 = ρ2

}

be the sphere of radius ρ and centered at the origin. It is the boundary of
Bρ and it is a smooth manifold of (real) dimension 2n − 1. Let us denote by
Dr = {z ∈ C : |z| ≤ r} the closed disk of radius r centered at the origin in
the complex plane. With this notation we have the following theorem [7]. See
Figure 1.

Theorem 1 (Milnor). There exists ρ0 > 0 and r > 0 such that

(1) For each 0 < ρ ≤ ρ0, the smooth (2n − 2)-manifold f−1(0) − {0} ⊂
W − {0} is transversal to Sρ.

(2) If z 6= 0 and z ∈ Dr, then Xz = f−1(z) ∩ Bρ0 is a smooth (2n − 2)-
manifold with boundary.

(3) If ∂Xz denotes the boundary of Xz, then ∂Xz = Xz∩∂Bρ0 = Xz∩Sρ0 .
(4) If E = f−1(Dr) ∩Bρ0 then f : E → Dr is surjective.
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(5) Let E∗ = E − f−1(0), and D∗
r = Dr − {0}. The restriction f |E∗ :

E∗ → D∗
r is, by the Ehresmann Fibration Theorem, a fiber bundle.

Consequently, Xz is diffeomorphic to Xz′ for z, z′ 6= 0.
(6) For each z ∈ D∗

r , Xz is homotopically equivalent to a bouquet of a
finite number of spheres of (real) dimension (n − 1). This number is
independent of z.

Figure 1. The situation giving rise to Milnor’s number.

This theorem makes it possible to formulate one of the most important
invariants of a singularity: its Milnor number.

Definition 2. Let f : W → C be as described above, and let f0 be the holo-
morphic germ determined by f at the origin. Then the Milnor number of the
isolated singular germ f0 is the number of spheres in the bouquet homotopically
equivalent to all of the Xz with z ∈ D∗

r . This number will be denoted by k(f0).

The Milnor number clearly coincides with the torsion free rank of the n− 1
homology Hn−1(Xz,Z).

3. Algebraic interpretation of the Milnor number

Let X = V ({fα(z1, . . . , zn)}α=1,...,m) ⊂ Cn be an irreducible affine algebraic
variety of dimension d, and let p ∈ X be a point in X . By OX,p we will denote
the (local) ring of germs of regular functions at p. It is known that OX,p is
isomorphic to Rmp

, the localization of the coordinate ring R = C[X ] of regular
functions on X at the maximal ideal mp = {f ∈ R : f(p) = 0}. A system of
parameters g1, . . . , gd for Rmp

are functions on X such that the intersection
of X with the variety defined by the gi’s is a finite set of points, one of them
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p. Algebraically, this condition is equivalent to the fact that the radical of the
ideal generated by the gi’s is the maximal ideal of the local ring (R,mp). The
Serre multiplicity of the intersection of (g) = (g1, . . . , gd) at p [10] is defined as

µ
(
g,Rmp

)
=

d∑

i=0

(−1)i dimC Tori
(
Rmp

/(g), Rmp

)
.

It is well known that if Rmp
is a Cohen-Macaulay ring, then all the Tori vanish

for i > 0 and in this case µ
((
g
)
, Rmp

)
= dimCRmp

/
(
g
)
. It is a theorem [4]

that this number can be computed as the number of different solutions of a
system of equations E

E : {fα(z1, . . . , zn), α = 1, . . . ,m, gi(z1, . . . , zn) + εi = 0, i = 1, . . . , d},

determined by the equations that define X together with a set of equations
gi(x) + εi = 0, obtained by perturbing the gi’s in a neighborhood of the origin
U0, and where the perturbation ε = (ε1, . . . , εn) can chosen arbitrarily in a
sufficiently small disk Dδ, and outside a proper Zariski subset of Dδ.

These two formulations of the notion of intersection multiplicity are all equiv-
alent in the case where R is a complete local ring, in particular, if R is the ring
of formal power series in several variables over C. They are also equivalent for
its holomorphic counterpart, the ring S = C{z1, . . . , zn} of power series at 0
with positive radius of convergence.

If we take X = Cn, the (local) ring of germs of holomorphic functions at the
origin, then OX,0 can be identified with S, the ring of power series at 0 with
positive radius of convergence. If f has an isolated singularity at the origin the
quotient ring S/(g1, . . . , gn), where gi = ∂f/∂zi, is zero dimensional. Since S
is a regular ring it is in particular a Cohen Macaulay ring and in this case we
have

µ(f0) = µ (∂f/∂z1, . . . , ∂f/∂zn, S) = dimC (S/ (∂f/∂z1, . . . , ∂f/∂zn)) .

We want to see that µ(f0) = k(f0). On the one hand, we first note that the
perturbation ε that leads to system E can also be interpreted as a parameter

deformation of f, i.e., if f̃ is the function defined by f̃ = f + ε1z1 + · · ·+ εnzn,
then clearly the system of equations

A : {z ∈ U0 : ∂f/∂zi(z) + εi = 0, i = 1, . . . , n} ,

is the same system as

B : {z ∈ U0 : ∂f̃/∂zi = 0, i = 1, . . . , n},

where U0 denotes a sufficiently small neighborhood of 0. Hence, µ(f0) coincides

with the number of critical values of f̃ in a sufficiently small neighborhood of
the origin. On the other hand, it can be seen that the critical value of f breaks

into k(f0) critical values of a “more simple type” of the morsified function f̃ .
More precisely, with notation as above, we have the following theorem (see [11]
and Chapter 1 of [6]). See Figure 2.
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Theorem 3. There exist ρ, r, ε > 0 and Z, a Zariski closed proper subset of

Bε ⊂ Cn such that for all (ε1, . . . , εn) in Bε−Z the function f̃ has k(f0) critical
values in Br which correspond to exactly the same number of critical points in
Bρ, each one of Morse type, i.e., there exist coordinates around each critical

point p and around f̃(p) such that in these coordinates f̃ = z2
1 + · · · + z2

n + c.

Figure 2. The structure of f̃ .

From Theorems 1 and 3 it immediately follows that µ(f0) = k(f0).

4. Monodromy representation of a fiber bundle

For an oriented smooth manifold with boundaryX , there are several topological
groups, which are relevant to the definition of the monodromy representation of
a fiber bundle. First, the group Diff+(X) formed by the orientation preserving
diffeomorphisms of X , under composition. Second, the subgroup Isot(X) of
Diff+(X) formed by those diffeomorphisms which are isotopic to the identity
diffeomorphism though elements of Diff+(X). It can be seen that Isot(M)
is a normal subgroup of Diff+(X). The third relevant group is the quotient
M(X) := Diff+(X)/Isot(X), called the mapping class group of X . The fourth
one is the subgroup Diff+(X, ∂X) of Diff+(X) formed by those elements whose
restriction to the boundary ∂X ofX is equal to the identity map. Finally, it can
be seen that Diff+(X, ∂X)∩ Isot(X) is a normal subgroup of Diff+(X, ∂X), and
their quotient, which we shall denote by M(X, ∂X), is called the mapping class
group of X relative to ∂X . An elementary group theory argument shows that
M(X, ∂X) injects canonically into M(X) so it can be regarded as a subgroup
of M(X).

Now, let f : E −→ B be an oriented smooth fiber bundle with fiber F , a
smooth oriented manifold with (possibly empty) boundary. Choose an orien-
tation preserving good trivialization T = {Uα, φα}α∈A for f . (This means that
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the collection {Uα}α∈A is a good open covering of B, that is one such that the
intersection of any finite subcollection of it is diffeomorphic to Rm, m = dimB,
and each φα is a fiber preserving diffeomorphism from f−1(Uα) to Uα × F ,
which also preserves the orientation fiberwise.) Let gβα : Uα ∩ Uβ → Diff+(F )
be the cocycle determined by the trivialization T . If we fix a base point
x0 ∈ B for the fundamental group π1(x0, B) and a pair Uα0

, φα0
in T such

that x0 ∈ Uα0
, the monodromy representation of f : E → B is the anti-

homomorphism λ : π1(x0, B) → M(F ) defined in the following way. Take any
loop γ based at x0 and divide it into arcs γ0, γ1, . . . , γn such that γ0 has initial
point x0, γi ends where γi+1 begins, for i = 0, . . . , n−1, and γn ends at x0, and
for which there exist open sets Uα1

, Uα2
, . . . , Uαn

in {Uα}α∈A with γi ⊂ Uαi

for each i = 0, . . . , n. See Figure 3. Let us denote the starting point of each γi
by xi.

Figure 3. Trivialization of the bundle along γ.

Now, if gi+1,i denotes the transition function on Uαi
∩Uαi+1

for i = 0, . . . , n−
1, and g0,n denotes the transition function on Uαn

∩ Uα0
, then the image of

the class [γ] in π1(x0, B) is defined as the element in M(F ) determined by the
diffeomorphism

λ([γ]) = g0,n(x0)gn,n−1(xn) · · · g2,1(x2)g1,0(x1)

in Diff+(F ). It can be proved that λ is a well defined anti-homomorphism.
According to Theorem 1, the map f : E∗ → D∗

r is a smooth oriented fiber
bundle whose fiber is a smooth compact oriented (2n−2)-manifold with bound-
ary. We can take the model fiber to be f−1(z0) = Xz0 , the fiber over an arbi-
trarily chosen point z0 ∈ D∗

r . It can be seen that in this case it is possible to
choose an orientation preserving good trivialization of the bundle such that all
transition functions have range in the subgroup M(Xz0 , ∂Xz0) of M(Xz0).
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For the rest of the article the holomorphic function f will have domain
W , an open set in C2, and the fiber bundles considered will have a real four-
dimensional manifold as total space and a real 2-dimensional manifold as base.

5. Dehn twists

Let A = {z : 1 ≤ |z| ≤ 2} be an annulus in the complex plane with the
standard orientation. The right-handed Dehn twist in A is the element D
of Diff+(A) defined as D(reiθ) = rei(θ−2πψ(r)), where ψ : [1, 2] → R is a
fixed smooth function which is constantly zero on the interval [1, 1 + 1/3],
monotone increasing in the interval [1 + 1/3, 2− 1/3], and constantly 1 on the
interval [2 − 1/3, 2]. Let now F be any oriented smooth 2-manifold, possibly
with boundary, and α a simple closed curve in int(F ), that is, a smoothly
embedded circle. If we take the closure Tα of a tubular neighborhood of the 1-
submanifold α and an orientation preserving diffeomorphism g : A→ Tα, then
a right-handed Dehn twist around α is the element Dα of Diff+(F ) defined as

Dα(p) =

{
gDg−1(p) if p is in Tα
p if p is in F − Tα

.

See Figure 4.

Figure 4. A right-handed Dehn twist on an oriented surface.

It can be proven that the isotopy class of Dα in Diff+(F ) does not depend
on either the chosen neighborhood or the diffeomorphism g. Moreover, if α
is isotopic to β (as embeddings of S1) then Dα and Dβ determine the same
elements of M(F ). All of this is true if the Dα are considered as elements of
Diff+(F, ∂F ) [2].
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6. Morsification

Let E be a connected complex surface and let D◦
r = {z ∈ C : |z| < r} be the

open disk of radius r > 0 in the complex plane. Let f : E → D◦
r be a proper

holomorphic map such that f−1(D◦
r − {0}) does not contain any critical point

of f .

Definition 4. By a deformation of f : E → D◦
r we shall mean a surjective

proper holomorphic map F : S → D◦
r × ∆ǫ, where S is a three-dimensional

complex manifold and ∆ǫ = {z ∈ C : |z| < ǫ}, and such that

(1) The composition S
F
→ D◦

r × ∆ǫ
pr2
→ ∆ǫ does not have critical points.

(2) If D◦
t := D◦

r × {t}, St := F−1(D◦
t ) and ft := F |St

: St → D◦
t then the

maps f : E → D◦
r and f0 : S0 → D◦

0 are topologically equivalent.

Furthermore, the deformation F : S → D◦
r × ∆ǫ is called a morsification

of the map f : E → D◦
r if for any t 6= 0, each singular fiber of the map

ft : St → D◦
t is of simple Lefschetz type, that is, it contains a single nodal

singularity or smooth multiple (see [8]). The morsification is called a simple
morsification if for each t 6= 0, all the singular fibers of ft are of simple Lefschetz
type.

An Euler characteristic invariance argument shows that the number of sin-
gular fibers of any map ft with t 6= 0 of any simple morsification F of f is
independent of both the simple morsification F and the map ft chosen.

For instance, let us consider the map f : E = f−1(Dr) ∩Bρ0 → Dr treated
in the first section. It is possible to obtain a deformation of this map in the
following way. Fix any nonzero complex linear function λ : C2 → C and
consider the function F : W ×C → C×C defined as F (z1, z2, t) = (f(z1, z2) +
tλ(z1, z2), t). It is possible to choose an ǫ > 0 so that its restriction F ′ :
Bρ0×∆ǫ → C×∆ǫ satisfies that F ′(·, t) : Bρ0 → Dr is surjective for each t ∈ ∆ǫ.
Let E be the three-dimensional complex manifold (F ′)−1(Dr) ⊂ Bρ0×∆ǫ. Then
the map F ′ : E → Dr × ∆ǫ is a deformation of f : E → Dr × ∆ǫ. It can also
be proved that for a generic choice of λ, this deformation is a morsification
such that for each t 6= 0, the map (f ′)t has only simple Lefschetz type singular
fibers.

It is important to point out that simple morsifications are known to exist in
some cases. Such is the case where the regular fiber of f is a closed oriented
surface of genus 1 in which case a theorem of Moishezon [8] guarantees that a
simple morsification exists.

7. A new interpretation of the Milnor number

In this section we will propose a new interpretation of the Milnor number. We
will work in dimension n = 2, and regard f as a holomorphic function from
E = f−1(Dr) ∩ Bρ to Dr as in Theorem 1. Let E∗ denote the complement
in E of the central fiber X0 = f−1(0), and Cr denote the boundary circle of
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the closed disk Dr. We fix a base point z0 ∈ Cr. As stated in Theorem 1,
f : E∗ → D∗

r is a smooth oriented fiber bundle over the punctured disk. Since
n = 2, each fiber Xz, z 6= 0 is an oriented surface with boundary. Let us denote
by T the union of the boundaries of all the fibers Xz, T = ∪z∈Dr

∂Xz, and let
P be f−1(Cr). See Figure 5.

Figure 5. Milnor’s picture seen abstractly.

Then it is easy to verify that P and T are smooth manifolds with boundary
such that P ∩ T = ∂P = ∂T , P ∪ T = ∂E, and f restricted to P induces a
(usually nontrivial) fiber bundle f |P : P → Cr. As remarked at the end of
section 6 the monodromy representation of f : E∗ → D∗

r can be taken to have
image in the subgroup M(Xz0 , ∂Xz0) of M(Xz0).

Now, let F : S → Dr × ∆ǫ be a simple morsification of f and let us fix
a t0 6= 0 in ∆ǫ. If Q = {z1, . . . , zk} is the set of critical values of ft0 , then
the restriction ft0 : St0 − f−1

t0
(Q) → Dt0 − Q is a fiber bundle. Let us denote

f−1
t0

(Cr) by Pt0 . This is a smooth 3-manifold and the restriction ft0 : Pt0 → Cr
fibers it over a circle. It can be proved that f : P → Cr and ft0 : Pt0 → Cr
are equivalent as smooth maps, i.e. that there exist orientation preserving
diffeomorphisms ϕP and ϕCr

such that the diagram

P
ϕP
−→ Pt0

f ↓ ft0 ↓

Cr
ϕCr−→ Cr

commutes. This implies that if we identify f−1(z0) and f−1
t0

(z0) via an ori-
entation preserving diffeomorphism, and induce in this way an identification
between the groupsM(f−1(z0), ∂f

−1(z0)) and M(f−1
t0

(z0), ∂f
−1
t0

(z0)), then the
images of the element of π1(z0, Cr) represented by the loop based traversing
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once and positively Cr, under the monodromy representations of the bundles f :
P → Cr and ft0 : Pt0 → Cr, are conjugate as elements of M

(
f−1(z0), ∂f

−1(z0)
)
.

Now, let us denote by [Cr] the element in π1(z0, Dt0 − Q) represented by the
loop traversing once and positively the circle Cr. Let us choose mutually dis-
joint small closed disks D1, . . . , Dk contained in Dr and such that each Di is
centered at zi. Now choose Jordan arcs γ1, . . . , γk contained in Dr −∪Di such
that each γi begins at z0 and ends at some point z′i on ∂Di, and γi ∩ γj = {z0}
for i 6= j. Let us denote by αi the loop that starts at z0, then traverses γi until
it reaches z′i, then goes once and positively around ∂Di, and finally comes back
to z0 again following γi. After a renumbering (if necessary) it can be assumed
that [α1] . . . [αk] = [Cr]. See Figure 6.

Figure 6. The system of curves α1, . . . , αk on the disk.

Since

λt0 : π1(z0, Dr −Q) → M(f−1(z0), ∂f
−1(z0)) ,

is an anti-homomorphism, we have that

λt0([Cr]) = λt0([α1] . . . [αk]) (1)

= λt0([αk]) . . . λt0([α1]) . (2)

It is known that the local monodromy around a singular fiber of simple
Lefschetz type is a right-handed Dehn twist. This implies that each factor
λt0([αi]) in the last member of equation (1) is a right-handed Dehn twist in
M(f−1(z0), ∂f

−1(z0)). Consequently, the Milnor number of the germ f0 is
equal to the number of factors in a factorization of λ([Cr ]) obtained from any
simple morsification of f0 by the process we have just described. The new
interpretation of Milnor’s number we propose is expressed in the following
conjecture.

Conjecture 1. The number of factors in any factorization of λ ([Cr]) ∈
M

(
f−1(z0), ∂f

−1(z0)
)

in terms of right handed Dehn twists is bigger than
or equal to the Milnor number of f0.
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Milnor’s number can be generalized in the following way. Let f : E → D◦
r be

as described in section 6. Let us assume that it admits a simple morsification
F : S → D◦

r × ∆ǫ, and let t0 6= 0 in ∆ǫ. Then the last discussion is valid in
this more general setting. In particular, according to the comment made right
after Definition 4 the number of singular fibers in any member of any simple
morsification is the same. So it is an invariant of the “fiber germ” of f at
the fiber f−1(0), and therefore the number of factors in a factorization of the
monodromy around f−1(0) obtained in this way can be reasonably called the
Milnor number of the fiber germ.

The authors have also conjectured that this generalized Milnor number is
actually a lower bound for the number of factors of any factorization of λ([Cr ])
in terms of right-handed Dehn twists in the mapping class group of f−1(z0)
relative to its (possibly empty) boundary ∂f−1(z0), attained by those factor-
izations arising from simple morsifications. This conjecture has recently been
confirmed by the authors in the case when the regular fiber of f is a closed (i.e.
compact and without boundary) connected 2-manifold with genus 1 (see [3]).
However, in ([5]), that author provides for each g ≥ 2 an fg : Eg → D0

1 having
genus g closed regular fiber and violating this conjecture.
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