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On Nonlinear Parametric Problems for p-Laplacian-Like
Operators

N. S. Papageorgiou and E. M. Rocha

Abstract We study a nonlinear parametric problem driven by ap-Laplacian-like operator (which need
not be homogeneous) and with a(p − 1)-superlinear nonlinearity which satisfy weaker conditions than
the Ambrosetti-Rabinowitz condition. Using critical point theory, we show that for everyλ > 0, the
nonlinear parametric problem has a nontrivial solution. Then, by strengthening the conditions on the
operator and the nonlinearity, and using variational methods together with suitable truncation techniques
and tools from Morse theory, we show that, for everyλ > 0, the nonlinear parametric problem has three
nontrivial smooth solutions.

Sobre los problemas param étricos no lineales con operadores de tipo
p-Laplaciano

Resumen. En este artı́culo estudiamos un problema paramétrico no lineal que involucra al operador de
tipo p-Laplaciano (que en general no és homogéneo) y donde la derivada del potencial es una función
(p − 1)-superlinear que verifica una condición más débil que la conocida condición de Ambrosetti-
Rabinowitz. Utilizando métodos variacionales, mostramos que, para todoλ > 0, el problema paramétrico
no lineal tiene una solución no trivial. Entonces, fortaleciendo las condiciones y usando herramientas de
la teorı́a de Morse junto con adecuadas técnicas de truncación, mostramos que, para cadaλ > 0, el
problema tiene tres soluciones suaves.

1 Introduction

Let Z ⊆ R
N be a bounded domain with aC2-boundary∂Z. We study the following nonlinear elliptic

parametric problem driven by ap-Laplacian-like operator,

(P )λ

{

− div a(z,Dx(z)) = λf(z, x(z)) a.e. onZ,

x|∂Z = 0.

Here,a : Z × R
N → R

N is a Carathéodory map which is strictly monotone in they ∈ R
N variable.

Thep-Laplacian is a particular case of the differential operator in (P )λ, whena(z, y) ≡ a(y) = |y|p−2y.
However, in contrast to thep-Laplacian, the differential operator in(P )λ need not be homogeneous. Also,
f(z, x) is a Carathéodory nonlinearity, which near±∞ exhibits a(p− 1)-superlinear growth in thex ∈ R

variable.
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Our goal is to prove existence and multiplicity theorems forproblem(P )λ, which are valid for allλ > 0.
In the past, problem(P )λ was investigated primarily in the context of equations driven by the Laplacian
(semilinear problems), i.e.,a(z, y) ≡ a(y) = y. The first such work was that by Ambrosetti-Rabinowitz [2]
(see also Ambrosetti-Brezis-Cerami [1]), who employed the following condition on the nonlinearity f(z, ·),
known in the literature as the Ambrosetti-Rabinowitz condition (AR-condition, for short):there existµ > 2
andM > 0 such that

0 < µF (z, x) ≤ f(z, x)x for all z ∈ Z and all |x| ≥M , (1)

wheref : Z̄ × R → R is a continuous function andF (z, x) =
∫ x

0
f(z, s) ds.

A direct integration of (1), leads to the following weaker condition for the potentialfunctionF (z, x),

F (z, x) ≥ ĉ1|x|
µ − ĉ2 for all z ∈ Z̄ and allx ∈ R, with ĉ1, ĉ2 > 0. (2)

From (2), we infer thatF (z, ·) exhibits at least aµ-polynomial growth near±∞ and, sinceµ > p = 2, it
also satisfies the much weaker condition

lim
|x|→∞

F (z, x)

x2
= +∞ uniformly for a.a.z ∈ Z. (3)

More recently, Schechter-Zou [28] considered problem(P )λ with the Laplacian differential operator
(semilinear problem), but replaced the AR-condition with aunilateral version of (3), namely, they assumed
that

lim
x→−∞

F (z, x)

x2
= +∞ or lim

x→+∞

F (z, x)

x2
= +∞ uniformly for a.a.z ∈ Z. (4)

Under (4), Schechter-Zou [28] proved that problem(P )λ (with the Laplace operator) has a nontrivial
solution for almost allλ > 0. Moreover, they proved the existence of a nontrivial solution for all λ > 0,
if (3) holds and one of the following two conditions is true:

(C1) G(z, x) = f(z, x)x− 2F (z, x) is convex inx ∈ R, for all z ∈ Z;

(C2) there exist constantŝc3 > 0, µ > 2 andr ≥ 0 such that

µF (z, x) − f(z, x)x ≤ ĉ3(1 + x2) for all z ∈ Z, all |x| ≥ r.

Note that from condition(C2), we have

µ−
ĉ3(1 + x2)

F (z, x)
≤
f(z, x)x

F (z, x)
for all z ∈ Z, all |x| ≥ r,

⇓

µ ≤ lim inf
|x|→∞

f(z, x)x

F (z, x)
uniformly for a.a.z ∈ Z (see (3)).

Therefore, condition(C2) and the AR-condition (see (1)) are in fact equivalent.
On the other hand, condition(C1) (i.e., the convexity of the functionx 7→ G(z, x)) is actually stronger

than the following one:

(C3) there existsM0 > 0 such that for allz ∈ Z

x 7→
f(z, x)

x
is increasing onx ≥M0 and decreasing onx ≥ −M0.
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A global version of(C3) was used by Zhou [32], who studied nonparametric problems driven by the Lapla-
cian.

Very recently, Miyagaki-Souto [19] used condition(C3) to show that problem(P )λ, with the Laplace
differential operator, has a nontrivial solution for allλ > 0.

Extensions to nonlinear parametric problems, driven by thep-Laplacian, were obtained by Guo [13],
Guo-Webb [14], Hai [15], Motreanu-Motreanu-Papageorgiou [21], and Perera [27]. However, with the
exception of [21], none of the aforementioned works deals with(p − 1)-superlinear nonlinearities (i.e.
nonlinearities which satisfylim|x|→∞

f(z,x)
|x|p−2x

= +∞ uniformly for a.a.z ∈ Z) and they prove existence
and multiplicity results, valid for allλ > λ∗, for someλ∗ > 0. In [21], the authors prove a multiplicity result
(existence of three nontrivial solutions) for a nonlinearity f(z, x) with general polynomial growth inx ∈ R.
However, their result is local inλ > 0, namely, it is valid only forλ ∈ (0, λ∗0) and someλ∗0 > 0. Finally, we
should mention the recent work of Papageorgiou-Rocha-Staicu [25], where the authors prove multiplicity
theorems forp-Laplacian equations with a(p− 1)-superlinear nonlinearityf(z, ·) and no parameterλ > 0.
They employ the AR-condition and in their multiplicity theorems, they provide information about the sign
of all the solutions.

Our approach, in this work, combines variational methods with Morse theory and suitable truncation
techniques. The structure of the work is the following. In the next Section, we present the background mate-
rial necessary to follow the arguments in the subsequent sections. In Section3, we prove an existence result
(valid for all λ > 0), using variational methods based on the critical point theory (mountain pass theorem).
In Section4, by combining variational arguments with suitable truncation techniques and Morse theory (in
infinite dimensional Banach spaces), we prove a multiplicity theorem (existence of three nontrivial smooth
solutions, two of which have opposite constant sign), whichis valid for allλ > 0. For the semilinear case,
a similar result can be found in Perera [26], but his nonlinearity contains a negative concave term andso
near the origin the behavior is different.

2 Mathematical Background

In the analysis of problem(P )λ, we will use the Sobolev spaceW 1,p
0 (Z) and the Banach space

C1
0 (Z̄) =

{

u ∈ C1(Z̄) : u|∂Z = 0
}

We will also use the fact that the latter is an ordered Banach space, with order cone

C+ =
{

u ∈ C1
0 (Z̄) : u(z) ≥ 0 for all z ∈ Z̄

}

.

This cone has a nonempty interior given by

intC+ =

{

u ∈ C+ : u(z) > 0 for all z ∈ Z and
∂u

∂n
(z) < 0 for all z ∈ ∂Z

}

,

wheren(·) denotes the outward unit normal on∂Z.

Notation. Throughout this work, we denote the norm ofLp(Z) by ‖ · ‖p. For everyx ∈W
1,p
0 (Z), we set

‖x‖ = ‖Dx‖p, and, for everyr ∈ R, r± = max{±r, 0}. The notation‖·‖ will be also used to denote the
R

N -norm (besides its use as the norm ofW
1,p
0 (Z)), since it will be always clear from the context, which

one are we referring to. We use→ (resp.
w

−→) to denote strong convergence (resp. weak convergence).

2.1 Critical point theory

We start by recalling some basic notions and facts from critical point theory. LetX be a Banach space
andX∗ be its topological dual. By< · , · > we denote the duality brackets for the pair(X∗, X). Let
ϕ ∈ C1(X). A pointx0 ∈ X is acritical point of ϕ if ϕ′(x0) = 0. A valuec ∈ R is acritical valueof ϕ if
exists a critical pointx0 ∈ X such thatϕ(x0) = c.
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Definition 1 We define the following sets:

ϕc = {x ∈ X : ϕ(x) ≤ c } (the sublevel set ofϕ at c),

ϕ̇c = {x ∈ X : ϕ(x) < c } (the strict sublevel set ofϕ at c),

K = {x ∈ X : ϕ′(x) = 0 } (the critical set ofϕ),

and

Kc = {x ∈ K : ϕ(x) = c } (the critical set ofϕ at c).

The following compactness notion will allow a minimax characterization of certain critical values of a
C1-functional.

Definition 2 We say thatϕ ∈ C1(X) satisfies theCerami conditionat levelc ∈ R (Cc-condition for
short), if every sequence{xn}n≥1 ⊆ X satisfying

ϕ(xn) → c and (1 + ‖xn‖)ϕ
′(xn) → 0 in X∗ asn→ ∞,

has a strongly convergent subsequence. We say thatϕ satisfies theC-condition if it satisfies theCc-condition
for every levelc ∈ R.

This condition is a little more general than the usual Palais-Smale condition (PS-condition for short).
However, as it was shown by Bartolo-Benci-Fortunato [3], the deformation theorem and consequently the
minimax theory of critical values ofϕ ∈ C1(X), is still valid if the PS-condition is replaced by the
C-condition.

Theorem 1 (“Mountain pass theorem”) If X is a Banach space,ϕ ∈ C1(X), x0, x1 ∈ X , r > 0,
‖x0 − x1‖ > r,

max {ϕ(x0), ϕ(x1)} ≤ inf {ϕ(x) : ‖x− x0‖ = r } = c0,

Γ = { γ ∈ C([0, 1], X) : γ(0) = x0 and γ(1) = x1 } ,

c = inf
γ∈Γ

max
0≤t≤1

ϕ (γ(t)) ,

andϕ satisfies theCc-condition, thenc ≥ c0 andc is a critical value ofϕ. Moreover, ifc = c0, then there
exists a critical pointx ∈ X ofϕ with critical valuec and‖x‖ = r.

The notion of an operator of type(S)+, introduced by Browder [5], will be useful in proving that a
C1-functional satisfies theC-condition(see Proposition2).

Definition 3 A nonlinear mapA : X → X∗ is said to be of type(S)+, if xn
w

−→ x in X and

lim sup
n→∞

<A(xn), xn − x> ≤ 0,

thenxn → x in X∗.

2.2 Critical groups and Morse theory

We now introduce some useful results from critical groups theory. If (Y1, Y2) is a topological pair with
Y2 ⊆ Y1 ⊆ X , then for every integerk ≥ 0, we denote byHk(Y1, Y2) thekth relative singular homology
group of the pair(Y1, Y2), with integer coefficients.

Definition 4 The critical groups ofϕ at an isolated critical pointx0 ∈ X with ϕ(x0) = c, are defined by

Ck(ϕ, x0) = Hk (ϕc ∩ U , ϕc ∩ U\{x0}) for all k ≥ 0,

whereU is a neighborhood ofx0 such thatK ∩ ϕc ∩ U = {x0} (see Chang[6] and Mawhin-Willem[18]).
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The excision property of singular homology implies that theabove definition is independent of the particular
choice of neighborhoodU .

Suppose thatϕ ∈ C1(X) satisfies theC-conditionandinf ϕ(K) > −∞. We choosec < inf ϕ(K).

Definition 5 The critical groups ofϕ at infinity are defined by

Ck(ϕ,∞) = Hk(X,ϕc) for all k ≥ 0 (see Bartsch-Li[4]).

From the deformation theorem, we see that the above definition is independent ofc. In fact, ifη < inf ϕ(K),
then

Ck(ϕ,∞) = Hk(X, ϕ̇η) for all k ≥ 0.

To see this, letϑ < η < inf ϕ(K). Thenϕϑ is a strong deformation retract ofϕ̇η (e.g., see Corvellec [7]).
Hence,

Hk(X,ϕϑ) = Hk(X, ϕ̇η) for all k ≥ 0,

⇓

Ck(ϕ,∞) = Hk(X, ϕ̇η) for all k ≥ 0,

as claimed.

Definition 6 TheMorse-type numbersofϕ at an isolatedx0 ∈ K are defined by

mk(x0) = rankCk(ϕ, x0) for all k ≥ 0,

and theMorse-type polynomialby
P (t, x0) =

∑

k≥0

mk(x0)t
k.

Definition 7 TheBetti-type numbersofϕ are defined by

βk = rankCk(ϕ,∞) for all k ≥ 0,

and theBetti-type polynomialby
P (t,∞) =

∑

k≥0

βkt
k.

Suppose thatK is a finite set. Then, the Morse relation says that there is a polynomial Q(t) with
nonnegative integer coefficients such that

∑

x∈K

P (t, x) = P (t,∞) + (1 + t)Q(t), (5)

(see Chang [6, p. 36], and Mawhin-Willem [18, p. 184]).

2.3 The first eigenvalue of the negative Dirichlet p-Laplacian

In what follows,λ1 denotes the first eigenvalue of the negative Dirichletp-Laplacian (which it is denoted
by (−∆p,W

1,p
0 (Z))). We know thatλ1 > 0 and it is simple (i.e., the corresponding eigenspace is one

dimensional). Moreover, it admits the following characterization

λ1 = inf

{

‖Du‖p
p

‖u‖p
p

: u ∈ W
1,p
0 (Z) andu 6= 0

}

. (6)

The infimum in (6) is attained on the eigenspace ofλ1. Also, by u1 we denote theLp-normalized
eigenfunction corresponding toλ1. From (6), it is clear thatu1 does not change sign and so we may assume
thatu1 ≥ 0. In fact, nonlinear regularity theory implies thatu1 ∈ C+\{0} and invoking the nonlinear
strong maximum principle of Vazquez [30], we haveu1 ∈ intC+.
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3 Existence Theorems

In this section, we examine the existence of nontrivial solutions for problem(P )λ, with λ > 0. Using
variational methods and, in particular, the mountain pass theorem (see Theorem1), we show that for every
λ > 0, problem(P )λ has a nontrivial bounded solution. Moreover, if we strengthen the conditions on the
mapa(z, y), we show that the nontrivial solution is also smooth.

The hypotheses on the mapa(z, y) are the following:

H(a): a(z, y) = ∇yG(z, y) whereG : Z × R
N → R is a function such that

(i) for all y ∈ R
N , z 7→ G(z, y) is measurable;

(ii) for almost allz ∈ Z, y 7→ G(z, y) isC1, strictly convex andG(z, 0) = 0;

(iii) for almost allz ∈ Z and ally ∈ R
N , we have

‖a(z, y)‖ = ‖∇yG(z, y)‖ ≤ a0(z) + c0‖y‖
p−1,

with a0 ∈ L∞(Z)+, c0 > 0 and1 < p <∞;

(iv) for almost allz ∈ Z and ally ∈ R
N , we have

(a(z, y), y)RN ≤ pG(z, y);

(v) there existŝc > 0 such that for almost allz ∈ Z and ally ∈ R
N , we have

ĉ‖y‖p ≤ pG(z, y).

Remark 1 The above hypotheses ona(z, y) are considerably more general than those employed by De Na-
poli-Mariani [9], who also deal with equations driven byp-Laplace-like operators. In[9],G ∈ C1(Z̄×R

N )
and it is assumed that for allz ∈ Z̄,G(z, ·) is strongly convex. This condition, in the particular case of the
p-Laplacian (i.e., whenG(y) = 1

p
‖y‖p), implies thatp ≥ 2. No such restriction is necessary here.

In what follows, we present some characteristic examples offunctionsG(z, y) with a(z, y)=∇yG(z, y)
satisfying the hypothesesH(a).

Example 1 LetG(z, y) ≡ G(y) = 1
p
‖y‖p with 1 < p < ∞. In this case,a(y) = ∇G(y) = ‖y‖p−2y.

The corresponding differential operator is thep-Laplacian

∆pu = div
(

‖Du‖p−2Du
)

.

Example 2 Let G(z, y) = 1
p
a1(z)‖y‖

p + 1
r
a2(z)‖y‖

r with a1, a2 ∈ L∞(Z)+, a1(z) ≥ c0 > 0 for
a.a.z ∈ Z and1 < r < p <∞. Then

a(z, y) = a1(z)‖y‖
p−2y + a2(z)‖y‖

r−2y

and the corresponding differential operator is the weighted (p, r)-Laplacian

a1(z)∆pu+ a2(z)∆ru.

Example 3 Let G(z, y) = 1
p
a1(z)‖y‖

p + 1
r

ln(1 + ‖y‖r), with a1 ∈ L∞(Z)+, a1(z) ≥ c0 > 0 for
a.a.z ∈ Z and1 < r ≤ p <∞. Then

a(z, y) = a1(z)‖y‖
p−2y + ‖y‖r−2y

1

1 + ‖y‖r
.
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Example 4 LetG(z, y) ≡ G(y) = 1
p

[

(1 + ‖y‖2)
p
2 − 1

]

with 1 < p <∞. Then

a(y) =
(

1 + ‖y‖2
)

p−2

2 y.

The corresponding differential operator is the generalized mean curvature operator

div

(

(

1 + ‖Du‖2
)

p−2

2 Du

)

.

Example 5 Let

G(z, y) ≡ G(y) =

{

1
r
‖y‖r if ‖y‖ ≤ 1,

1
p
‖y‖p + p−r

pr
if ‖y‖ > 1,

with 1 < r < p <∞. Then

a(y) =

{

‖y‖r−2y if ‖y‖ ≤ 1,

‖y‖p−2y if ‖y‖ > 1.

Example 6 LetG(z, y) = 1
2 (A(z)y, y)

RN , withA ∈ L∞(Z,RN×N ) andA(z) ≥ c0IN×N for a.az ∈ Z,
wherec0 > 0 andIN×N is the(N ×N)-identity matrix.

Definition 8 LetS : W 1,p
0 (Z) →W−1,p′

(Z), with 1
p

+ 1
p′

= 1, be the nonlinear operator defined by

<S(x), y> =

∫

Z

(a(z,Dx), Dy)
RN dz for all x, y ∈W

1,p
0 (Z). (7)

From Papageorgiou-Rocha-Staicu [24, Proposition 2], we have:

Proposition 1 If hypothesesH(a) hold, then the operatorS : W 1,p
0 (Z) → W−1,p′

(Z) defined by(7) is
maximal monotone, strictly monotone, and of type(S)+.

The hypotheses on the nonlinearityf(z, x) are the following:

H1(f): f : Z × R → R is a function such thatf(z, 0) = 0 a.e. onZ and

(i) for all x ∈ R, z 7→ f(z, x) is measurable;

(ii) for almost allz ∈ Z, x 7→ f(z, x) is continuous;

(iii) for almost allz ∈ Z and allx ∈ R, we have

|f(z, x)| ≤ a(z) + c|x|r−1

with a ∈ L∞(Z)+, c > 0 andp < r < p∗;

(iv) if F (z, x) =
∫ x

0 f(z, s) ds, then

lim
|x|→∞

F (z, x)

|x|p
= +∞ uniformly for a.a.z ∈ Z

and there existsτ ≥ 1, τ ∈ (θ, r) with θ = (r − p)max
{

N
p
, 1

}

, such that

lim inf
|x|→∞

f(z, x)x− pF (z, x)

|x|τ
> 0 uniformly for a.a.z ∈ Z;
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(v) we have

lim
x→0

f(z, x)

|x|p−2x
= 0 uniformly for a.a.z ∈ Z.

As usual,p∗ denotes the Sobolev critical exponent, i.e.,p∗ = Np
N−p

if p < N andp∗ = +∞ if p ≥ N .

Remark 2 HypothesisH1(f)(iv) is a p-superlinearity condition on the potentialF (z, ·). Evidently, if
lim|x|→∞

f(z,x)
|x|p−2x

= +∞ uniformly for a.a.z ∈ Z, thenlim|x|→∞
F (z,x)
|x|p = +∞ uniformly for a.a.z ∈ Z.

The second part of the hypothesisH1(f)(iv) replaces the AR-condition (see(1)). It was first used by Costa-
Magalhaes[8].

Example 7 Consider the following potential functionF (z, x) ≡ F (x) (for the sake of simplicity, we drop
the dependence ofF on thez variable)

F (x) =
1

p
|x|p ln(1 + |x|) + cos(|x|p) − 1.

Then

f(x) = |x|p−2x

(

ln(1 + |x|) +
|x|

p(1 + |x|)

)

− p|x|p−2x sin(|x|p).

Let ǫ > 0 be such thatNǫ < p2. If µ = p and r = p + ǫ, then all hypothesesH1(f) are satisfied.
However, the AR-condition (see(1)) is not satisfied and since

f(x)

|x|p−2x
= ln(1 + |x|) +

|x|

p(1 + |x|)
− p sin(|x|p),

then, whenp = 2, condition(C3) is not satisfied and so the semilinear existence result of Miyagaki-
Souto[9] does not apply on this nonlinearity.

Definition 9 Letλ > 0 andϕλ : W 1,p
0 (Z) → R be the Euler functional for problem(P )λ defined by

ϕλ(x) =

∫

Z

G(z,Dx(z)) dz − λ

∫

Z

F (z, x(z)) dz for all x ∈ W
1,p
0 (Z).

Evidently,ϕλ ∈ C1(W 1,p
0 (Z)) and, for allx ∈W

1,p
0 (Z), we have

ϕ′
λ(x) = S(x) − λN(x), (8)

whereN(x)(·) = f(·, x(·)) andS is the operator defined in (7) (see also Ubilla [29]).

Proposition 2 If λ > 0, hypothesesH(a) andH1(f) hold, thenϕλ satisfies theC-condition.

PROOF. We consider a sequence{xn}n≥1 ⊆W
1,p
0 (Z) such that

|ϕλ(xn)| ≤M1 for someM1 > 0, all n ≥ 1, (9)

and
(1 + ‖xn‖)ϕ

′
λ(xn) → 0 in W 1,p

0 (Z) asn→ ∞. (10)

CLAIM . The sequence{xn}n≥1 ⊆W
1,p
0 (Z) is bounded.

We argue by contradiction. So, suppose that the Claim is not true. By passing to a suitable subsequence,
if necessary, we may assume that‖xn‖ → ∞. From (10), for all v ∈W

1,p
0 (Z), we have

|<ϕ′
λ(xn), v>| ≤

ǫn

1 + ‖xn‖
‖v‖ with ǫn ↓ 0,

⇓
∣

∣

∣

∣

<S(xn), v>−λ

∫

Z

f(z, xn)v dz

∣

∣

∣

∣

≤
ǫn

1 + ‖xn‖
‖v‖ with ǫn ↓ 0. (11)
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In (11), we choosev = xn ∈W
1,p
0 (Z), then

−

∫

Z

(a(z,Dxn), Dxn)
RN dz + λ

∫

Z

f(z, xn)xn dz ≤ ǫn for all n ≥ 1. (12)

On the other hand, from (9), we have
∫

Z

pG(z, xn) dz − λ

∫

Z

pF (z, xn) dz ≤ pM1 for all n ≥ 1. (13)

We add (12) and (13), obtaining
∫

Z

[

pG(z,Dxn) − (a(z,Dxn), Dxn)
RN

]

dz + λ

∫

Z

[

f(z, xn)xn − pF (z, xn)
]

dz ≤M2 (14)

for someM2 > 0 and alln ≥ 1. By virtue of hypothesisH(a)(iv), we have
∫

Z

[

pG(z,Dxn) − (a(z,Dxn), Dxn)
RN

]

dz ≥ 0 for all n ≥ 1. (15)

HypothesisH1(f)(iv) implies that we can findβ > 0 andM3 ≡M3(β) > 0 such that

β|x|τ ≤ f(z, x)x− pF (z, x) for a.a.z ∈ Z, all |x| ≥M3. (16)

In addition, hypothesisH1(f)(iii) implies the existence of aM4 > 0 such that

|f(z, x)x− pF (z, x)| ≤M4 for a.a.z ∈ Z, all |x| < M3. (17)

Combining (16) and (17), we infer that there existsc1 > 0 such that

β|x|τ − c1 ≤ f(z, x)x− pF (z, x) for a.a.z ∈ Z, all x ∈ R. (18)

We return to (14) and use (15) and (18). Then

β

∫

Z

|xn|
τ dz ≤M5 for someM5 > 0, all n ≥ 1,

⇓

{xn}n≥1 ⊆ Lτ (Z) is bounded. (19)

Recall thatτ ≤ r < p∗ (see hypothesisH1(f)(iv)). So, we can findt ∈ [0, 1) such that

1

r
=

1 − t

τ
+

t

p∗
.

Invoking the interpolation inequality (e.g., see Gasinski-Papageorgiou [11, p. 905]), we have

‖xn‖r ≤ ‖xn‖
1−t
τ ‖xn‖

t
p∗ ,

which implies

‖xn‖
r
r ≤M6‖xn‖

tr
p∗ for someM6 > 0, all n ≥ 1 (see (19)). (20)

From (11) with v = xn ∈W
1,p
0 (Z), we have

∫

Z

(

a(z,Dxn), Dxn

)

RN dz − λ

∫

Z

f(z, xn)xn dz ≤ ǫn. (21)
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Since for a.a.z ∈ Z,G(z, ·) is convex (see hypothesisH(a)(ii) ), we have
(

a(z, y),−y
)

RN ≤ G(z, 0) −G(z, y) = −G(z, y) for a.a.z ∈ Z, all y ∈ R
N ,

which implies that

ĉ

p
‖y‖p ≤ G(z, y) ≤ (a(z, y), y)

RN for a.a.z ∈ Z, all y ∈ R
N (22)

(see hypothesisH(a)(v)). On the other hand, hypothesesH1(f)(iii) and(v) imply that, givenǫ > 0, we
can findcǫ > 0 such that

|f(z, x)x| ≤ ǫ|x|p + cǫ|x|
r for a.a.z ∈ Z, all x ∈ R. (23)

We return to (21) and use (22) and (23), then

ĉ

p
‖Dxn‖

p
p ≤ ǫn + λǫ‖xn‖

p
p + λcǫ‖xn‖

r
r

≤ ǫn + λ
(

ǫ‖xn‖
p
p + c3‖xn‖

tr
p∗

)

(24)

for somec3 ≡ c3(ǫ) > 0, and alln ≥ 1 (see (20)).
Let un = xn

‖xn‖ , n ≥ 1. Then,‖un‖ = 1 for all n ≥ 1 and so, we may assume that

un
w

−→ u in W 1,p
0 (Z) and un → u in Lp(Z) asn→ ∞. (25)

From (24), we have

ĉ

p
‖Dun‖

p
p ≤

ǫn

‖xn‖p
+ λ

(

ǫ‖un‖
p
p +

c4

‖xn‖p−tr
‖un‖

tr

)

(26)

for somec4 > 0, andn ≥ 1. The hypothesis onτ (see hypothesisH1(f)(iv)) implies thattr < p. So, if in
(26) we pass to the limit asn→ ∞, we obtain

ĉ

p
‖Du‖p

p ≤ λǫ‖u‖p
p ≤

λ

λ1
ǫ‖Du‖p

p ≤
λ

λ1
ǫ,

(see (6) and (25)). But ǫ > 0 was arbitrary, so we letǫ ↓ 0 and obtainu = 0. Then, from (24), we have
‖un‖ → 0, a contradiction to the fact that‖un‖ = 1 for all n ≥ 1. This proves the Claim.

Because of the Claim, we may assume that

xn
w

−→ x in W 1,p
0 (Z) and xn → x in Lr(Z). (27)

From (11), with v = xn − x ∈ W
1,p
0 (Z), we have

∣

∣

∣

∣

<S(xn), xn − x>−λ

∫

Z

f(z, xn)(xn − x) dz

∣

∣

∣

∣

≤
ǫn

1 + ‖xn‖
‖xn − x‖. (28)

Evidently,
∫

Z

f(z, xn)(xn − x) dz → 0 asn→ ∞ (seeH1(f)(iii) and (27)).

Therefore, if in (22) we pass to the limit asn→ ∞, then

lim
n→∞

<S(xn), xn − x> = 0,

which implies that

xn → x in W 1,p
0 (Z) asn→ ∞ (see Proposition1).

We conclude thatϕλ satisfies theC-conditionfor all λ > 0. �
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Proposition 3 If λ > 0, hypothesesH(a) andH1(f) hold, thenx = 0 is a local minimizer ofϕλ.

PROOF. By virtue of hypothesisH1(f)(v), givenǫ > 0, we can findδ ≡ δ(ǫ) > 0 such that

f(z, x) ≤
ǫ

λ
xp−1 for a.a.z ∈ Z and allx ∈ [0, δ] (29)

and
f(z, x) ≥

ǫ

λ
|x|p−2x for a.a.z ∈ Z and allx ∈ [−δ, 0]. (30)

From (29) and (30), after integration, we obtain

F (z, x) ≤
ǫ

λp
|x|p for a.a.z ∈ Z and all|x| ≤ δ.

This, combined with hypothesisH1(f)(iii) , implies that we can findc5 > 0 such that

F (z, x) ≤
ǫ

λp
|x|p + c5|x|

r for a.a.z ∈ Z and allx ∈ R. (31)

Hence, for allx ∈W
1,p
0 (Z) and somec6 > 0, we have

ϕλ(x) =

∫

Z

G(z,Dx) dz − λ

∫

Z

F (z, x) dz

≥
ĉ

p
‖Dx‖p

p −
ǫ

p
‖x‖p

p − λc6‖Dx‖
r
p (seeH(a)(v) and (31))

≥
1

p

(

ĉ−
ǫ

λ1

)

‖Dx‖p
p − λc6‖Dx‖

r
p (see (6)). (32)

Chooseǫ ∈ (0, λ1ĉ). Then, from (32) and sincer > p, we see that we can findρ ∈ (0, 1) small such
that

ϕλ(x) > 0 for all x ∈ W
1,p
0 (Z) with 0 < |x| ≤ ρ,

which implies thatx = 0 is a (strict) local minimizer ofϕλ. �

As in Motreanu-Motreanu-Papageorgiou [22] (see the proof of Proposition 6), we can findρλ > 0 small
such that

0 = ϕλ(0) < inf {ϕλ(u) : ‖u‖ = ρλ } = cλ. (33)

Proposition 4 If λ > 0, hypothesesH(a) andH1(f) hold, then

ϕλ(tu1) → −∞ as|t| → ∞,

whereu1 ∈ intC+ is theLp-normalized principal eigenfunction of(−∆p,W
1,p
0 (Z)) (see section2.3).

PROOF. From hypothesesH1(f)(iii) , (iv), we see that given anyη > 0, we can findcη > 0 such that

F (z, x) ≥
η

p
|x|p − cη for a.a.z ∈ Z and allx ∈ R. (34)

Hence, using the facts thatλ1‖u1‖
p
p = ‖Du1‖

p
p and‖u1‖p = 1,

ϕλ(tu1) =

∫

Z

G(z, tu1) dz − λ

∫

Z

F (z, tu1) dz

≤
|t|p

p
(c λ1 − η) + ĉη for somec, ĉη > 0 (see (34)). (35)

Sinceη > 0 was arbitrary, we may chooseη > cλ1. Then from (35), we conclude thatϕλ(tu1) → −∞ as
|t| → ∞. �

We are now ready for the existence theorem for problem(P )λ. We show that it has a nontrivial bounded
solution for everyλ > 0.
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Theorem 2 If hypothesesH(a) andH1(f) hold, then, for everyλ > 0, problem(P )λ has a nontrivial
solutionx0 ∈W

1,p
0 (Z) ∩ L∞(Z).

PROOF. Propositions2, 4 and (33) permit the application of Theorem1 (the mountain pass theorem). So,
we obtainx0 ∈ W

1,p
0 (Z) such that

ϕλ(0) = 0 < cλ ≤ ϕλ(x0) (see (33)) (36)

and ϕ′
λ(x0) = 0. (37)

From (36), it follows thatx0 6= 0. From (37), we haveS(x0) = λN(x0), which implies
{

− div a(z,Dx0(z)) = λf(z, x0(z)) a.e. onZ,

x0|∂Z = 0.

Theorem 7.1, p. 286, of Ladyzhenskaya-Uraltseva [16] implies thatx0 ∈ L∞(Z). �

If we strengthen the conditions on the mapa(z, y), we can have more regularity for the solutionx0. The

new, stronger hypotheses on the mapa(z, y) are the following:

H1(a): a(z, y) = ∇yG(z, y), whereG ∈ C1(Z̄ × R
N ) ∩ C2(Z̄ × (RN\{0})), for all z ∈ Z̄, we have

G(z, 0) = 0,G(z, ·) is strictly convex and

(i) for all (z, y) ∈ Z̄ × (RN\{0}), we have

‖∇ya(z, y)‖ ≤ c7‖y‖
p−2

for somec7 > 0;

(ii) for all (z, y) ∈ Z̄ × (RN\{0}) and all ξ ∈ R
N , we have

c8‖y‖
p−2‖ξ‖2 ≤ (∇ya(z, y)ξ, ξ)RN

for somec8 > 0;

(iii) for all (z, y) ∈ Z̄ × R
N , we have

(

a(z, y), y
)

RN ≤ pG(z, y).

Remark 3 From hypothesisH1(a)(i), it follows that

‖a(z, y)‖ ≤
c7

p− 1
‖y‖p−1

for all (z, y) ∈ Z̄ × R
N (compare withH(a)(iii) ). Also, from hypothesisH1(a)(ii) , we have

c8

p− 1
‖y‖p−1 ≤ (a(z, y), y)

RN for all (z, x) ∈ Z̄ × R
N ,

⇓
c8

p(p− 1)
‖y‖p ≤ G(z, y) for all (z, y) ∈ Z̄ × R

N ,

(compare withH(a)(v)).
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Example 8 The Example1 not only satisfiesH(a) but alsoH1(a). The following functionsG(z, y),
similar to Examples2-6, with a(z, y) = ∇yG(z, y) satisfy the new hypothesesH1(a):

(1) G(z, y) = 1
p
a1(z)‖y‖

p + 1
r
a2(z)‖y‖

r, with a1, a2 ∈ C1(Z̄), a1(z) ≥ ĉ0 > 0 for all z ∈ Z̄ and
1 < r < p <∞;

(2) G(z, y) = 1
p
a1(z)‖y‖

p + 1
r

ln (1 + ‖y‖r), with a1 ∈ C1(Z̄), a1(z) ≥ ĉ0 > 0 for all z ∈ Z̄ and
1 < r < p <∞;

(3) G(y) = 1
p

(

(

1 + ‖y‖2
)

p
2 − 1

)

, with 1 < p < 2 (see Example4);

(4) G(z, y) = 1
2 (A(z)y, y)

RN withA ∈ C1(Z̄,RN×N ) andA(z) > 0 for all z ∈ Z̄.

From Theorem2 and Theorem 1 of Lieberman [17] (nonlinear regularity), we have:

Theorem 3 If hypothesesH1(a) andH1(f) hold, then, for everyλ > 0, problem(P )λ has a nontrivial
solutionx0 ∈ C1

0 (Z̄).

4 Multiple Nontrivial Solutions

In this section, by strengthening further the conditions ona(z, y) andf(z, x), we prove a multiplicity result
for problem(P )λ valid for all λ > 0. To the best of our knowledge, we can not find in the literaturesuch a
multiplicity result, even when the differential operator is the Laplacian (semilinear parametric problem).

The new hypotheses on the mapa(z, y) are the following:

H2(a): a(z, y) = h(z, ‖y‖)y for all (z, y) ∈ Z̄ × R
N , with h(z, 0) ≥ 0, h(z, t) > 0 for all z ∈ Z̄ and all

t > 0, and

(i) a ∈ C(Z̄ × R
N ,RN ) ∩ C1(Z̄ × (RN\{0}),RN);

(ii) for every(z, y) ∈ Z̄ × (RN\{0}), we have

‖∇ya(z, y)‖ ≤ c9‖y‖
p−2

with 1 < p <∞ andc9 > 0;

(iii) for every(z, y) ∈ Z̄ × (RN\{0}) and everyξ ∈ R
N , we have

c10‖y‖
p−2‖ξ‖2 ≤ (∇ya(z, y)ξ, ξ)RN

for somec10 > 0.

Remark 4 Setg(z, t) = h(z, t) t for all (z, t) ∈ Z̄ × R+, whereR+ = [0,∞). From hypothesesH2(a)
above, we have the following one-dimensional estimate

c10 t
p−2 ≤

∂

∂t
g(z, t) ≤ c9 t

p−2

for all z ∈ Z̄ and all t > 0, which implies that the mapt 7→ g(z, t) is strictly increasing on(0,+∞) for all
z ∈ Z̄. We setG0(z, t) =

∫ t

0 g(z, s) ds for all (z, t) ∈ Z̄ × R+. Then,

∂

∂t
G0(z, t) = g(z, t) for all z ∈ Z̄ andt ≥ 0. (38)
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It follows that for allz ∈ Z̄, the functiont 7→ G0(z, t) is strictly convex and strictly increasing onR+. We
set

G(z, y) = G0(z, ‖y‖) for all (z, y) ∈ Z̄ × R
N .

Evidently, for allz ∈ Z̄,G(z, ·) is convex. Moreover, for all(z, y) ∈ Z̄ × (RN\{0}), we have

∇yG(z, y) =
∂

∂t
G0(z, ‖y‖)

y

‖y‖

= g(z, ‖y‖)
y

‖y‖
(see(38))

= h(z, ‖y‖)y (sinceg(z, t) = h(z, t) t)

= a(z, y).

Using the hypothesesH2(a), we can easily prove the following Lemma.

Lemma 1 If hypothesesH2(a) hold, then:

(a) for all z ∈ Z̄, y 7→ a(z, y) is maximal monotone and strictly monotone;

(b) for all (z, y) ∈ Z̄ × R
N , ‖a(z, y)‖ ≤ c9

p−1‖y‖
p−1;

(c) for all (z, y) ∈ Z̄ × R
N , c10

p−1‖y‖
p ≤ (a(z, y), y)

RN .

A straightforward consequence of the above Lemma, is the following result:

Lemma 2 If hypothesesH2(a) hold, then we have

c10

p(p− 1)
‖y‖p ≤ G(z, y) ≤

c9

p(p− 1)
‖y‖p for all (z, y) ∈ Z̄ × R

N .

Example 9 The following are examples of mapsa(z, y) which satisfy the hypothesesH2(a):

(1) the mapa(z, y) ≡ a(y) = ‖y‖p−2y, 1 < p <∞, corresponds to thep-Laplacian;

(2) a(z, y) = β(z)‖y‖p−2y, with 1 < p <∞, β ∈ C1(Z̄), andβ(z) ≥ c10 > 0 for all z ∈ Z̄;

(3) the mapa(z, y) = β(z)
(

1 + ‖y‖2
)

p−2

p y, with 1 < p < 2, β ∈ C1(Z̄), andβ(z) ≥ c10 > 0 for all
z ∈ Z̄, corresponds to the weighted generalized mean curvature operator;

(4) a(z, y) = β(z)
(

‖y‖p−2y + ln(1 + ‖y‖2)y
)

, with 1 < p < ∞, β ∈ C1(Z̄), andβ(z) ≥ c10 > 0 for
all z ∈ Z̄;

(5) a(z, y) = A(z)y withA ∈ C1(Z̄,RN×N), A(z) > 0 for all z ∈ Z̄.

The hypotheses on the nonlinearityf(z, x) are the following:

H2(f): f : Z × R → R is a function such thatf(z, 0) = 0 a.e. onZ, hypothesesH2(f)(i)–(v) are the same

as the corresponding hypothesesH1(f)(i)–(v) and

(vi) (sign condition) for almost allz ∈ Z and allx ∈ R, f(z, x)x ≥ 0.

Example 10 The following functionf(z, x) ≡ f(x) satisfies hypothesesH2(f):

f(x) =

{

|x|r−2x if |x| ≤ 1,

p|x|p−2x
(

ln(|x|) + 1
p

)

if |x| > 1,

with 1 < p < r <∞.
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As we already mentioned in the Introduction, our method of proof involves also truncation techniques.
So, we introduce the following truncations.

Definition 10 Define the following truncations of the nonlinearityf(z, ·):

f+(z, x) =

{

0 if x ≤ 0

f(z, x) if x > 0
and f−(z, x) =

{

f(z, x) if x < 0

0 if x ≥ 0
.

Both functionsf+ andf− are Carathéodory functions (i.e., measurable inz ∈ Z and continuous inx ∈ R).
We set

F+(z, x) =

∫ x

0

f+(x, s) ds and F−(z, x) =

∫ x

0

f−(x, s) ds,

and introduce the functionalsϕ±
λ : W 1,p

0 (Z) → R, λ > 0, defined by

ϕ±
λ (x) =

∫

Z

G(z,Dx) dz − λ

∫

Z

F±(z, x) dz for all x ∈W
1,p
0 (Z).

Clearly,ϕ±
λ ∈ C1(W 1,p

0 (Z)).

Arguing as in the proofs of Propositions2 and3, we obtain the corresponding results for the functionals
ϕ±

λ .

Proposition 5 If λ > 0, hypothesesH2(a) andH2(f) hold, then the functionalsϕ±
λ satisfy theC-

condition.

Proposition 6 If λ > 0, hypothesesH2(a) andH2(f) hold, thenx = 0 is a local minimizer for the
functionalsϕ±

λ .

Proposition6 implies that we can findρλ > 0 small such that

ϕ±
λ (0) = 0 < inf

{

ϕ±
λ (u) : ‖u‖ = ρλ

}

= c±λ . (39)

Moreover, using hypothesisH2(f)(iv) and arguing as in the proof of Proposition4, we have the following
result:

Proposition 7 If λ > 0, hypothesesH2(a) andH2(f) hold, then

ϕ+
λ (tu1) → −∞ ast→ +∞

and
ϕ−

λ (tu1) → −∞ as t → −∞.

At this point, we are ready to produce the first two nontrivialsolutions of problem(P )λ valid for all
λ > 0. These solutions have constant sign (one is positive and theother is negative).

Proposition 8 If hypothesesH2(a) andH2(f) hold, then, for everyλ > 0, problem(P )λ has two non-
trivial solutions

x0 ∈ intC+ and v0 ∈ − intC+.

PROOF. First we produce the positive solution.
Propositions5, 7 and (39) permit the application of Theorem1 (the mountain pass theorem). So, we

can findx0 ∈ W
1,p
0 (Z), x0 6= 0 such that(ϕ+

λ )′(x0) = 0, thus

S(x0) = λN+(x0) (40)
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whereN+(u)(·) = f+(·, u(·)) for all u ∈W
1,p
0 (Z). On (40), we act with−x−0 ∈ W

1,p
0 (Z) and obtain

c10

p− 1
‖Dx−0 ‖

p
p ≤ 0, (see Lemma1(c))

which implies thatx0 ≥ 0 andx0 6= 0.
Also, from (40), we have

{

− div a(z,Dx0(z)) = λf+(z, x0(z)) = λf(z, x0(z)) a.e. onZ,

x0|∂Z = 0.

As before, nonlinear regularity theory (namely, Theorem 7.1, p.286, of Ladyshenskaya-Uraltseva [16]
and Theorem 1 of Lieberman [17]) implies thatx0 ∈ C+\{0}. Moreover, hypothesesH2(f)(vi) (the sign
condition) implies that

div a(z,Dx0(z)) ≤ 0 a.e. onZ.

Invoking Theorem 3 of Montenegro [20] (see also Theorem 1.2 of Zhang [31]), we conclude thatx0 ∈
intC+.

Similarly, working with the functionalϕ−
λ and using again the mountain pass theorem, we show that for

everyλ > 0, problem(P )λ has another solutionv0 ∈ − intC+. �

Next, our effort will be to produce a third nontrivial solution, distinct fromx0 andv0. We will do this
using tools from Morse theory.

Proposition 9 If λ > 0, hypothesesH2(a) andH2(f) hold, then

Ck(ϕ±
λ ,∞) = 0 for all k ≥ 0.

PROOF. We do the proof forϕ+
λ , the proof forϕ−

λ being similar.
Let ψ+

λ = ϕ+
λ

∣

∣

C1
0
(Z̄)

. Nonlinear regularity theory (see Ladyzhenskaya-Uraltseva [16, p. 286], and

Lieberman [17, Theorem 1]), together with the nonlinear strong maximum principle (see Montenegro [20],
Zhang [31], and Vazquez [30] for the particular case of thep-Laplacian), imply that the nontrivial critical
points ofϕ+

λ belong tointC+ and so the functionalsψ+
λ andϕ+

λ have the same critical points. The space
C1

0 (Z̄) is dense inW 1,p
0 (Z). Hence, by virtue of Theorem 16 of Palais [23], we have

Hk

(

W
1,p
0 (Z), (ϕ̇+

λ )a
)

= Hk

(

C1
0 (Z̄), (ψ̇+

λ )a
)

for all a ∈ R and allk ≥ 0. (41)

From Section2, we know that for alla < inf ψ+
λ (K), we have

Hk

(

C1
0 (Z̄), (ψ̇+

λ )a
)

= Ck(ψ+
λ ,∞) = Hk

(

C1
0 (Z̄), (ψ+

λ )a
)

for all k ≥ 0, (42)

and
Hk

(

W
1,p
0 (Z), (ϕ̇+

λ )a
)

= Ck(ϕ+
λ ,∞) = Hk

(

W
1,p
0 (Z), (ϕ+

λ )a
)

for all k ≥ 0. (43)

From (41), (42) and (43), we see that it suffices to show that

Hk

(

C1
0 (Z̄),

(

ψ+
λ

)a)

= 0 for all k ≥ 0.

To this end, we introduce the sets

∂Bc
1 =

{

x ∈ C1
0 (Z̄) : ‖x‖C1

0
(Z̄) = 1

}

,

∂Bc
1,+ =

{

x ∈ ∂Bc
1 : x(z) > 0 for somez ∈ Z

}

.
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Consider the maph+ : [0, 1] × ∂Bc
1,+ → ∂Bc

1,+ defined by

h+(t, x) =
(1 − t)x+ tu1

‖(1 − t)x+ tu1‖C1
0
(Z̄)

for all (t, x) ∈ [0, 1] × ∂Bc
1,+.

Evidently,h+(t, x) is a continuous homotopy andh(1, x) = u1

‖u1‖C1
0
(Z̄)

∈ ∂Bc
1,+. Therefore, the set∂Bc

1,+

is contractible in itself.
Next, we will show that fora < 0 with |a| large, the set(ψ̇+

λ )a is of the same homotopy type of∂Bc
1,+.

Due to hypothesisH2(f)(iv), as in the proof of Proposition4, for all u ∈ ∂Bc
1,+, we have

ψ+
λ (tu) → −∞ ast→ +∞. (44)

By virtue of hypothesisH2(f)(iv), we can findβ > 0 andM7 ≡M7(β) > 0, such that

f+(z, x)x− pF+(z, x) ≥ βxτ for a.a.z ∈ Z and allx ≥M7. (45)

Hence, for allx ∈W
1,p
0 (Z), we have

∫

Z

pF+(z, x) dz −

∫

Z

f+(z, x)xdz

=

∫

{x≥M7}

pF+(z, x) dz +

∫

{x<M7}

pF+(z, x) dz

−

∫

{x≥M7}

f+(z, x)xdz −

∫

{x<M7}

f+(z, x)xdz

≤

∫

{x≥M7}

βxτ dz + c11, (46)

for somec11 > 0 (see (45) and recall thatf+(z, x) = 0 = F+(z, x) for a.a.z ∈ Z, all x ≤ 0). Then, for
t > 0, we have

d

dt
ψ+

λ (tu) = <ϕ+
λ (tu), u>

= tp−1‖Du‖p
p − λ

∫

Z

f+(z, tu) dz

≤
1

t

[

tp‖Du‖p
p − λ

∫

Z

pF (z, tu) dz + c11

]

(see (46))

=
1

t

[

pψ+
λ (tu) + c11

]

,

which implies that
d

dt
ψ+

λ (tu) < 0,

for t > 0 large such thatψ+
λ (tu) < −c11p

−1 (see (44)).
Let

a < min

{

−
c11

p
, inf

B̄c
1

ψ+
λ

}

,

recallB̄c
1 =

{

x ∈ C1
0 (Z̄) : ‖x‖C1

0
(Z̄) ≤ 1

}

. Then, we can find a uniqueϑ(u) ≥ 1 such that











ψ+
λ (tu) > a if t ∈ [0, ϑ(u)],

ψ+
λ (tu) = a if t = ϑ(u),

ψ+
λ (tu) < a if t > ϑ(u).
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Moreover, by virtue of the implicit function theorem, we haveϑ ∈ C(∂Bc
1,+, [1,+∞)) and

(ψ+
λ )a =

{

tu : u ∈ ∂Bc
1,+ andt ≥ ϑ(u)

}

. (47)

We setE+ =
{

tx : x ∈ ∂Bc
1,+ andt ≥ 1

}

and consider the map̂h+ : [0, 1] × E+ → E+ defined by

ĥ+(s, tu) =

{

(1 − s)tu + sϑ(u)u if 1 ≤ t < ϑ(u),

tu if t ≥ ϑ(u).

Evidently,ĥ+ is a continuous deformation. Moreover, we have

ĥ+(1, E+) ⊆ (ψ+
λ )a

and ĥ+(s, ·)
∣

∣

∣

E+

= id|E+
for all s ∈ [0, 1] (see (47)).

This shows that(ψ+
λ )a is a strong deformation retract ofE+. Moreover, using the radial retraction, we see

that the setsE+ and∂Bc
1,+ are homotopic. Therefore, we have

Hk

(

C1
0 (Z̄), (ψ+

λ )a
)

= Hk

(

C1
0 (Z̄), E+

)

= Hk

(

C1
0 (Z̄), ∂Bc

1,+

)

for all k ≥ 0. (48)

Recall that∂Bc
1,+ is contractible. Hence,

Hk

(

C1
0 (Z̄), ∂Bc

1,+

)

= 0 for all k ≥ 0,

⇓

Hk

(

C1
0 (Z̄), (ψ+

λ )a
)

for all k ≥ 0 (see (48)),

⇓

Ck(ϕ+
λ ,∞) = 0 for all k ≥ 0.

Similarly, we may show that
Ck(ϕ−

λ ,∞) = 0 for all k ≥ 0.

This proves the Proposition. �

Proposition 10 If λ > 0, hypothesesH2(a) andH2(f) hold, then

Ck(ϕλ,∞) = 0 for all k ≥ 0.

PROOF. The proof of this result is analogous to the proof of Proposition 9.

So, letu ∈ ∂B1 =
{

u ∈W
1,p
0 (Z) : ‖u‖ = 1

}

. Then, as in the proof of Proposition4, we have

ϕλ(tu) → −∞ as|t| → ∞. (49)

HypothesisH2(f)(iv) implies that we can findβ > 0 andM8 ≡M8(β) > 0 such that

f(z, x)x− pF (z, x) ≥ β|x|τ for a.a.z ∈ Z, all |x| ≥M8. (50)

Thus, for allx ∈W
1,p
0 (Z), we have

∫

Z

pF (z, x) dz −

∫

Z

f(z, x) dz =

∫

{|x|≥M8}

pF (z, x) dz +

∫

{|x|<M8}

pF (z, x) dz

−

∫

{|x|≥M8}

f(z, x)xdz −

∫

{|x|<M8}

f(z, x)xdz

≤−

∫

{|x|≥M8}

β|x|τ dz + c12 for somec12 > 0, (51)
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(see (50) and hypothesisH2(f)(iii) ).
Let ηλ = λc12 + 1 andµ < − 1

p
ηλ < 0. By virtue of (49), for t > 0 large, we have

ϕλ(tu) =
tp

p
− λ

∫

Z

F (z, tu) dz ≤ µ (recallu ∈ ∂B1). (52)

We have

d

dt
ϕλ(tu) = <ϕ′

λ(tu), u>

= tp−1 − λ

∫

Z

f(z, tu)u dz

=
1

t

[

tp − λ

∫

z

f(z, tu)tu dz

]

≤
1

t

[

pµ+ λ

∫

Z

pF (z, tu) dz − λ

∫

Z

f(z, tu)tu dz

]

(see (52))

≤
1

t
[pµ+ λc12] (see (51))

< 0 (recall the choice ofµ < 0).

Therefore, as before (see the proof of Proposition9), via the implicit function theorem, we can find a unique
ϑ ∈ C(∂B1) such that

ϕλ

(

ϑ(u)u
)

= µ for all u ∈ ∂B1.

Foru 6= 0, we setϑ̂(u) = 1
‖u‖ϑ

(

u
‖u‖

)

. Evidently,ϑ̂ ∈ C(W 1,p
0 (Z)\{0}) and

ϕλ(ϑ̂(u)u) = µ for all u ∈W
1,p
0 (Z), u 6= 0.

In addition, we have thatϕλ(u) = µ impliesϑ̂(u) = 1. Hence, if we define

ϑ̂0(u) =

{

1 if ϕλ(u) < µ,

ϑ̂(u) if ϕλ(u) ≥ µ,

then, clearly,̂ϑ0 ∈ C(W 1,p
0 (Z)\{0}).

Consider the maph : [0, 1] × (W 1,p
0 (Z)\{0}) →W

1,p
0 (Z)\{0}, defined by

h(t, u) = (1 − t)u + tϑ̂0(u)u.

Evidently,h is a continuous homotopy. Moreover,

h
(

1,W 1,p
0 (Z)\{0}

)

⊆ ϕ
µ
λ and h(t, ·)|ϕµ

λ
≡ id|ϕµ

λ
.

This shows thatϕµ
λ is a strong deformation retract ofW 1,p

0 (Z)\{0}. Also, using the radial retraction,
we see that∂B1 is a retract ofW 1,p

0 (Z)\{0}. Then, invoking Theorem 6.5, p. 325, of Dugundji [10], we
have that

∂B1 is a deformation retract ofW 1,p
0 (Z)\{0},

⇓

∂B1 is of the same homotopy type asW 1,p
0 (Z)\{0}. (53)
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Also, we have that
ϕ

µ
λ is of the same homotopy type asW 1,p

0 (Z)\{0}. (54)

From (53) and (54), it follows that

ϕ
µ
λ is of the same homotopy type as∂B1,

⇓

Hk(W 1,p
0 (Z), ϕµ

λ) = Hk(W 1,p
0 (Z), ∂B1) for all k ≥ 0. (55)

But, becauseW 1,p
0 (Z) is infinite dimensional,∂B1 is contractible in itself. Hence

Hk(W 1,p
0 (Z), ∂B1) = 0 for all k ≥ 0

(see Granas-Dugundji [12, p. 389]), which implies that

Hk(W 1,p
0 (Z), ϕµ

λ) = 0 for all k ≥ 0 (see (55)). (56)

So, ifµ < inf ϕλ(K), then from (56), we conclude that

Ck(ϕλ,∞) = 0 for all k ≥ 0.

and this ends the proof. �

Next, we calculate the critical groups ofϕλ at the two nontrivial constant sign solutionsx0 ∈ intC+

andv0 ∈ − intC+. We denote byδij the Kronecker’s delta function, i.e.,δij = 1 if i = j andδij = 0 if
i 6= j.

Proposition 11 If λ > 0, hypothesesH2(a) andH2(f) hold, then

Ck(ϕλ, x0) = Ck(ϕλ, v0) = δk,1Z for all k ≥ 0.

PROOF. We do the proof for{ϕλ, x0}. The proof is similar for{ϕλ, v0}.

CLAIM . Ck(ϕλ, x0) = Ck(ϕ+
λ , x0) for all k ≥ 0.

We consider the homotopy

hλ(t, x) = tϕ+
λ (x) + (1 − t)ϕλ(x) for all t ∈ [0, 1] and allx ∈W

1,p
0 (Z)

Arguing as in the proof of Proposition2, we can easily check that for everyt ∈ [0, 1], hλ
t (·) = hλ(t, ·)

satisfies theC-condition. Also,x0 ∈ intC+ is a critical point ofhλ
t for all t ∈ [0, 1].

We will show that, without any loss of generality, we may assume that the critical pointx0 of hλ
t is

isolated uniformly int ∈ [0, 1], i.e., we can findr > 0 small such thatx0 is the only critical point of
{hλ

t (·)}t∈[0,1] in

B̄r(x0) =
{

x ∈ W
1,p
0 (Z) : ‖x− x0‖ ≤ r

}

.

We argue indirectly. So, suppose that this is not the case. Wecan find{tn}n≥1 ⊂ [0, 1] and{xn}n≥1 ⊂

W
1,p
0 (Z) such that

tn → t in [0, 1], xn → x0 in W 1,p
0 (Z), and (hλ

tn
)′(xn) = 0 for all n ≥ 1. (57)

From (57), we have

S(xn) = λtnN+(xn) + λ(1 − tn)N(xn) for all n ≥ 1,
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which implies, for alln ≥ 1,
{

− div a(z,Dxn(z)) = λtnf+(z, xn(z)) + λ(1 − tn)f(z, xn(z)) a.e. onZ,

xn|∂Z = 0.
(58)

Theorem 7.1, p. 286, of Ladyzhenskaya-Uraltseva [16], implies that we can findM9 > 0 such that

‖xn‖∞ ≤M9 for all n ≥ 1. (59)

Because of (59), Theorem 1 of Lieberman [17] says that we can findη ∈ (0, 1) andM10 > 0 such that

xn ∈ C
1,η
0 (Z̄) and ‖xn‖C

1,η
0

(Z̄) ≤M10 for all n ≥ 1. (60)

We know thatC1,η
0 (Z̄) is embedded compactly inC1

0 (Z̄). So, because of (60) and by passing to a
subsequence, if necessary, we may assume that

xn → x0 in C1
0 (Z̄). (61)

Recall thatx0 ∈ intC+ (see Proposition2). So, we can findn0 ≥ 1 such that

xn ∈ C+ for all n ≥ n0 (see (61)).

Then from (58), we have, for alln ≥ n0,
{

− div a(z,Dxn(z)) = λf(z, xn(z)) a.e. onZ,

xn|∂Z = 0,

which implies that{xn}n≥n0
is a whole sequence of distinct nontrivial solutions of(P )λ and so we are

done.
Hence, we may assume that there isr > 0 small such thatx0 is the only critical point of the family

{hλ
t }t∈[0,1] in B̄r(x0). Thus, invoking the homotopy invariance property of critical groups (see Chang [6,

p. 4], and Mawhin-Willem [18, p. 169]), we have

Ck(hλ
0 , x0) = Ck(hλ

1 , x0) for all k ≥ 0,

and therefore
Ck(ϕλ, x0) = Ck(ϕ+

λ , x0) for all k ≥ 0.

This proves the Claim.
According to the Claim, to prove this Proposition, it suffices to computeCk(ϕ+

λ , x0) for all k ≥ 0.
We assume that{v0, 0, x0} are the only critical pointsϕλ. Otherwise, we already have a third nontrivial

solution of(P )λ and so we are done.
Let η+

λ = ϕ+
λ (x0) = ϕλ(x0). We know that0 < c+λ ≤ η+

λ (see (39)). Let ξ < 0 and consider the
following triple of sets

Vξ = (ϕ+
λ )ξ, Vγ = (ϕ+

λ )γ and W = W
1,p
0 (Z),

which satisfy
Vξ ⊆ Vγ ⊆ W with 0 < γ < η+

λ .

We consider the long exact sequence corresponding to this triple of sets. So, we have

· · ·Hk (Vγ ,Vξ)
i∗−→ Hk (W ,Vξ)

j∗
−→ Hk (W ,Vγ)

∂∗−→ Hk−1 (Vγ ,Vξ) · · · (62)
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wherei∗, j∗ are the induced homomorphisms from the corresponding inclusion maps and∂∗ is the induced
boundary homomorphism.

As in the proof of Proposition8, we can check that all the nontrivial critical points ofϕ+
λ belong to

intC+. Since, we have assumed that{v0, 0, x0} are the only critical points ofϕλ, it follows that{0, x0}
are the only critical points ofϕ+

λ . But 0 is the only critical value ofϕ+
λ in [ξ, γ] andϕ+

λ satisfies the
C-condition, so

Hk(Vγ ,Vξ) = Ck(ϕ+
λ , 0) for all k ≥ 0, (63)

(e.g., see Chang [6, p. 35]). Recall that the deformation theorem is still validunder theC-conditionand
so, the result of Chang holds with thePS-condition replaced by theC-condition. From Proposition6, we
know thatx = 0 is a local minimizer ofϕ+

λ . Hence

Ck(ϕ+
λ , 0) = δk,0Z for all k ≥ 0 (64)

(see Chang [6, p. 33], and Mawhin-Willem [18, p. 175]). From (63) and (64), it follows that

Hk (Vγ ,Vξ) = δk,0Z for all k ≥ 0. (65)

In a similar fashion, we show that

Hk−1 (Vγ ,Vξ) = δk−1,0Z = δk,1Z for all k ≥ 0. (66)

From the definition of critical groups at infinity (see Section 2.2), we have

Hk (W ,Vξ) = Ck(ϕ+
λ ,∞) for all k ≥ 0,

which implies that

Hk (W ,Vξ) = 0 for all k ≥ 0 (see Proposition9). (67)

Recall that by hypothesis,x0 is the only critical point ofϕ+
λ with critical value in[γ,+∞). Hence

Hk(W ,Vγ) = Ck

(

ϕ+
λ , x0

)

for all k ≥ 0. (68)

We focus on the end part of (62), i.e.,k = 1, since the rest is trivial. Then

H1 (Vγ ,Vξ)
i∗−→ H1 (W ,Vξ)

j∗
−→ H1 (W ,Vγ)

∂∗−→ H0 (Vγ ,Vξ) . (69)

From the fundamental homomorphism theorem, we have

rankC1(ϕ
+
λ , x0) = rank(ker ∂∗) + rank(Im ∂∗) (see (68) and (69))

= rank(Im j∗) + rank(Im ∂∗) (since (69) is exact)

≤ 0 + 1 (see (67) and (66)). (70)

But from the proof of Proposition8, we know thatx0 ∈ intC+ is a critical point ofϕ+
λ of mountain pass

type. Hence,

C1(ϕ
+
λ , x0) 6= 0 (e.g., see Chang [6, p. 89]),

⇓

Ck(ϕ+
λ , x0) = δk,1Z for all k ≥ 0 (see (70)),

⇓

Ck(ϕλ, x0) = δk,1Z(P )λ for all k ≥ 0 (see the Claim).

In a similar fashion, we also show that

Ck(ϕλ, v0) = δk,1Z for all k ≥ 0.

This ends the proof of the Proposition.�

We are now ready for the multiplicity theorem for problem(P )λ valid for all λ > 0.
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Theorem 4 If hypothesesH2(a) andH2(f) hold, then, for everyλ > 0, problem(P )λ hast at least three
nontrivial smooth solutions

x0 ∈ intC+, v0 ∈ − intC+, and y0 ∈ C1
0 (Z̄).

PROOF. From Proposition8, we already have two constant sign solutions

x0 ∈ intC+ and v0 ∈ − intC+.

Suppose that{v0, 0, x0} are the only critical points ofϕλ. From Proposition11, we have

Ck(ϕλ, x0) = Ck(ϕλ, v0) = δk,1Z for all k ≥ 0. (71)

Also, from Proposition3, we know thatx = 0 is a local minimizer ofϕλ. Therefore,

Ck(ϕλ, 0) = δk,0Z for all k ≥ 0. (72)

Finally, from Proposition10, we have

Ck(ϕλ,∞) = 0 for all k ≥ 0. (73)

Note that (71)–(73) imply thatP (t, v0) = P (t, x0) = t, P (t, 0) = 1 andP (t,∞) = 0. Then, from the
Morse relation (5) and assumingQ(t) =

∑∞
i=0 qit

i with qi ≥ 0, we have

2t+ 1 = (1 + t)Q(t) ⇐⇒ 0 = (q0 − 1) + (q1 + q0 − 2)t+ (q2 + q1)t
2 +

∞
∑

i=3

(qi + qi−1)t
i,

so q0 = q1 = 1 andq2 = −1 < 0, which is a contradiction. This shows thatϕλ has a third nontrivial
critical pointy0 distinct from{v0, x0}. Hence,y0 is a nontrivial solution of the problem(P )λ and nonlinear
regularity theory impliesy0 ∈ C1

0 (Z̄). �
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