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Some properties of the best linear unbiased estimators in
multivariate growth curve models

Gabriela Beganu

Abstract The purpose of this article is to build a class of the best linear unbiased estimators (BLUE)
of the linear parametric functions, to prove some necessaryand sufficient conditions for their existence
and to derive them from the corresponding normal equations,when a family of multivariate growth curve
models is considered. It is shown that the classical BLUE known for this family of models is the element
of a particular class of BLUE built in the proposed manner. The results are expressed in a convenient
computational form by using the coordinate-free approach and the usual parametric representations.

Algunas propiedades de los estimadores lineales insesgado s óptimos de
los modelos con curva de crecimiento multivariantes

Resumen. El propósito del artı́culo es construir una clase de estimadores lineales insesgados óptimos
(BLUE) de funciones paramétricas lineales para demostraralgunas condiciones necesarias y suficientes
para su existencia y deducirlas de las correspondientes ecuaciones normales, cuando se considera una
familia de modelos con curva de crecimiento multivariante.Se demuestra que la clase de los BLUE
conocidos para esta familia de modelos es un elemento de una clase particular de los BLUE que se
construyen de esta manera. Los resultados se presentan en unformato computacional adecuado usando
un enfoque que es independiente de las coordenadas y las representaciones paramétricas usuales.

1 Introduction

Experimental techniques which consider the response of an individual over a period of time (or over dif-
ferent doses of some medicine) are generally named growth curve experiments. Their representation by
growth curve models have been studied extensively in the literature because of their general aplicability
(see [1, 6, 8, 10, 11]). The MANOVA models include the multivariate growth curvemodels but also the
profile analysis models. The main difference is that in the profile analysis models the components of the
vector of responses can be interchangeable whereas this question is not possible in the growth curve models.

The purpose of this article is to derive a class of the BLUE of linear parametric functions correspond-
ing to a family of multivariate growth curve models. Some necessary and sufficient conditions for given
estimable functions to be optimally estimable are proved and the BLUE of these functions are expressed
using a coordinate-free approach.

The article is structurated as follows: In Section2 a class of the BLUE of linear parametric functions is
derived in a family of multivariate growth curve models. There are developed the properties of this set of
the BLUE proving some necessary and sufficient conditions for their existence in this set.
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The existence conditions for the optimal estimable parametric functions corresponding to this class of
BLUE are given in Section3 and the normal equations are also derived similarly for the general linear
regression model. The results are applied to a particular choice of this class of the BLUE and it is shown
that the maximum likelihood estimator (MLE)(which is the least squares estimator ([10, 3]) is a BLUE in
this class. Therefore the conclusion is that the classical BLUE known for this family of linear models is the
element of this particular class of BLUE built in the proposed manner.

2 A Class of Blue

We consider a family of multivariate growth curve models in the general form

E(Y ) = ZBX ′ (1)

cov(Y ) = Q c©Σ = V (2)

where the between-individuals and the within-individual design matricesZ andX are knownn × r and
p× q matrices of full column rank, respectively, andB is anr× q matrix of unknown parameters. The rows
of the observationsY are assumed to be independently and identically distributed with zero mean and the
covariance matrixΣ. Q is ann × n symmetric and nonnegative definite (n.n.d.) matrix, which could arise
in the context of some random effects.

In this paper there are used the following notations:Ls,t is the real vector space of all linear transforma-
tions onS to T , whereS andT stand for thes andt-dimensional real inner product spaces, respectively;
Ls,t is endowed with the inner product(A, E) = tr(AE′), whereE′ is the matrix of the adjoint operator
E; the Kronecker product of the operatorsA ∈ Ls,t andB ∈ Lu,v, such that(A c©B)X = AXB′ for all
X ∈ Lu,s, is a linear transformation onLu,s toLv,t.

If we denote by

E = sp {ZBX ′ | B ∈ Lq,r }

a linear subspace of a finite dimensional euclidian vector spaceK ⊂ Lp,n and by

V = sp {V : K −→ K | V a symmetric and n.n.d mapping}

a linear subspace of a set of all symmetric mappings fromK toK, then the model defined by the relations (1)
and (2) can be expressed as an element of the setM(E ,V) ([5]).

Corresponding toZ c©X , which is a linear operator on a finite dimensional Hilbert spaceB ⊂ Lq,r to
K, the linear subspaceE is the range ofZ c©X, E = R(Z c©X).

Let V0 be a maximal element ofV (V0 always exists inV [7]). ThenR(V ) ⊂ R(V0) for all V ∈ V and
a new symmetric and n.n.d. operatorW can be defined ([5]) such that

E ⊂ R(W ), R(V ) ⊂ R(V0) ⊂ R(W ) (3)

for all V ∈ V . For the linear model (1), (2), operatorW satisfying the properties (3) can be

W = V0 + (ZZ ′) c©(XX ′). (4)

In the sequel it will be considered a parametric function(α, B), α, B ∈ B that is optimally estimable [5],
which means there exists an elementA ∈ K such that(A, Y ) is a BLUE ofE(A, Y ) and a class of these
BLUE is going to be built for the linear modelM(E ,V) defined by the relations (1) and (2).

Proposition 1 (A, Y ) is aBLUE of E(A, Y ) if and only if there exists an elementA1 ∈ R(W ) such that
(A1, Y ) is aBLUE of E(A, Y ).
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PROOF. Let (A, Y ) be a BLUE ofE(A, Y ) with A ∈ K. Then there existA1 ∈ R(W ) andA2 ∈ N(W )
(the null space of the operatorW ), such thatA = A1 + A2.

SinceW satisfies the relations (3), we obtain from Theorem Farkas-Minkowski ([5]) thatN(W ) ⊂ E⊥

(the orthogonal complement ofE) andN(W ) ⊂ N(V ) for all V ∈ V .
Using these relations we can write that

E(A, Y ) = (A1, (Z c©X)B) = E(A1, Y ) (5)

and

cov
(

(A, Y ), (A, Y )
)

= (A, V A)

= (A1 + A2, V A1) = (A1, V A1) (6)

= cov
(

(A1, Y )(A1, Y )
)

sinceWA2 = 0 implies V A2 = 0 for all V ∈ V and (A2, V A1) = 0 for A2 ∈ E⊥ if and only if
V A1 ∈ E for all V ∈ V . The last statement is the necessary and sufficient condition given by Theorem
Lehman-Scheffé [9] for (A1, Y ) to be the BLUE ofE(A1, Y ).

From the relations (5) and (6) it follows that (A1, Y ) with A1 ∈ R(W ) is a BLUE of E(A1, Y ) =
E(A, Y ), A ∈ K. �

Let C be the class of the BLUE ofE(A, Y ) for all A ∈ R(W ).
Some properties ofC will be derived in the followings.

Proposition 2 (A, Y ) ∈ C if and only if

A ∈ R[W+(Z c©X)] (7)

whereW+ is the Moore-Penrose inverse ofW .

PROOF. Let A ∈ R(W ). Then(A, Y ) is a BLUE ofE(A, Y ) accordingly to Proposition1. By Theorem
Lehmann-Scheffé the existence of the BLUE(A, Y ) is equivalent to the conditionV A ∈ E for all V ∈ V .
SinceR(ZZ ′ c©XX ′) = E , it follows, using the properties (3), thatWA ∈ E . This implies thatW+WA ∈
W+(E), which means that

A ∈ W+(E) = R[W+(Z c©X)]

�

It is known ([2]) that

P = PZ c©PX = Z(Z ′Z)−1Z ′ c©X(X ′X)−1X ′

andM = I − P are the orthogonal projections ontoE andE⊥, respectively (I is the identity matrix of
corresponding orders).

Proposition 3 LetA ∈ R[W+(Z c©X)] and let

S(V ) = (Z ′ c©X ′)W+V MV W+(Z c©X) (8)

be a symmetric and n.n.d. mapping onB to B for all V ∈ V . Then(A, Y ) is a BLUE of E(A, Y ) if and
only if

A ∈ R[W+(Z c©X)(I − S−(V )S(V ))]

whereS−(V ) is a symmetric generalized inverse ofS(V ) for all V ∈ V .
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PROOF. Let A = W+(Z c©X)B for someB ∈ B. By Proposition2 and Theorem Lehmann-Scheffé this
means thatV A ∈ E for all V ∈ V . Then we have that

MV W+(Z c©X)B = 0

and this relation is equivalent toS(V )B = 0 for all V ∈ V , whereS(V ) is given by (8).
SinceN [S′(V )] = R[S(V )]⊥ = R[I − S−(V )S(V )] (by Theorem Farkas-Minkowski) we can write

thatA ∈ R[W+(Z c©X)(I − S−(V )S(V ))], S(V ) andS−(V ) being symmetric mappings for allV ∈ V .
�

Let {V1, . . . , Vm} be a basis ofV .

Theorem 1 (A, Y ) ∈ C if and only if

A ∈ R[W+(Z c©X)(I − S−S)] (9)

where

S =
m
∑

i=1

S(Vi) (10)

PROOF. There are used Propositions1, 2, 3 and a property of the null space of symmetric and n.n.d.
mappings thatN(S) = ∩m

i=1N [S(Vi)]. �

3 The Optimal Estimable Parametric Functions

Similarly to the results known for the general linear regression model, the elementsα ∈ B for which(α, B)
is the optimal estimable parametric function will be derived and then(α, B̂) will be a BLUE of E(A, Y )
for all A ∈ R(W ) if B̂ is a solution of the corresponding normal equations.

Proposition 4 The linear parametric function(α, B) is optimally estimable for allB ∈ B if and only if

α ∈ R[(Z ′ c©X ′)W−(Z c©X)(I − S−S)]

whereW− is a symmetric generalized inverse ofW .

PROOF. Accordingly to Theorem1 (A, Y ) ∈ C if and only if the relation (9) holds, which means that
there exists a BLUE of the parametric function(α, B) if and only if

A = W+(Z c©X)(I − S−S)D (11)

for someD ∈ B such thatE(A, Y ) = (α, B) for all B ∈ B.
This can be written as

W+(Z c©X)(I − S−S)D, (Z c©X)B)

= ((Z ′ c©X ′)W+(Z c©X)(I − S−S)D, B) = (α, B)

for all B ∈ B if and only if
α = (Z ′ c©X ′)W+(Z c©X)(I − S−S)D (12)

for someD ∈ B.
SinceE ⊂ R(W ) we have thatZ c©X = WW−(Z c©X), whereW− is a generalized inverse ofW ,

that can be chosen to be a symmetric matrix. Then we have that

(Z ′ c©X ′)W+(Z c©X) = (Z ′ c©X ′)W−WW+WW−(Z c©X)

= (Z ′ c©X ′)W−WW−(Z c©X) (13)

= (Z ′ c©X ′)W−(Z c©X)

�
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Theorem 2 If (A, Y ) ∈ C then(α, B̂) is aBLUE of E(A, Y ) if and only ifB̂ is a solution of the equation

(I − S−S)(Z ′ c©X ′)W−(Z c©X)B = (I − S−S)(Z ′ c©X ′)W−Y (14)

PROOF. (α, B̂) is a BLUE ofE(A, Y ), A ∈ R(W ), if and only ifα can be expressed by the relation (12),
which means thatA verifies the equation (11) for someD ∈ B. These statements manage to the relation

E(α, B̂) = (α, B) =
(

(Z ′ c©X ′)W+(Z c©X)(I − S−S)D, B
)

=
(

(Z ′ c©X ′)A, B
)

= (A, (Z c©X)B)

= E(A, Y )

or, equivalently, to the equality
(

D, (I − S−S)(Z ′ c©X ′)W+(Z c©X)B̂
)

=
(

D, (I − S−S)(Z ′ c©X ′)W+Y
)

for someD ∈ B, which means that it is obtained the equation (14) if we allow for the relation (13) and the
equality(Z ′ c©X ′)W+Y = (Z ′ c©X ′)W−Y . �

Example 1 It is proved in[4] that aBLUE ofE(Y ) exists in the multivariate growth curve models defined
by the relations(1) and (2) independently on the between-individuals matrixZ. This statement can justify
the choice of the symmetric and n.n.d. operator defined by(4) as

W = In c©Ip (15)

Then the operatorW verifies the properties(3).
In this case the operatorS given by(10) becomes

S =

(

m
∑

i=1

Z ′QiMzQiZ

)

c©(X ′X) = R c©(X ′X)

whereVi = Qi c©Ip, i = 1, . . ., m is a spanning set forV , Qi being a symmetric and n.n.d. matrix,i = 1,
. . ., m andMZ = In − PZ .

Then the corresponding equation14 is

[(Z ′Z) c©(X ′X) − (R−RZ ′Z) c©(X ′X)−X ′XX ′X ]B

= [Z ′ c©X ′ − (R−RZ ′) c©(X ′X)−X ′XX ′]Y

and a solution is given by
B̂ = [(Z ′Z)−Z ′ c©(X ′X)−X ′]Y (16)

which is the classicalMLE and it is the same as the least squares estimator ofB.
It can be noticed that(α, B̂), with B̂ determined above(16), is an element of the classC derived for a

certain choice(15) of the operatorW .
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