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Abstract We study a nonlinear parametric problem driven hy-laaplacian-like operator (which need
not be homogeneous) and with{@— 1)-superlinear nonlinearity which satisfy weaker condisighan
the Ambrosetti-Rabinowitz condition. Using critical poitheory, we show that for every > 0, the
nonlinear parametric problem has a nontrivial solution.ehby strengthening the conditions on the
operator and the nonlinearity, and using variational mgthtogether with suitable truncation techniques
and tools from Morse theory, we show that, for evary 0, the nonlinear parametric problem has three
nontrivial smooth solutions.

Sobre los problemas param étricos no lineales con operadores de tipo
p-Laplaciano

Resumen. En este articulo estudiamos un problema paramétricaneallque involucra al operador de
tipo p-Laplaciano (que en general no és homogéneo) y donde iladardel potencial es una funcion
(p — 1)-superlinear que verifica una condicibn mas débil quediaocida condicion de Ambrosetti-
Rabinowitz. Utilizando métodos variacionales, mostramee, para todd > 0, el problema paramétrico
no lineal tiene una solucion no trivial. Entonces, fortéado las condiciones y usando herramientas de
la teoria de Morse junto con adecuadas técnicas de tri@mcanostramos que, para cada> 0, el
problema tiene tres soluciones suaves.

1 Introduction

Let Z C RY be a bounded domain with @-boundarydZ. We study the following nonlinear elliptic
parametric problem driven by;aLaplacian-like operator,
—diva(z,Dz(z)) = A\f(z,z(z)) a.e.onz,
(P)x
2lpz = 0.

Here,a: Z x RY — RY is a Carathéodory map which is strictly monotone in the R" variable.
Thep-Laplacian is a particular case of the differential operatq P),, whena(z,y) = a(y) = |y|[P~2y.
However, in contrast to the-Laplacian, the differential operator {tP)» need not be homogeneous. Also,
f(z,x) is a Carathéodory nonlinearity, which neaso exhibits a(p — 1)-superlinear growth in the € R
variable.
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Our goal is to prove existence and multiplicity theoremgfimblem(P), which are valid for al\ > 0.
In the past, probleniP), was investigated primarily in the context of equations elniby the Laplacian
(semilinear problems), i.eu(z,y) = a(y) = y. The first such work was that by Ambrosetti-Rabinowii
(see also Ambrosetti-Brezis-Cerar]), who employed the following condition on the nonlinegurjt 2, -),
known in the literature as the Ambrosetti-Rabinowitz caiodi (AR-condition, for short)there exisi, > 2
and M > 0 such that

0 < pF(z,2) < f(z,2)x forall z € Zand all|z| > M, (1)

wheref: Z x R — Ris a continuous function and(z,z) = [ f(z,s) ds.
A direct integration of {), leads to the following weaker condition for the potentiaiction F'(z, x),

F(z,x) > ¢é1]x" — &y forall z € Z and allz € R, with &, é& > 0. 2

From @), we infer thatF'(z, -) exhibits at least @-polynomial growth neat-oo and, since: > p = 2, it
also satisfies the much weaker condition

F
lim (2,2)

|z|—o00 x?

= +o0o  uniformlyfora.a.z € Z. 3)

More recently, Schechter-Zoa] considered probleniP), with the Laplacian differential operator
(semilinear problem), but replaced the AR-condition witln@ateral version of3), namely, they assumed

that

F F .
lim @ =400 oOr lim M = +00 uniformly fora.a.z € Z. 4)

T——00 x T— 400 xX

Under @), Schechter-ZouZd] proved that probleniP), (with the Laplace operator) has a nontrivial
solution for almost all\ > 0. Moreover, they proved the existence of a nontrivial sotlufior all A > 0,
if (3) holds and one of the following two conditions is true:

(C1) G(z,2) = f(z,z)x — 2F(z,z) is convex it € R, forall z € Z;
(C2) there exist constants > 0, x> 2 andr > 0 such that

pF(z,2) — f(z, )z < é3(1 + 2?) forall z € Z, all |[x| > r.

Note that from conditiofCs), we have

éd(1+x2) f(Z,:C)l‘
_ < >
Fea) = Flea) forall z € Z, all |z| > r,
I
w < liminf 1z z)e uniformly fora.az € Z (see B)).

Therefore, conditiofCz) and the AR-condition (sed)) are in fact equivalent.
On the other hand, conditigi, ) (i.e., the convexity of the function — G(z, z)) is actually stronger
than the following one:

(C3) there existd\fy > 0 such thatforallz € Z

T — M is increasing onc > M, and decreasing om > — M.
X
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A global version of C3) was used by Zhow3[], who studied nonparametric problems driven by the Lapla-
cian.

Very recently, Miyagaki-Soutol[d] used condition(Cs) to show that probleniP),, with the Laplace
differential operator, has a nontrivial solution for alt> 0.

Extensions to nonlinear parametric problems, driven bypth@placian, were obtained by Guad],
Guo-Webb [4], Hai [15], Motreanu-Motreanu-Papageorgio?l], and Perera{7]. However, with the
exception of P1], none of the aforementioned works deals with— 1)-superlinear nonlinearities (i.e.
nonlinearities which satisfyim | . ‘i‘(ji)x = +oo uniformly for a.a.z € Z) and they prove existence
and multiplicity results, valid for alh > \*, for some\* > 0. In [21], the authors prove a multiplicity result
(existence of three nontrivial solutions) for a nonlingafi(z, =) with general polynomial growth im € R.
However, their result is local ih > 0, namely, itis valid only fotx € (0, \jj) and some\; > 0. Finally, we
should mention the recent work of Papageorgiou-Rocha$fab], where the authors prove multiplicity
theorems fop-Laplacian equations with @ — 1)-superlinear nonlinearity(z, -) and no parametey > 0.
They employ the AR-condition and in their multiplicity themns, they provide information about the sign
of all the solutions.

Our approach, in this work, combines variational methodf Wlorse theory and suitable truncation
techniques. The structure of the work is the following. le tlext Section, we present the background mate-
rial necessary to follow the arguments in the subsequetibssc In Sectior8, we prove an existence result
(valid for all A > 0), using variational methods based on the critical poinbtiiémountain pass theorem).
In Sectiond, by combining variational arguments with suitable trurmatechniques and Morse theory (in
infinite dimensional Banach spaces), we prove a multiglitieorem (existence of three nontrivial smooth
solutions, two of which have opposite constant sign), wigahalid for all A > 0. For the semilinear case,
a similar result can be found in Peretz5], but his nonlinearity contains a negative concave termsmnd
near the origin the behavior is different.

2 Mathematical Background

In the analysis of problertiP), we will use the Sobolev spad€,”(Z) and the Banach space
Co(Z)={ueC"(Z): uly, =0}
We will also use the fact that the latter is an ordered Banpahes with order cone
Cy={ueCi(Z):u(z)>0 forallze Z}.

This cone has a nonempty interior given by

intCy = {u€C+:u(z) >0 forallze Z and ?(z) <0 forallzeaz},
n

wheren(-) denotes the outward unit normal 6.

Notation. Throughout this work, we denote the normigf(Z) by || - ||,,. For everyz € W, (Z), we set

|z|| = || Dz]|,, and, for every- € R, r* = max{=£r,0}. The notatior|-|| will be also used to denote the
R~ -norm (besides its use as the normI/Izig’p(Z)), since it will be always clear from the context, which
one are we referring to. We use (resp.—) to denote strong convergence (resp. weak convergence).

2.1 Critical point theory

We start by recalling some basic notions and facts fromealifpoint theory. LetX be a Banach space
and X* be its topological dual. By -, - > we denote the duality brackets for the pak*, X). Let
¢ € CY(X). Apointzg € X is acritical pointof ¢ if ' (z) = 0. Avaluec € R is acritical valueof ¢ if
exists a critical pointy € X such thatp(zg) = c.
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Definition 1 We define the following sets:

e={reX o) <c} (the sublevel set @f at ¢),
f={reX g <c} (the strict sublevel set of at c),
K={reX:¢'(z)=0} (the critical set ofp),

and
K.={zeK:px)=c} (the critical set ofp at c).

The following compactness notion will allow a minimax chetexization of certain critical values of a
C!-functional.

Definition 2 We say thatp € C'(X) satisfies theCerami conditiorat levelc € R (C.-condition for
short), if every sequender,, },>1 C X satisfying

o(xy) — ¢ and (1 + |l2,])¢ (xn) — 0 in X* asn — oo,

has a strongly convergent subsequence. We saythatisfies the€’-condition if it satisfies thé’.-condition
for every levek € R.

This condition is a little more general than the usual Pefaigle condition P.S-condition for short).
However, as it was shown by Bartolo-Benci-Fortunaflp fhe deformation theorem and consequently the
minimax theory of critical values op € C'(X), is still valid if the PS-condition is replaced by the
C-condition

Theorem 1 (“Mountain pass theorem”) If X is a Banach spacey € C'(X), zo,z1 € X,r > 0,
zo — a1l >,
max {¢(zo), p(z1)} < inf {p(z) : |z — o] =7} = co,
={~eC(0,1],X) : v(0) = zg and (1) = = },

= 1 f
C s 00,

andy satisfies the&’.-condition, therc > ¢y andc is a critical value ofp. Moreover, ifc = ¢y, then there
exists a critical pointr € X of ¢ with critical valuec and ||z|| = 7.

The notion of an operator of type)., introduced by Browderd], will be useful in proving that a
C'-functional satisfies th€'-condition(see PropositioR).

Definition 3 A nonlinear mapd: X — X* is said to be of typéS) ., if z,, — z in X and

limsup <A(zy,),x, —x> <0,

n—oo

thenz,, — x in X*.

2.2 Critical groups and Morse theory

We now introduce some useful results from critical grougsotly. If (Y7, Y5) is a topological pair with
Y> C Y7 C X, then for every integek > 0, we denote by (Y7, Y2) the k™ relative singular homology
group of the pai(Y;, Y>), with integer coefficients.

Definition 4 The critical groups ofp at an isolated critical point:p € X with p(zo) = ¢, are defined by
Cr(p,x0) = Hi (p° NU, o NUN\{x0}) forall k > 0,

wherel/ is a neighborhood af such thatlk’ N ¢° NU = {x¢} (see Chang6] and Mawhin-Willen18]).
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The excision property of singular homology implies thatdbeve definition is independent of the particular
choice of neighborhood.
Suppose thap € C!(X) satisfies the”-conditionandinf p(K) > —oo. We choose < inf ¢(K).

Definition 5 The critical groups ofp at infinity are defined by
Cr(p,00) = Hi (X, ¢°) forall k >0 (see Bartsch-Lj4]).

From the deformation theorem, we see that the above defimtindependentaf. In fact, if n < inf p(K),
then
Cr(p,0) = Hp(X, ") forall £ > 0.

To see this, let) < n < inf ¢(K). Theny” is a strong deformation retract ¢f’ (e.g., see Corvellec]).
Hence,

Hy(X, ") = Hy(X,¢")  forallk >0,

U
Cr(p,0) = Hp(X, ") forall £ > 0,

as claimed.
Definition 6 TheMorse-type numbersf ¢ at an isolatedry € K are defined by
my(xo) = rank Ck (v, o) forall &£ > 0,

and theMorse-type polynomiaby
P(t,xg) = ka(xo)tk.

k>0
Definition 7 TheBetti-type numbersf ¢ are defined by
B = rank Ci (p, 00) forall £ > 0,

and theBetti-type polynomiaby
P(t,00) = > Bit".

k>0
Suppose thak is a finite set. Then, the Morse relation says that there ishanpmial Q(¢) with
nonnegative integer coefficients such that
Y Pltx) = P(t.00) + (1 +1)Q(t), (5)
rzeK

(see Changd, p. 36], and Mawhin-Willem18, p. 184]).

2.3 The first eigenvalue of the negative Dirichlet  p-Laplacian

In what follows, \; denotes the first eigenvalue of the negative Diricplifaplacian (which it is denoted
by (—A,, I/Vol’p(Z))). We know that\; > 0 and it is simple (i.e., the corresponding eigenspace is one
dimensional). Moreover, it admits the following charaization

DulP ,
A :inf{”|u|Lp Tu € Wol’p(Z) andu;«éO}. (6)
p
The infimum in @) is attained on the eigenspace of. Also, by u; we denote the.P-normalized
eigenfunction corresponding fq. From ), it is clear that:; does not change sign and so we may assume
thatu; > 0. In fact, nonlinear regularity theory implies that € C\{0} and invoking the nonlinear
strong maximum principle of Vazquez(], we haveu; € int C.
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3 Existence Theorems

In this section, we examine the existence of nontrivial sohs for problem(P),, with A > 0. Using
variational methods and, in particular, the mountain plagerem (see Theorefr), we show that for every
A > 0, problem(P), has a nontrivial bounded solution. Moreover, if we streegtthe conditions on the
mapa(z,y), we show that the nontrivial solution is also smooth.

The hypotheses on the mafx, y) are the following:
H(a): a(z,y) = V,G(z,y) whereG: Z x RY — Ris a function such that

(i) forally € RY, 2z — G(z,y) is measurable;
(i) foralmostallz € Z,y — G(z,y) is C!, strictly convex and7(z,0) = 0;

(iii) foralmostallz € Z and ally € RY, we have
laz, )|l = V4G (z,9)|| < ao(2) + collylP~,

withag € L>(Z)4, ¢o > 0andl < p < oo;

(iv) foralmostallz € Z and ally € R, we have
(a(za y)v y)]RN < p G(Za y)7
(v) there existg > 0 such that for aimost alt € Z and ally € RY, we have

cllyll” < p Gz, y).

Remark 1 The above hypothesesefx, y) are considerably more general than those employed by De Na-
poli-Mariani [9], who also deal with equations driven pyt aplace-like operators. 1f0], G € C*(ZxRY)
and it is assumed that for all € Z, G(z, -) is strongly convex. This condition, in the particular cag¢he
p-Laplacian (i.e., wheriz(y) = I—l)Hpr), implies thatp > 2. No such restriction is necessary here.

In what follows, we present some characteristic examplésraftionsG(z, y) with a(z, y) =V, G(z, y)
satisfying the hypothesd$(a).

Example 1 LetG(z,y) = G(y) = %||y||p with 1 < p < oo. In this casea(y) = VG(y) = ||ly||P2y.
The corresponding differential operator is the_aplacian

Apu = div (|| Dul[P"2Du) .

Example 2 LetG(z,y) = %al(z)||y||” + Lag(2)|ly||” with a1, az € L®(Z)4, a1(z) > ¢o > 0 for
a.a.z € Zandl <r <p < oco. Then

a(z,y) = ar(2)|ylIP~?y + az(2) Iyl "2y
and the corresponding differential operator is the weightg, r)-Laplacian
a1 (2)Apu + az(z)Ayu.

Example 3 LetG(z,y) = %al(z)Hpr + LIn(1 + [ly|"), with ay € L>=(Z2)4, ai(2)

a.a.z € Zandl <r <p< co. Then

Y

co > 0 for

1

a(z,y) = ax()|yllP?y + Iyl y———-
L+ yll
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Example 4 LetG(z,y) =G(y) = 5 [(1+ [y[|?)2 — 1] with 1 < p < co. Then

a(y) = (1+ 92T v.

The corresponding differential operator is the generalim@ean curvature operator
p—2
an (14 10u?) Du).

Example 5 Let

Lyl it vl < 1.
G =Gy) =11 -
(2:9) = G(y) {%nynw%’“ iyl > 1.

with1 <7 < p < oo. Then
r—2 i
yl™ %y ifflyll <1,
aly) = {n || Iyl

lyllP=2y i [yl > 1.

Example 6 LetG(z,y) = 1 (A(2)y,y)gn, WithA € L>=(Z, RN *N) andA(z) > colnxy fora.az € Z,
wherecy > 0 and Iy« v is the(N x N)-identity matrix.

Definition 8 LetS: W,*(Z) — W~ (Z), with 2 + % = 1, be the nonlinear operator defined by

<S@Ly>:i/(MALMLDwMMh forall z,y € Wy ?(2). (7)
zZ

From Papageorgiou-Rocha-Staied,Proposition 2], we have:

Proposition 1  If hypothesed7 (a) hold, then the operata$ : W, *(Z) — W~1#'(Z) defined by7) is
maximal monotone, strictly monotone, and of tyf¢, .

The hypotheses on the nonlinearjty, «) are the following:
Hy(f): f: Z xR — Risafunction such thaf(z,0) = 0 a.e. onZ and

(i) forall 2 € R, z — f(z,x) is measurable;
(i) foralmostallz € Z, x — f(z,x) is continuous;

(i) foralmostallz € Z and allz € R, we have
|f(z,2)] < a(z) + el

witha € L>®(Z)4, ¢ > 0andp < r < p*;

(iv) if F(z,2) = [ f(z,s)ds, then

lim Fz )

|z|—o00 |x|P

= +00 uniformly fora.az € Z
and there exists > 1,7 € (6,r) with0 = (r — p) max{%, 1}, such that

lim inf
|z|—o00 |$|T

>0 uniformly fora.a.z € Z;
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(v) we have
[z, )

z—0 |l‘|p_2x

=0 uniformly fora.a.z € Z.

Np

As usualp* denotes the Sobolev critical exponent, izg.—= g

if p< N andp* = +ocif p > N.

Remark 2 HypothesisH; (f)(iv) is a p-superlinearity condition on the potentidl(z,-). Evidently, if
im0 |f|(f——€)x = +oo uniformly for a.az € Z, thenlim,| %‘f) = +4oo uniformly fora.a.z € Z.
The second part of the hypothe&is( f)(iv) replaces the AR-condition (s€B). It was first used by Costa-
Magalhaed8].

Example 7 Consider the following potential functidfi(z, ) = F(x) (for the sake of simplicity, we drop
the dependence d@f on thez variable)

1
F(z) = 2—j|ac|” In(1 + |z|) + cos(|z|?) — 1.

Then

) = bt~z (1n(1 o)+ 0 ) < pla2asinjaP).

Lete > 0 be such thatVe < p?. If 4 = p andr = p + ¢, then all hypothese#; (f) are satisfied.
However, the AR-condition (s€®) is not satisfied and since

f(z)

|z[P~22

= 1n X 7|x|
=+ le)+ T mD

then, wherp = 2, condition(Cj3) is not satisfied and so the semilinear existence result obdyili-
Souto[9] does not apply on this nonlinearity.

— psin(|z|?),

Definition 9 LetA > 0 andy,: W,"”(Z) — R be the Euler functional for probleifP), defined by
oa(z) = / G(z,Dz(z))dz — )\/ F(z,z(2))dz forall z € W, ?(Z).
zZ zZ
Evidently,ox € C'(W,?(Z)) and, for allz € W, "*(Z), we have
pi(x) = S(x) = AN (), (®)

whereN (x)(-) = f(-,z(-)) andS is the operator defined irT) (see also Ubilla79]).
Proposition 2 If A > 0, hypothese#](a) and H, () hold, thenp, satisfies th&’-condition
PROOF We consider a sequen¢e,, } ,>1 C Wol”’(Z) such that

[oa(xn)| < My forsomeM; >0, alln>1, 9)
and

L+ |zalD@h(zn) — 0 InWyP(Z) asn — oc. (10)

CLam. The sequencér, },>1 € Wy?(Z) is bounded.
We argue by contradiction. So, suppose that the Claim ignet By passing to a suitable subsequence,
if necessary, we may assume that, | — oo. From (L0), for all v € W, "*(Z), we have

€n
L+t [|an|
U

‘<S(:cn),v> f)\/ f(z,zn)vdz
z

|<@h(zn),v>] < o] withe, |0,

€
<—" with e, | 0. 11
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In (11), we choose = z,, € W,"*(Z), then

— / (a(z, Dxy), Dxy)py dz + )\/ fzoxn)a,dz < e, foralln > 1.
z z

On the other hand, fron®J, we have
/pG(z,xn)dz—)\/pF(z,xn)dz < pM, foralln > 1.
Z zZ
We add (2) and (3), obtaining

[ G D) = (e, D). D ] 44 [ [Flamn)n — pF(ev)] ds < Mo
Z Z

for someM; > 0 and alln > 1. By virtue of hypothesig7 (a)(iv), we have
/ [pG(z, Dzy) — (a(z, Dxy), Dy )y | dz > 0 foralln > 1.
Z

HypothesisH; (f)(iv) implies that we can find > 0 andMs = M;(3) > 0 such that
Blz|” < f(z,2)x — pF(z,x) fora.a.z € Z, all |z| > Ms.
In addition, hypothesi&f; (f)(iii) implies the existence of &/, > 0 such that
|f(z,2)x — pF(z,2)] < My fora.a.z € Z, all |z| < Ms.
Combining (L6) and (L7), we infer that there exists > 0 such that
Blz|” — 1 < f(z,2)x — pF(z,x) fora.az € Z,allz € R.

We return to 14) and use 15) and (L8). Then

ﬂ/ |2, |"dz < M5 forsomeMs > 0,alln > 1,
zZ
I
{zn}n>1 CL7(2) is bounded.
Recall thatr < r < p* (see hypothesif (f)(iv)). So, we can find € [0, 1) such that

11—t ¢

r T p*

Invoking the interpolation inequality (e.g., see GasirR&pageorgioul[l, p. 905]), we have

Znllr < Han}ftHxn

t
P
which implies

[znllr < Mel|2n

i for someMg > 0,alln > 1 (see (9).

From (L1) with v = z,, € W,"*(Z), we have

/ (a(z, Dz,,), Dxn)RN dz — )\/ fzyzn)x, dz < e,.
z z

12)

(13)

(14)

(15)

(16)

7)

(18)

(19)

(20)

(21)
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Since fora.az € Z, G(z, -) is convex (see hypothesi$(a)(ii)), we have
(a(z,y), —y)RN < G(z,0) — G(z,y) = —G(z,y) fora.a.z € Z, ally e RV,

which implies that
§|\y|\p < G(zy) < (a(z,y),y)gy  foraaze z, alyeRY (22)

(see hypothesi#/ (a)(v)). On the other hand, hypothesHs (f)(iii) and(v) imply that, givene > 0, we
can finde. > 0 such that
|f(z, )| < e|zP + cc|z|” fora.a.z € Z,allz e R. (23)

We return to 21) and use 22) and 3), then
é T
EHDang <eép+ >\€||$n|\§ + Ace||znlly

<en+ A (ellznlb ) (24)

for somecs = 63( ) > 0, and alln > 1 (see g0)).
Letu, = ” BT > 1. Then,||u,|| = 1 foralln > 1 and so, we may assume that

Up — w in Wol’p(Z) and w, — u in LP(Z) asn — oo. (25)

From @24), we have

€n 4 -
||Dunnp_” - +A(e|un|p+W|unnt> (26)

for somec, > 0, andn > 1. The hypothesis on (see hypothesi&/; (f)(iv)) implies thattr < p. So, if in
(26) we pass to the limit as — oo, we obtain

¢ , A A
1—)HDUII’; < Aellully < el Dully < e,

(see 6) and @5)). Bute > 0 was arbitrary, so we let | 0 and obtainu = 0. Then, from 24), we have
||un|| — 0O, a contradiction to the fact thdt:,,|| = 1 for all n > 1. This proves the Claim.
Because of the Claim, we may assume that

z, ~a inWyP(Z)  and @, —ax inL'(Z). @7)

From (L1), with v = ,, — 2 € W, "?(Z), we have

‘<S($n),l‘n —x>—)\/ f(z,xn)(xy —x)dz €|'|L ”Hxn —z|. (28)
A
Evidently,
/ fzyz) (e, —x)dz — 0 asn — oo (seeH; (f)(iii) and @7)).
Z
Therefore, if in 22) we pass to the limit as — oo, then
lim <S(zp),x, —2x> =0,
which implies that
T, —x INnWyP(Z) asn— oo (see Propositiot).

We conclude thap), satisfies the&’-conditionforall A > 0. W
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Proposition 3 If A > 0, hypothese#](a) and H, () hold, thenw: = 0 is a local minimizer ofp,.
PROOFE By virtue of hypothesig¢i; (f)(v), givene > 0, we can findd = d(e) > 0 such that

flz,x) < iacf”*1 fora.a.z € Zand allz € [0, 6] (29)

and
fz,2) > §|:c|p*2:c fora.a.z € Z and allx € [-4,0]. (30)

From 29) and @0), after integration, we obtain

F(z,z) < )\i|:c|” fora.a.z € Z and all|z| < ¢.
p

This, combined with hypothesig; (f)(iii) , implies that we can find; > 0 such that
F(z,z) < )\i|x|” + cs|x|” fora.a.z € Zand allz € R. (31)
Y4
Hence, for allz € Wol”’(Z) and some; > 0, we have
oa(z) = / G(z,Dz)dz — )\/ F(z,x)dz
Z A
>

€
1D} — EIIIEH]]Z = Acg|| D[, (seeH (a)(v) and @1)

>

"Wl

(a - i) | Dz||E — Aeg|| Dz (see 6)). (32)

Chooset € (0, A:¢). Then, from 82) and sincer > p, we see that we can finde (0,1) small such
that
oa(x) >0  forallz e Wy P(Z)with0 < |z| < p,

which implies thate = 0 is a (strict) local minimizer o). N

As in Motreanu-Motreanu-Papageorgi@i] (see the proof of Proposition 6), we can fingd > 0 small
such that
0=pa(0) <inf{oa(u) : [Jul =px} = ca. (33)

Proposition 4 If A > 0, hypothese#] (a) and H,(f) hold, then
oa(tur) — —o0 as|t| — oo,
whereu, € int C is the LP-normalized principal eigenfunction ¢-A,, W, *(Z)) (see sectioR.3).

PrRoOOF From hypotheseH (f)(iii), (iv), we see that given any> 0, we can findz,, > 0 such that

F(z,x2) > ﬂ|x|” — ¢y fora.a.z € Z and allz € R. (34)
p
Hence, using the facts that|[u;[|) = || Dus ([} and||u4 [, = 1,

@A(tul):/G(z,tul)dzf)\/ F(z,tuy)dz
z z

p
< %(e A —n)+ & for somec, ¢, > 0 (see B4)). (35)
Sincen > 0 was arbitrary, we may choose> c\;. Then from 85), we conclude thap) (tu,) — —oo as
[t|] = c0. W

We are now ready for the existence theorem for prokl&m,. We show that it has a nontrivial bounded
solution for everyA > 0.
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Theorem 2 If hypothesedd (a) and H1(f) hold, then, for ever)\ > 0, problem(P), has a nontrivial
solutionzy € W, ?(Z) N L>(Z).

PrROOF Proposition2, 4 and @3) permit the application of Theorefn(the mountain pass theorem). So,
we obtainzy € W, *(Z) such that

©x(0) =0 < ey < pa(zo) (see 83)) (36)

and ¢ (zo) = 0. (37)
From (36), it follows thatzy # 0. From @7), we haveS(z¢) = AN (z¢), which implies

—diva(z, Dzo(z)) = Af(z,20(2)) a.e.onZ,
$0|62 =0.
Theorem 7.1, p. 286, of Ladyzhenskaya-Uraltsévimplies thatzg € L>*(Z). R

If we strengthen the conditions on the mg&p, y), we can have more regularity for the solutian The
new, stronger hypotheses on the nadp, y) are the following:

Hi(a): a(z,y) = V,G(z,y), whereG € CY(Z x RN) N C%*(Z x (RM\{0})), for all z € Z, we have
G(z,0) =0, G(z,-) is strictly convex and

(i) forall (z,y) € Z x (RV\{0}), we have
IVya(z, )|l < erllylP~
for somec; > 0;
(i) forall (z,y) € Z x (R¥\{0}) and all¢ € RY, we have
csllylP211€1* < (Vyalz,9)E, E) g
for somecg > 0;
(iiiy forall (z,5) € Z x RN, we have
(a(z,9),y)pn < PG(2,y).

Remark 3 From hypothesigi; (a)(i), it follows that

cr
p—1

laz,y)ll < lyll?=

forall (z,y) € Z x RN (compare withH (a)(iii) ). Also, from hypothesi& (a)(ii), we have

(&)
p—1

lylP~" < (alz,9). y)en forall (z,2) € Z x RY,

4

® _|ly? < G(zy) forall (z,y) € Z x RV,

p(p—1)

(compare withH (a)(v)).
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Example 8 The Examplel not only satisfiedd (a) but also H;(a). The following functiongz(z, ),
similar to Exampleg-6, witha(z,y) = V,G(z, y) satisfy the new hypothesgs (a):

(1) G(z.y) = La
l<r<p<oo

(2) G(z,y) =
1<r<p

( NyllP + Laz(z)|lyll", with a1, az € C*(Z), ai(z) > ¢ > 0forall z € Z and
( Myll? + LIn(1+ ||yl|"), withay € CY(Z), a1(z) > & > 0forall z € Z and

la

P

< 0
(3) Gly) =L (( ( 1+ yl?) % - 1), with1 < p < 2 (see Examplé);
(4) G(z,y) =3

From Theoren®? and Theorem 1 of LiebermaT] (nonlinear regularity), we have:

(A(2)y,y)g~ With A € CH(Z,RVN*N)and A(z) > 0forall z € Z.

Theorem 3 If hypothesesd?; (a) and Hy(f) hold, then, for every\ > 0, problem(P), has a nontrivial
solutionzy € C}(2).

4 Multiple Nontrivial Solutions
In this section, by strengthening further the conditionaon y) andf(z, ), we prove a multiplicity result

for problem(P), valid for all A > 0. To the best of our knowledge, we can not find in the literagureh a
multiplicity result, even when the differential operatsttihe Laplacian (semilinear parametric problem).

The new hypotheses on the maf, y) are the following:

Hy(a): a(z,y) = h(z, ||ly||)y for all (z,y) € Z x RN, with h(z,0) > 0, h(z,t) > 0 forall z € Z and all
t>0,and

() a e C(Z xRY,RN)nC(Z x (RN\{0}), RY);
(i) forevery(z,y) € Z x (RN¥\{0}), we have
IVya(z, )l < collyl”~
with 1 < p < coandcy > 0;
(i) forevery(z,y) € Z x (R¥\{0}) and every¢ € RY, we have
crollyP2IIEN7 < (Vyalz, 9)€, €)rn
for somecyg > 0.

Remark 4 Setg(z,t) = h(z,t)tforall (z,t) € Z x Ry, whereR, = [0, 00). From hypothesef(a)
above, we have the following one-dimensional estimate

. 0
clot?? < EQ(ZJ) < cotP™?

forall z € Z and allt > 0, which implies that the majp— g(z, t) is strictly increasing or{0, +oc) for all
z € Z. We setGy(z,t) = fO (z,s)dsforall (z,t) € Z x Ry. Then,

0

EGQ(Z t) = g(z,t) forall z € Z andt > 0. (38)
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It follows that for all z € Z, the functiont — G(z,t) is strictly convex and strictly increasing d, . We
set
G(z,y) = Golz,|ly|)  forall (z,y) € Z x RV,

Evidently, for allz € Z, G(z, -) is convex. Moreover, for allz, y) € Z x (RV\{0}), we have

V(2 9) = o Colz, Iy

9(z, ||y||)m (see(38)
= h(z |lyly (sinceg(z,t) = h(z,t)t)
= a(z,y).

Using the hypothesed,(a), we can easily prove the following Lemma.
Lemmal If hypothesedi,(a) hold, then:
(@) forall z € Z, y — a(z,y) is maximal monotone and strictly monotone;

(b) forall (z,y) € Z x RY, ||a(z,y)|| < %

() forall (2,y) € Z x RY, 21 jy||P < ( a(z,9), Y)rn
A straightforward consequence of the above Lemma, is thewWolg result:

Lemma 2 If hypothesed$/,(a) hold, then we have

|y|[P forall (z,y) € Z x RY.

p P €9
plp—1) lvll” < &z, 9) < plp—1)

Example 9 The following are examples of maps:, y) which satisfy the hypothesés (a):
(1) the mapa(z,y) = a(y) = ||ly/|[P~2y, 1 < p < oo, corresponds to thg-Laplacian;
(2) a(z,y) = B2)|Jy]|P~2y, with1 < p < o0, B € C*(Z), andB(z) > c1p > 0forall z € Z;

(3) the mapu(z,y) = B(z) (1 + [lyl1?) = y,with1 < p < 2,8 € CY(Z), andB3(z) > ¢ > 0 for all
z € Z, corresponds to the weighted generalized mean curvatuzeadqr;

4) a(z,y) = B(2) (lyll*~2y + In(1 + [[y|*)y), with 1 < p < 00, B € C*(Z), andf(z) > ¢10 > 0 for
all z € Z;

(5) a(z,y) = A(z)y with A € C1(Z,RN*N), A(z) > Oforall z € Z.
The hypotheses on the nonlinearjtiz, ) are the following:

Hs(f): f: Z xR — Ris afunction such thaf(z,0) = 0 a.e. onZ, hypothese&ls ( f)(i)—(v) are the same
as the corresponding hypothesés( f)(i)—(v) and

(vi) (sign condition) for almostalt € Z and allz € R, f(z,2)z > 0.

Example 10 The following functiory (z, z) = f(x) satisfies hypotheséds,(f):

|z|" 2 if x| <1,
fx) = - .

plefP2z <1n(|x|) v ;) if || > 1,

withl < p < r < 0.
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As we already mentioned in the Introduction, our method obpinvolves also truncation techniques.
So, we introduce the following truncations.

Definition 10 Define the following truncations of the nonlinearityz, -):

Fi(zm) = {0 P00 and f () =

f(z,x) ifz<O
flz,z) fz>0

0 ifz>0"

Both functionsf; andf_ are Carathéodory functions (i.e., measurable @7 and continuous inc € R).
We set

o) = [(fiesds and P = [

and introduce the functiona&s}: Wol”’(Z) — R, A > 0, defined by

oy (z) = / G(z,Dz)dz — )\/ Fi(z,z)dz  forallz e W, *(Z).
z z

Clearly,pf € CY(W,7(Z)).
Arguing as in the proofs of Propositio@fnd3, we obtain the corresponding results for the functionals
+
Py -

Proposition 5 If A > 0, hypothesesi(a) and H(f) hold, then the functionalg; satisfy theC-
condition

Proposition 6 If A > 0, hypotheseg$7,(a) and Hz(f) hold, thenz = 0 is a local minimizer for the
functionalspy.

Proposition6 implies that we can fing, > 0 small such that

05 (0) =0 < inf { o (u) : Jul = pr } = ¢ (39)

Moreover, using hypothesid. ( f)(iv) and arguing as in the proof of Propositidpwe have the following
result:

Proposition 7 If A > 0, hypothese#l,(a) and H2(f) hold, then
o (tur) — —o0 ast — +oo

and
@, (tuy) — —o0 as t— —oo.

At this point, we are ready to produce the first two nontrigalutions of problen{P), valid for all
A > 0. These solutions have constant sign (one is positive andtkies is negative).

Proposition 8  If hypothesesis(a) and Hy(f) hold, then, for every\ > 0, problem(P), has two non-
trivial solutions
Zo € int C'y and vy € —int C..

PrROOFE First we produce the positive solution.
Propositionss, 7 and @9) permit the application of Theoreth(the mountain pass theorem). So, we
can findzy € Wy*(Z), 2o # 0 such tha(p )’ (zo) = 0, thus

S(xo) = ANy (zo) (40)
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whereN, (u)(-) = f1(-,u(-)) forallu € Wy (Z). On (40), we act with—z, € W, (Z) and obtain

C10
p—1

[ Dzq |5 <0, (see Lemmd(c))

which implies thatzy > 0 andx # 0.
Also, from @0), we have

{—div a(z, Dxo(2)) = M1 (z,20(2)) = Af(z,20(2)) a.e.onZ,
oloz = 0.

As before, nonlinear regularity theory (namely, Theorefin p.286, of Ladyshenskaya-Uraltseus]
and Theorem 1 of LiebermanT]) implies thatz, € C\{0}. Moreover, hypothesel,(f)(vi) (the sign
condition) implies that

diva(z, Dxzo(z)) <0 a.e.onZ.

Invoking Theorem 3 of Montenegr@()] (see also Theorem 1.2 of Zhangl]), we conclude that, €
int C+.

Similarly, working with the functionap, and using again the mountain pass theorem, we show that for
every\ > 0, problem(P), has another solutiosy € —intCy. B

Next, our effort will be to produce a third nontrivial solaiti, distinct fromzy andwvy. We will do this
using tools from Morse theory.

Proposition 9  If A > 0, hypothese#l,(a) and H2(f) hold, then
Cr(py,00) =0  forall k> 0.

PrROOFE We do the proof fogoj, the proof fory, being similar.

Let ) = <pj|cl(2). Nonlinear regularity theory (see Ladyzhenskaya-Uraétdé6, p. 286], and
Lieberman [L7, Theorem 1]), together with the nonlinear strong maximuimgiple (see Montenegr@[],
Zhang B1], and Vazquez3(] for the particular case of the-Laplacian), imply that the nontrivial critical
points of{ belong toint C; and so the functionalg;” andy;" have the same critical points. The space
C}(Z) is dense iV, ?(Z). Hence, by virtue of Theorem 16 of Palais], we have

H, (WOLP(Z), (¢;)a) = H, (c(}(Z), (z/}j)a) foralla € R and allk > 0. (41)
From Sectior®, we know that for alk < inf ¢ (K'), we have
Hi (C3(2), (97)") = Cu(¥,00) = Hi (C3(2),(w})7)  forallk >0, (42)

and
Hy, (Wol”’(Z% (ﬂ)“) = Ci(py, 00) = Hy, (WOI”’(Z), (goj)“) for all k > 0. (43)

From @1), (42 and @3), we see that it suffices to show that
Hy, (C3(2), (¥)") =0  forallk > 0.
To this end, we introduce the sets
0B = {w € C3(2) : |alleyz = 1}

oBf | = {x € 0BY : 2(z) >0 forsomez € Z}.
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Consider the map . : [0,1] x 9Bf ; — 0Bf , defined by

(1 —t)x + tuq

ho(tz) = Tt
B T e P

forall (t,z) € [0,1] x 9BY .

_. € OBf . Therefore, the sélBf |

Evidently,h, (¢, z) is a continuous homotopy a1, x) = Tt Cci(2)
0

is contractible in itself. _
Next, we will show that for: < 0 with |a| large, the sety;)? is of the same homotopy type oBs .
Due to hypothesi#l,(f)(iv), as in the proof of Propositio# for all v € 0Bf |, we have
i (tu) — —oco ast — +oo. (44)
By virtue of hypothesigis (f)(iv), we can finds > 0 and M7 = M7(5) > 0, such that
f+(z,2)x — pFy(z,2) > Bx” fora.a.z € Z and allx > Mj. (45)

Hence, for all: € W,”(Z), we have

/pF+(z,x)dz—/f+(z,x)acdz
z z

:/ pF+(z,ac)dz—|—/ pFy(z,2)dz
{z>Mz7} {z<Mz7}

[ peapdse [ foeds
{(a>M7} {x<M7}

< / Bx" dz + c11, (46)
{z=Mz7}

for somec;; > 0 (see 45) and recall thaff; (z,2) = 0 = F(z,z) fora.a.z € Z, allz < 0). Then, for
t > 0, we have

d
ad);\r(tu) =< cp;\r (tu),u>

= t”_IHDqu — )\/Zf+(z,tu) dz

IN

1
i [t”|Du||§ - )\/ pF(z,tu)dz + c11 (see 46)
z

1

n [Py (tu) + e
which implies that

d

for ¢ > 0 large such that} (tu) < —ci1p~ " (see 44)).
Let

a <min{2, infz/);r},
p B
recall B = {x €C5(2) :lzllcyzy <1 } Then, we can find a uniqu&) > 1 such that
O (tu) > a if t € [0,9(u)],
Ui (tu) =a if t =9(u),
vy

(tu) <a ift>0(u).
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Moreover, by virtue of the implicit function theorem, we leav ¢ C(9Bf ., [1, +00)) and
() = {tu:uedBf , andt > I(u)}. (47)
We setEl, = {tz: 2 € 9B{, andt > 1} and consider the malp, : [0,1] x E; — E, defined by

(1= 98)tu+sHu)u if 1 <t< ¥ (u),

hay(s,tu) = {w if t > J(u).

Evidently,fz+ is a continuous deformation. Moreover, we have
hi(1,Ey) C (9])°
and h (s, -)‘E =id|,, ~ foralls€0,1] (see 47)).
+
This shows thatw;" ) is a strong deformation retract &f, . Moreover, using the radial retraction, we see
that the setdr, andoBf | are homotopic. Therefore, we have
Hy, (Cy(Z), (Wi)*) = Hi (C5(Z), E+) = Hi (C5(2),0B5 ) forall k > 0. (48)

Recall thav B , is contractible. Hence,

Hy (C5(2),0Bf ) =0  forallk >0,

U
Hy, (C3(2), (w)) forallk >0 (see 49)),

!
Cr(pf,00)=0  forallk>0.

Similarly, we may show that
Cr(py,00) =0 forall & > 0.

This proves the Proposition. B

Proposition 10  If A > 0, hypotheseé&l,(a) and Hx(f) hold, then
Cr(pr,00) =0 forall & > 0.

PROOF  The proof of this result is analogous to the proof of Propmso.
So, letu € 0By = {u e Wy P(Z2) : |lul| = 1}. Then, as in the proof of Propositidnwe have

oa(tu) — —o0 as|t| — oo. (49)
HypothesisiH(f)(iv) implies that we can find > 0 andMs = Mg(5) > 0 such that
f(z,x)x — pF(z,2) > Blz| fora.a.z € Z, all |z| > Ms. (50)

Thus, for allz € W, "*(Z), we have

/pF(z,:c)dzf/ f(z,:c)dz:/ pF(z,:c)dz+/ pF(z,z)dz
z Z {lz]>Ms} {ll<Ms}

7/ f(z,x):cdzf/ fz,z)xdz
{lz|>Ms} {lel<Ms}

< — / Blz|” dz + ¢12 for someci; > 0, (51)
{|lz|>Ms}
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(see B0O) and hypothesig, (f)(iii) ).
Letny = Acio + 1andu < f%m < 0. By virtue of 49), fort > 0 large, we have

P
oa(tu) = o )\/ZF(z,tu) dz<pu (recallu € 0By). (52)
We have
d /
—eaAltu) = <@ (tu), u>
dt
= - )\/ fz tu)udz
z

= % [t” - )\/Zf(z,tu)tudz]

< % {pu + )\/ZpF(z,tu)dz — )\/Zf(z,tu)tu dz] (see 62))

< % [pjt + Acx] (see b))

<0 (recall the choice of: < 0).

Therefore, as before (see the proof of Proposi@gwia the implicit function theorem, we can find a unique
¥ € C(9By) such that
ox(F(w)u) = p forallu € 0B;.

Foru # 0, we set)(u) = rird (HuTll) Evidently,J € C(W,"*(Z)\{0}) and
ox(D(w)u) =p  forallu e WiP(Z),u # 0.

In addition, we have that, (u) = 1 impliesd(u) = 1. Hence, if we define

5 {1 if ox(u) < p,
P(u) if oxa(u) > p,

then, clearlyfy € C(W,*(Z)\{0}).
Consider the map: [0,1] x (W, (Z)\{0}) — W, *(Z)\{0}, defined by

h(t,u) = (1 — t)u + tdo(u)u.
Evidently, . is a continuous homotopy. Moreover,
R(LWEPO}) ¢ and (L)l = id)

This shows thap) is a strong deformation retract oF,”(Z)\{0}. Also, using the radial retraction,

we see thab B, is a retract ofi¥;”(Z)\{0}. Then, invoking Theorem 6.5, p. 325, of Dugundji], we
have that

dB is a deformation retract d¥, ”(Z)\{0},
I
0B, is of the same homotopy type Héol”’(Z)\{O}. (53)
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Also, we have that
¢! is of the same homotopy type H 7 (Z)\{0}. (54)

From 63) and 64), it follows that

¢! is of the same homotopy type 88,

J
H,(WyP(2),¢4) = H(Wy"(Z),0B,)  forallk > 0. (55)

But, becauséV,*(Z) is infinite dimensionaly) B, is contractible in itself. Hence
H,(Wy?(Z),0B,) =0  forallk >0
(see Granas-DugundjLP, p. 389]), which implies that
H,(WyP(Z),¢5) =0  forallk >0 (see 6Y9)). (56)
So, if u < inf (K, then from £6), we conclude that
Ci(pr,00) =0 forall & > 0.

and this ends the proof. &

Next, we calculate the critical groups @f, at the two nontrivial constant sign solutiong € int C';.
andvg € —int C. We denote by;; the Kronecker's delta function, i.e};; = 1if i« = j andd;; = 0 if

i j.
Proposition 11 If A > 0, hypothese&ls(a) and Hx(f) hold, then
Ck(cpA,:co) = Ck(goA,vo) = 5k,IZ for all k > 0.

PROOF  We do the proof fof ¢y, 2 }. The proofis similar fof ¢, vo}.

CLAIM. Ck((p)\,l‘o) = Ck((p:\i_,xo) forall k£ > 0.
We consider the homotopy

WAt x) =t (x) + (1 — t)pa(x)  forallt € [0,1] and allz € W, *(Z)

Arguing as in the proof of Propositic? we can easily check that for evetyc [0, 1], b} () = h*(t,-)
satisfies the&”-condition Also, z, € int C is a critical point ofh; for all ¢ € [0, 1].

We will show that, without any loss of generality, we may assuthat the critical poink, of h} is
isolated uniformly int € [0, 1], i.e., we can find- > 0 small such that, is the only critical point of

{hi\(')}te[o,u in

By (wo) = {x e WEP(Z) : |z — o|| < 7“} :

We argue indirectly. So, suppose that this is not the casecafdind{¢,,},>1 C [0,1] and{x, },>1 C
W,?(Z) such that

tn —tin[0,1], @, —xoinWyP(Z), and (k) )(x,)=0foralln>1.  (57)
From 67), we have

S(2n) = MpNy(xn) + M1 —t,)N(x,) foralln > 1,
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which implies, for alln > 1,

—diva(z, Dxn(2)) = Mnf+(2,20(2)) + A1 — t0) f(2,2,(2)) a.e.onZ, (58)
Tnlgy = 0.
Theorem 7.1, p. 286, of Ladyzhenskaya-Uraltsévé implies that we can find/y > 0 such that
|zn]lco < My foralln > 1. (59)

Because off9), Theorem 1 of Liebermari[] says that we can fing € (0, 1) and M, > 0 such that

2, € Cy"(Z) and |anllgrngz < Mo foralln > 1. (60)

We know thatCé’”(Z) is embedded compactly i} (Z). So, because 06() and by passing to a
subsequence, if necessary, we may assume that

Ty — To inCa(2). (61)
Recall thatry € int C. (see Propositio). So, we can finchy > 1 such that
xn € Ct foralln > ng (see 61)).

Then from £8), we have, for alh > ny,

{ diva(z, Dzn(2)) = Af(z,2.(2)) a.e.onZ,

xn|az =0,

which implies that{x,, },,>», is @ whole sequence of distinct nontrivial solutions(#%), and so we are
done.

Hence, we may assume that there-is- 0 small such that is the only critical point of the family
{h?}te[o,u in B, (x0). Thus, invoking the homotopy invariance property of cetigroups (see Chang,[
p. 4], and Mawhin-Willem .8, p. 169]), we have

Cr(hd, x0) = C(h},z0)  forall k>0,

and therefore
Cr(pxr,x0) = Cr(pl, ) forallk > 0.

This proves the Claim.

According to the Claim, to prove this Proposition, it suffide compute’)k(gaj, xo) forall k > 0.

We assume thdt, 0, zo } are the only critical pointg,. Otherwise, we already have a third nontrivial
solution of(P), and so we are done.

Letny = o (20) = palmo). We know thatd < ¢ < ni (see 89). Let¢ < 0 and consider the
following triple of sets

Ve=(o)5,  Vy=(ef)" and W=W;"(2),

which satisfy
VeCV, CW  with0 <y <n.

We consider the long exact sequence corresponding to ifhlis &f sets. So, we have

o Hy (Vy, Ve) -5 Hy, W, V) 25 Hy OV, Vy) 25 Hyy (V) Ve) - (62)
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wherei,, j. are the induced homomorphisms from the correspondingsimiumaps and. is the induced
boundary homomorphism.

As in the proof of Propositio®, we can check that all the nontrivial critical pointssof belong to
int C'y. Since, we have assumed tHat), 0, xo} are the only critical points ap,, it follows that{0, z(}
are the only critical points oy . But 0 is the only critical value ofp} in [¢,~] and ¢ satisfies the
C-condition so

Hi,(Vy,Ve) = Ck(goj\', 0) forall k > 0, (63)
(e.g., see Chand] p. 35]). Recall that the deformation theorem is still valider theC'-conditionand
so, the result of Chang holds with ti#&5-condition replaced by thé'-condition From Propositior, we
know thatz = 0 is a local minimizer ofy} . Hence

Cr(py,0) = 6k0Z forallk >0 (64)
(see Changq, p. 33], and Mawhin-Willem18, p. 175]). From §3) and ©4), it follows that
Hy (V,y, Vg) = 0,07 forall k£ > 0. (65)

In a similar fashion, we show that
Hi—y (Vy,Ve) = 0k—1,0Z = 0;,1Z  forall k > 0. (66)
From the definition of critical groups at infinity (see Sentih?2), we have
Hy (W, Ve) = Cr(py,00)  forallk >0,
which implies that
Hi,(W,Ve) =0 forallk >0 (see Propositiof). (67)
Recall that by hypothesisgy is the only critical point of,a;r with critical value in[, +o00). Hence
Hy(W,Vy) = C (¢}, 20) forall k > 0. (68)

We focus on the end part 082), i.e.,k = 1, since the rest is trivial. Then

Hy (V,, Ve) =5 Hi (W, Ve) 25 Hy (W, V) 25 Ho (V,,Ve) (69)
From the fundamental homomorphism theorem, we have
rank C (gai', xo) = rank(ker 9, ) + rank(Im 9,) (see 68) and ©9))
= rank(Im j,) + rank(Im 9,) (since @9) is exact)
<041 (see 67) and 66)). (70)

But from the proof of PropositioB, we know thatzy € int C'y is a critical point Ofcp;\r of mountain pass
type. Hence,

Cr(p¥, o) #0 (e.g., see Chang[p. 89])
\
Crlpl,20) =612 forallk >0 (see 70)),
\
Cr(px, o) = 01 Z(P)y  forallk >0 (see the Claim)

In a similar fashion, we also show that
Cr(ox,v0) = 01 Z forall &k > 0.
This ends the proof of the Proposition.l
We are now ready for the multiplicity theorem for problém), valid for all A > 0.
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Theorem 4 If hypothesedi,(a) and Hy(f) hold, then, for evenk > 0, problem(P), hast at least three
nontrivial smooth solutions

Zo € int Oy, vy € —int Oy, and Yo € Ca(2).
PrRoOFE From Propositior8, we already have two constant sign solutions
Zo € int Cy and vy € —intCy.
Suppose thafvy, 0, z } are the only critical points ap,. From Propositiori1, we have
Cr(ox, o) = Crpa,v0) = k1 Z forall £ > 0. (71)
Also, from Propositior8, we know thatr = 0 is a local minimizer ofp,. Therefore,
Ci(pxr,0) =0k 0Z  forall k> 0. (72)
Finally, from PropositiorL0, we have
Cr(pr,0) =0 forall k& > 0. (73)

Note that 1)—(73) imply that P(t,vy) = P(t,xz¢) = t, P(t,0) = 1 and P(¢,00) = 0. Then, from the
Morse relation §) and assuming)(¢) = >_:°, ¢;t* with ¢; > 0, we have

2+1=(1+1)Q(t) < 0= (g0 — 1)+ (¢1 + 90 — 2)t + (@2 + q)t* + Y (¢ + G-t
=3
S0qy = q1 = 1 andg: = —1 < 0, which is a contradiction. This shows thaf has a third nontrivial

critical pointy, distinct from{ vy, xQ}. Henceyy is a nontrivial solution of the probleii?) and nonlinear
regularity theory impliego € Cj(Z). W
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