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A technique for dynamically measuring and modifying
relevance while problem solving

Antonio Hernando and Luis de Ledesma

Abstract. Although there is general agreement that efficiency of problem resolution is strongly related
to the problem representation adopted, computer problem solvers have been traditionally designed to keep
the same representation throughout the whole of the problemsolving process. A system able to change
representation whilst the actual problem solving process occurs has advantages over traditional ones, not
only because a representation change can improve the efficiency of problem resolution (as already proven
through much research), but also because the choice of the most suitable representation may be decisively
enhanced after learning about the problem during its resolution process. A natural and interesting way of
performing representation changes is related to detectingirrelevant elements which can be removed out
of the problem representation. In this paper, we deal formally with a new technique for assigning and
changing the relevance of the elements involved in the representation during the problem resolution, on
behalf of their respective importance so as to actually solve the problem.

Una t écnica para medir y modificar din ámicamente la relevancia en la
resoluci ón de problemas

Resumen. Aunque existe un consenso general sobre la fuerte dependencia entre la eficiencia en la
resolución de problemas y la representación de los mismosque se adopta, los programas resolvedores
de problemas tradicionalmente se han diseñado teniendo encuenta únicamente una sola representación
a lo largo de todo el proceso de resolución. Un sistema capazde cambiar la representación mientras el
mismo proceso de resolución tiene lugar ofrece ventajas respecto de los tradicionales, no sólo porque
ciertos cambios de representación pueden mejorar la eficiencia del proceso de resolución (como muchas
investigaciones han demostrado), sino también debido a que la tarea de seleccionar la representación más
adecuada para un problema puede facilitarse decisivamentemediante el conocimiento adquirido durante
el proceso de su resolución. Una manera interesante y natural de ejecutar cambios de representación
se apoya en detectar la información irrelevante que puede eliminarse de la representación del problema.
En el presente trabajo, presentamos formalmente una nueva técnica para asignar y modificar valores de
relevancia a los elementos que integran la representaciónde los problemas durante el mismo proceso de
resolución, de acuerdo con la importancia que tienen para resolverlos.

1 Introduction

Problem Solvers are computational systems able to solve some problems by simulating human problem
solving performance. The choice of an adequate problem representation is no doubt an important issue
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in problem solving, since it is strongly related to the efficiency of the resolution process, both in hu-
man [10, 13, 14] and computer problem solving [1, 3]. Although traditional problem solvers have not
undertaken the task of changing the states representation,so that the user alone is actually responsible for
choosing a suitable representation beforehand [9, 11], some efforts have been done to allow the system
select an adequate representation before the actual resolution of the problem starts [2]. Other approaches,
involving reformulation techniques in the context of reasoning about physical systems [1], do not imply any
representation change occurring during the problem solving process.

Since these latter systems only change the representation before the resolution process starts, it becomes
apparent that they allow no further alteration of the problem’s states space throughout the entire resolution
process. Therefore, for such systems the choice of a suitable initial representation comes to be necessarily
critical. In this way, the choice of an adequate representation depends on prior knowledge the system has
about the problem in question; that is to say, the more knowledge the system has about the problem, the
more likely may the system choose an appropriate representation. However, it may be noted that during the
resolution process, the system can gain further knowledge of the problem which may eventually happen to
be crucial so as to actually enabling the system select another representation which may reduce the problem
states space to a significant extent, and therefore drastically improve the efficiency of the resolution process.
Besides, many psychological studies on human problem solving support the evidence that humans change
continuously the conception of the problem while they are solving it, by progressively acknowledging the
rising importance of some problem features, as well as disposing of those regarded as irrelevant. That is
to say, humans do perform a great amount of representation changes while they are solving problems [10].
Moreover, there is a specific kind of problems, namely insight problems, which are typically solved only
by means of a critical representation change occurring during the actual resolution process [8, 15].

Taking all this into consideration, in this paper we will focus on demonstrating mathematically a novel
technique for measuring and modifying automatically the relevance of problem features during the res-
olution process. A representation change consisting in dropping those irrelevant elements from the rep-
resentation not only results in a new conception of the problem, but it may also involve an outstanding
improvement in the efficiency of the problem’s resolution. In [7] we have already studied mathematically
the relationship between a given problem and the need for performing suitable representation changes. Us-
ing this technique for measuring and modifying relevance, we have so far implemented a prototype problem
solver able to perform representation changes while problem solving. This technique has been successfully
tested in connection to some interesting problem examples [4, 5, 6].

In section2, we explain our procedure of measuring a problem element’s relevance. In section3 we
deal with some relevant mathematical properties about thistechnique. In section4, we summarize the main
conclusions of this research.

2 The measure of the relevance

A computer problem solver able to perform representation changes during the resolution of a problem
requires some methods for measuring the relevance of each element in the problem representation, that is to
say, the importance of each element in question, so as to actually solving the problem. Therefore the need
of assigning, to every feature in the problem representation, a certain relevance level, measuring its present
importance in the resolution process. Obviously, relevance levels must be dynamic ones, susceptible to be
modified during the whole of the resolution process.

We have designed relevance levels so that they can oscillateinside a range of values between0 and100,
signifying that when the relevance level of an element is0, this element is considered as completely irrele-
vant, and when its relevance level reaches the value100, this element is considered of the utmost relevance.
We will define a threshold relevance value,th, under which any representation element will be considered
as irrelevant. Indeed, when the relevance value associatedto an element of the representation keeps on this
threshold value for some period of time, the element will be considered as irrelevant and the problem solver
will eliminate it from the current representation.
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Now, we will study a procedure for changing the relevance levels during actual problem resolution. First
of all, we show here some intuitive guidelines which have helped us design such procedure:

i) The higher the relevance level of an element in the problemrepresentation is, the more this element
will be used for the resolution of the problem. If an element in the problem representation is no
longer used in connection to any task of problem resolution,it must be considered as irrelevant. On
the contrary, if an element in the problem representation isfrequently used, this must be considered
as very relevant.

ii) The higher the relevance of an element in the problem representation is, the higher will become the
importance of the tasks about problem resolution this element takes part in. An element is more
relevant than another if the first one takes part in more relevant tasks than the second one.

The procedure adopted in this paper is based on the idea of considering two types of relevance levels
associated to each element in the problem representation:

• Global Relevance Levelof an element (denoted byg). It measures the importance of an element
in the problem representation. It is updated periodically making use of the Recent Relevance Level
associated to this element in this way:

g′ = f(g, r)

wherer stands for the recent relevance level (see next item);g stands for the global relevance level
the element has when just before it is updated;f is a functionN × N → N, termed as ‘Relevance
change function’ (see definition1); andg′ stands for the updated value of the global relevance level
associated to this element.

• Recent Relevance Levelof an element (denoted byr). It measures the importance of this element
since its global relevance level was last updated. The ‘Recent Relevance Level’ of an element is
modified in two ways:

– When the element takes part in a task with importancet, the recent relevance level is updated
in this way:

r′ = max{r, t}

wherer stands for the recent relevance level which the element has just before it is updated;t
stands for the importance of this element in a task; andr′ stands for the updated value of the
recent relevance level associated to this element.

– The ‘Recent Relevance Level’ of an element is also reset to value 0 each time that its ‘Global
Relevance Level’ is updated.

In this way, a value0 in the ‘Recent Relevance Level’ of an element involves that this element has
not been used since the ‘Global Relevance Level’ has been last updated. When the ‘Global Relevance
Level’ of an element is updated, it comes nearer to its present ‘Recent Relevance Level’ (as we will
see in proposition1). In this way, the ‘Global Relevance Level’ of an element will be continuously
decreased when this element is not used for a long time

Now, we will define the ‘relevance change function’ over a setof parameters:

th (threshold relevance value). It must fullfil the following requirement0 ≤ th ≤ 100. This level is
established for detecting irrelevant elements. Indeed, those elements whose global relevance level is
under the threshold value are regarded as irrelevant and maybe consequently eliminated.

k1 must fulfill the following requirement1 ≤ k1 ≤ th. It stands for the relevance loss derived from the
lack of use of an element (k1 = g − f(g, 0))
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k2 must fulfill the following requirementk2 ≥ 1. It is related to the increase of the updated global rele-
vance on behalf of the recent relevance, when the latter is greater than the global relevance function.

Definition 1 (Relevance Change Function) The relevance change function,f is defined as follows:

f(g, r) =

{

g − floor(g−r

k2

) if g ≤ r

max(g + floor
(

k1·r
g

)

− k1, th) if g > r

wherefloor stands for the integer part of a real number.

The relevance change function satisfies the following properties:

Proposition 1 The following holds:

i) If r = g, thenf(g, r) = g

ii) If g1 ≥ g2 ≥ th, thenf(g1, r) ≥ f(g2, r)

iii) If r1 ≥ r2, thenf(g, r1) ≥ f(g, r2)

iv) min{g, r} ≤ f(g, r) ≤ max{g, r} for g ≥ th

v) If g > th andr < g, thenth ≤ f(g, r) < g

vi) If g > th andr = 0, thenf(g, 0) = max{g − k1, th} < g

vii) If g = th andr ≤ g, thenf(g, r) = f(th, r) = th

viii) If r > g, thenf(g, r) > g

ix) If g ≥ th, thenf(g, r) ≥ th

x) If g ≥ th andr > th, thenf(g, r) > th

PROOF.

i) f(g, g) = g − floor((g − g)/k2) = g

ii) We have different cases

Caser ≤ g2 ≤ g1

We will take the functionh(g, r) = g + floor(k1 · r/g) − k1. In this case, the functionf(g, r)
takes the value:

f(g, r) = max{h(g, r), th}

First, we will prove thath(g2, r) ≤ h(g1, r)

h(g1, r) − h(g2, r) = g1 − g2 + floor(k1 · r/g1) − floor(k1 · r/g2)

≥ g1 − g2 + floor(k1 · r/g1 − k1 · r/g2)

= (g1 − g2) + floor(k1 · r · (g2 − g1)/(g1 · g2))

Since0 < k1 ≤ th ≤ g2 ≤ g1, andr ≤ g2 we have that:

h(g1, r) − h(g2, r) ≥ (g1 − g2) + (g2 − g1) ≥ 0

Therefore,h(g2, r) ≤ h(g1, r)
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Now, we will prove thatf(g2, r) ≤ f(g1, r)
If th ≤ h(g2, r), then, sinceth ≤ h(g2, r) ≤ h(g1, r) we have that

f(g2, r) = max{h(g2, r), th} = h(g2, r)

Therefore, we have thatf(g2, r) = h(g2, r) ≤ h(g1, r) = f(g1, r)
If th > h(g2, r) then

f(g2, r) = max{h(g2, r), th} = th ≤ f(g1, r)

Caseg2 ≤ g1 ≤ r

f(g1, r) − f(g2, r) = g1 − floor((g1 − r)/k2) − g2 + floor((g2 − r)/k2)

= (g1 − g2) + floor((g2 − r)/k2) − floor((g1 − r)/k2)

≥ (g1 − g2) + floor((g2 − r)/k2 − (g1 − r)/k2)

= (g1 − g2) + floor(−(g1 − g2)/k2)

≥ (g1 − g2) · (1 + floor(−1/k2))

Sincek2 ≥ 1, we have thatfloor(−1/k2) = −1.
Consequently,f(g1, r) − f(g2, r) ≥ 0.
Therefore,

f(g2, r) ≤ f(g1, r)

Caseg2 ≤ r ≤ g1

Sinceg2 ≤ r ≤ r, by the first case, we have thatf(g2, r) ≤ f(r, r).
Sincer ≤ r ≤ g1, by the second case, we have thatf(r, r) ≤ f(g1, r).
Therefore, we have

f(g2, r) ≤ f(g1, r).

iii) We have different cases:

Caser2 ≤ r1 ≤ g

f(g, r1) − f(g, r2) = floor(k1 · r1/g)− floor(k1 · r2/g)

≥ floor(k1 · r1/g − k1 · r2/g)

≥ floor(k1 · (r1 − r2)/g)

Sincek1 > 0, (r1 − r2) > 0 andg > 0, we have thatf(g, r1) − f(g, r2) ≥ 0.
Therefore,

f(g, r1) ≥ f(g, r2).

Caseg ≤ r2 ≤ r1

f(r1, g) − f(r2, g) = floor((g − r2)/k2) − floor((g − r1)/k2)

≥ floor((g − r2)/k2 − (g − r1)/k2)

≥ floor((r1 − r2)/k2)

Sincek2 ≥ 1 and(r1 − r2) > 0 we have thatf(g, r1) − f(g, r2) ≥ 0.
Therefore,

f(g, r1) ≥ f(g, r2).
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Caser2 ≤ g ≤ r1

Sincer2 ≤ g ≤ g, by the first case, we havef(g, r2) ≤ f(g, g).
Sinceg ≤ g ≤ r1, by the second case, we havef(g, g) ≤ f(g, r1).
Therefore,

f(g, r2) ≤ f(g1, r1).

iv) By propertiesiii) andi), we have that

min{g, r} = f(min{g, r}, min{g, r}) ≤ f(g, r) ≤ f(max{g, r}, max{g, r}) = max{g, r}

v) Sincek1 ≥ 1, r ≤ g − 1, andg > 0, we have that:

floor(k1 · r/g) ≤ floor(k1 · (g − 1)/g) = k1 + floor(−1/g) ≤ k1 − 1 < k1.

Therefore:

f(g, r) = max{g + floor(k1 · r/g) − k1, th} ≤ max{g + k1 − 1 − k1, th} = max{g − 1, th}.

As g − 1 < g andth < g, we have that

th ≤ f(g, r) < g.

vi) If r = 0, thenf(g, r) = f(g, 0) = max{g + floor(k1 · 0/g)− k1, th} = max{g − k1, th}

vii) If r = th, thenf(g, r) = f(th, th) = th

If r < th, then, since1 ≤ k1 ≤ th andr ≤ th −1, we have that:

th + floor(k1 · r/ th) − k1 ≤ th + floor(k1 · (th −1)/ th) − k1

≤ th + floor(−k1/ th)

= th −1

< th

Therefore,
f(th, r) = max{th + floor(k1 · r/ th) − k1, th} = th .

viii) If r > g, then, since(g − r)/k2 < 0, if r > g, we have thatfloor((g − r)/k2) ≤ −1.
Therefore, ifr > g, then

f(g, r) = g − floor((g − r)/k2) ≥ g + 1 > g.

ix) We show this statement considering different cases:
If r > g, then, byviii) , we have thatf(g, r) > g ≥ th

If r = g, then, byi), we have thatf(g, r) = g ≥ th

If r < g andg > th then, byv), we have thatf(g, r) ≥ th

If r < g andg = th then, byvii) , we have thatf(g, r) = th ≥ th

x) We show this statement considering different cases:
If g = th, by viii) we have thatf(g, r) > g = th,
If g > th, by iv), we have thatf(g, r) ≥ min{g, r} > th.

�
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3 Relation between use and global relevance level

In this section we will undertake a formal study of the relation between the use made of an element and its
global relevance level, by analyzing the evolution of the global relevance in elements that are used regularly.
We will consider the successionsgn, rn indicating respectively the global and recent relevance levels of a
element in the instantn (n indicates exactly the number of global relevance updates which have been carried
out). We will consider that this element is used regularly; that is to say, that it always takes part in a task
with a relevanceR being performed periodically eachN updates of global relevance and the rest of time is
not used. In this way,

rn =

{

R if n mod (N + 1) = 0

0 if n mod (N + 1) 6= 0

The successiongn is defined through the successionrn:

∀n > 0 gn = f(gn−1, rn−1)

By the next theorems and propositions we will show the following statements:

i) Any initial values in the Global Relevance,g0, however distant, will in the end approach to similar
levels.

ii) After a certain update, the global relevancegn will constantly fluctuate between some values, and
these values will be underR.

iii) The greaterR and the lesserN are, the greater will the global relevance level be.

iv) The greaterN is, the greater will fluctuations in the global relevance be.

The following proposition states that the global relevancelevel is always greater than the threshold
relevance level,th.

Proposition 2 If g0 ≥ th, then∀n ∈ N gn ≥ th.

PROOF. It is proven by induction.

Base casen = 0 , g0 ≥ th

Inductive case Suppose thatgn ≥ th. By ix) of proposition1, we have thatgn+1 = f(gn, r) ≥ th. �

The following theorem is aimed to define recursively the successiongn:

Theorem 1 We have that:

i) ∀n ∈ N g(n+1)·(N+1) = max{gn·(N+1)+1 − k1 · N, th}

ii) ∀m ≥ 1 gm·(N+1) = max{f(g(m−1)·(N+1), R) − k1 · N, th}

iii) ∀n ∈ N ∀i ∈ {1, . . . , N + 1}, if gn·(N+1) ≤ R then

gn·(N+1)+i = max{gn·(N+1) − floor((gn·(N+1) − R)/k2) − k1 · (i − 1), th}

iv) ∀n ∈ N ∀i ∈ {1, . . . , N + 1}, if gn·(N+1) > R then

gn·(N+1)+i = max{gn·(N+1) + floor(k1 · R/gn · (N + 1)) − k1 · i, th}
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PROOF.

i) In case thatN = 0, we have thatgn+1 = max{gn+1, th} = gn+1.
We will consider the case thatN > 0.
Let n ∈ N and leti ∈ {1, . . . , N}.
We have thatgn·(N+1)+i+1 = f(gn·(N+1)+i, rn·(N+1)+i).
Sincen · (N + 1) + i mod (N + 1) = i 6= 0, we have that:

gn·(N+1)+i+1 = f(gn·(N+1)+i, 0) = max{gn·(N+1)+i − k1, th}.

By applying recursively this expressioni times, we have that

gn·(N+1)+i+1 = max{gn·(N+1)+1 − k1 · i, th}.

Specifically, fori = N , we have that

gn·(N+1)+N+1 = g(n+1)·(N+1) = max{gn·(N+1)+1 − k1 · N, th}.

ii) Let n = m − 1 and we will study the value ofgn·(N+1)+1. We have these two cases:

Casegn·(N+1) < R

gn·(N+1)+1 = gn·(N+1) − floor((gn·(N+1) − R)/k2).

By i) we have that:

g(n+1)·(N+1) = max{gn·(N+1) − floor((gn·(N+1) − R)/k2) − k1 · N, th}.

Casegn·(N+1) ≥ R

gn·(N+1)+1 = max{gn·(N+1) + floor(k1 · R/gn·(N+1)) − k1, th}.

By i), we have that:

g(n+1)·(N+1) = max{gn·(N+1) + floor(k1 · R/gn·(N+1)) − k1 · (N + 1), th}.

In any of these two cases, we have that

g(n+1)·(N+1) = max{f(gn·(N+1), R) − k1 · N, th}

iii) We will prove it by induction

Base casei = 1
Sincern·(N+1) = R, we have thatgn·(N+1)+1 = f(gn·(N+1), R) ≥ th.
Besides, we have that:

gn·(N+1)+1 = f(gn·(N+1), R) = gn·(N+1) − floor((gn·(N+1) − R)/k2)

= gn·(N+1) − floor((gn·(N+1) − R)/k2) − k1 · (1 − 1).

Inductive case We will suppose that the following holds:
gn·(N+1)+i = max{gn·(N+1) + floor(k1 · R/gn·(N+1)) − k1 · i, th} where1 ≤ i < N + 1.
Sincern·(N+1)+i = 0, we have that:

gn·(N+1)+i+1 = f(gn·(N+1)+i, 0)

= max{gn·(N+1)+i − k1, th}

= max{gn·(N+1) + floor(k1 · R/gn·(N+1)) − k1 · (i + 1), th}
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iv) Let n ∈ N and leti ∈ {1, . . . , N + 1}
We will prove it by induction

Base case
Sincern·(N+1) = R, we have that

gn·(N+1)+1 = f(gn·(N+1), R) = max{gn·(N+1) + floor(k1 · R/gn·(N+1)) − k1, th}

Inductive case
gn·(N+1)+i = max{gn·(N+1) + floor(k1 · R/gn·(N+1)) − k1 · i, th} and1 ≤ i < N + 1.
Sincern·(N+1)+i = 0

gn·(N+1)+i+1 = f(gn·(N+1)+i, 0)

= max{gn·(N+1)+i − k1, th}

= max{gn·(N+1) + floor(k1 · R/gn·(N+1)) − k1 · (i + 1), th}

�

Next, we will prove that whenn tends to infinite,gn fluctuates within a constant range. In order to prove
this, we will study the evolution ofgn in certain specific moments. First, we will define the succession,pn,
as follows:

pn = gn·(N+1).

Next, we will show thatpn tends to a fixed point. Byii) in theorem1, we may definepn recursively as
follows:

p0 = g0

pn+1 = max{f(pn, R) − k1 · N, th}

In lemmas1 and 2 we will show a relation betweenpn andpn+1. Both these lemmas are used in
theorems2 and3 for showing that the successionpn tends to a fixed value.

Lemma 1 The following holds:

i) If th ≤ pn ≤ R − 1, thenpn+1 = R.

ii) If pn = R, thenpn+1 = R.

iii) If pn ≥ R + 1, thenR ≤ pn+1 < pn.

PROOF.

i) We have that:

pn+1 = max{pn − floor((pn − R)/k2), th} ≥ max{pn − floor((R − 1 − R)/k2), th}

Sincek2 ≥ 1, we have thatfloor(−1/k2) = −1, and therefore

pn+1 ≥ max{pn − floor(−1/k2), th} = max{pn + 1, th}

Sincepn ≥ th, we have thatpn + 1 > th, and therefore:

pn+1 ≥ max{pn + 1, th} = pn + 1 > pn

Besides, we have thatpn+1 ≤ R. Therefore

pn+1 = max{f(pn, R), th} ≤ max{f(R, R), R} = R
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ii) We have that:

pn+1 = max{R + floor(k1 · R/R) − k1, th} = max{R + k1 − k1, th} = max{R, th}.

SinceR > th, we have that
pn+1 = R

iii) We have that:

pn+1 = max{pn + floor(k1 · R/pn) − k1, th}

≤ max{pn + floor(k1 · (pn − 1)/pn) − k1, th}

≤ max{pn + k1 + floor(−k1/pn) − k1, th}

≤ max{pn + floor(−k1/pn), th}.

Sincek1 ≤ th ≤ pn andfloor(−k1/pn) = −1, we have that

pn+1 ≤ max{pn − 1, th}.

Sinceth < R andR < pn, we have thatth ≤ pn − 1 and therefore

pn+1 ≤ max{pn − 1, th} = pn − 1 < pn.

Besides, we have thatpn+1 ≥ R

pn+1 = max{f(pn, R), th} ≥ max{f(R, R), th} = R.

�

Theorem 2 If N = 0, then we have that:

∃n ∈ N ∀m ≥ n pm = R

PROOF. We will prove that∃n ≥ 0 such thatpn = R. Once we have proved it, we will prove this lemma
by applyingii) in lemma1. We will consider these cases:

Caseth < p0 ≤ R − 1
By i) in lemma1, we have thatp1 = R. By ii) in lemma1, we have that

∀m ≥ 1 pm = R

Casep0 = R
By ii) in lemma1, we have that

∀m ≥ 0 pm = R

Casep0 ≥ R + 1
By iii) in lemma1 we have that:

∃n ≥ 0 such that pn = R

Therefore, byii) in lemma1, we have that

∀m ≥ n pm = R

�
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Lemma 2 If N ≥ 1, then we have that:

i) If pn < max{R − k1 · k2 · N − 1, th} then

pn < pn+1 ≤ max{R − k1 · k2 · N, th}

ii) If pn > max{R − k1 · k2 · N + k2 − 1, th} andth ≤ pn ≤ R, then

max{R − k1 · k2 · N + k2 − 1, th} ≤ pn+1 < pn

iii) If pn > max{R − k1 · k2 · N + k2 − 1, th} andpn ≥ R + 1, then

max{R − k1 · k2 · N + k2 − 1, th} ≤ pn+1 < pn

iv) If pn = max{R − k1 · k2 · N + i, th} where0 ≤ i ≤ k2 − 1, then

pn+1 = pn

PROOF.

i) Sincepn ≤ max{R − k1 · k2 · N − 1, th}, we have thatpn ≤ R − k1 · k2 · N − 1 < R

We will prove thatpn+1 > pn.
Since we have thatpn < R.

pn+1 = max{f(pn, R) − k1 · N, th}

= max{pn − floor((pn − R)/k2) − k1 · N, th}

≥ max{pn − floor((R − k1 · k2 · N − 1 − R)/k2) − k1 · N, th}

≥ max{pn + k1 · N − floor(−1/k2)− k1 · N, th}

= max{pn − floor(−1/k2), th}.

Sincek2 ≥ 1, we have thatfloor(−1/k2) = −1. Therefore

pn+1 ≥ max{pn − floor(−1/k2), th} = max{pn + 1, th}.

Sincepn ≥ th, we have thatpn +1 > th. Therefore:pn+1 ≥ max{pn +1, th} = pn +1 > pn.

We will prove thatpn+1 ≤ max{R − k1 · k2 · N, th}.

pn+1 = max{f(pn, R) − k1 · N, th} ≤ max{f(R − k1 · k2 · N − 1, R) − k1 · N, th}

SinceR − k1 · k2 · N − 1 < R, we have that

pn+1 ≤ max{R − k1 · k2 · N − 1 − floor((R − k1 · k2 · N − 1 − R)/k2) − k1 · N, th}

≤ max{R − k1 · k2 · N − 1 + k1 · N + 1 − k1 · N, th}

= max{R − k1 · k2 · N, th}

ii) We will prove thatpn+1 < pn.
Sincepn ≤ R, we have that:

pn+1 = max{f(pn, R) − k1 · N, th} = max{pn − floor((pn − R)/k2) − k1 · N, th}.

Sincepn ≥ R − k1 · k2 · N + k2, we have that:

pn+1 ≤ max{pn − floor((R − k1 · k2 · N + k2 − R)/k2) − k1 · N, th} = max{pn − 1, th}.

Sincepn > th, we have thatth ≤ pn − 1. Therefore:

pn+1 ≤ max{pn − 1, th} = pn − 1 < pn
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We will prove thatpn+1 ≥ max{R − k1 · k2 · N + k2 − 1, th}
SinceR − k1 · k2 · N + k2 ≤ pn ≤ R, we have that

pn+1 = max{f(pn, R) − k1 · N, th}

≥ max{f(R − k1 · k2 · N + k2, R) − k1 · N, th}

≥ max{R − k1 · k2 · N + k2 − floor((R − k1 · k2 · N + k2 − R)/k2) − k1 · N, th}

≥ max{R − k1 · k2 · N + k2 + k1 · N − 1 −1 ·N, th}

= max{R − k1 · k2 · N + k2 − 1, th}

iii) We will prove thatpn+1 < pn.
Sincepn > R, we have that:

pn+1 = max{f(pn, R) − k1 · N, th}

= max{pn + floor(k1 · R/pn) − k1 · (N + 1), th}

≤ max{pn + floor(k1 · pn/pn) − k1 · (N + 1), th}

= max{pn − k1 · N, th} ≤ max{pn − 1, th}.

Sinceth < R + 1 ≤ pn, we have thatth ≤ pn − 1

pn+1 ≤ max{pn − 1, th} = pn − 1 < pn

We will prove thatpn+1 ≥ max{R − k1 · k2 · N + k2 − 1, th}.
Sincepn ≥ R − k1 · k2 · N + k2, we have that:

pn+1 = max{f(pn, R) − k1 · N, th}

= max{pn + floor(k1 · R/pn) − k1 · (N + 1), th}

≥ max{f(R − k1 · k2 · N + k2, R) − k1 · N, th}

Sincek1 ≥ 1 andN ≥ 1, we have thatR − k1 · k2 · N + k2 ≤ R − k2 + k2 = R

pn+1 ≥ max{R − k1 · k2 · N + k2 − floor((R − k1 · k2 · N + k2 − R)/k2) − k1 · N, th}

≥ max{R − k1 · k2 · N + k2 + k1 · N − 1 − k1 · N, th}

= max{R − k1 · k2 · N + k2 − 1, th}.

iv) We will consider these two cases:

Casepn = R − k1 · k2 · N + i ≥ th

Sincepn ≤ R − k1 · k2 · N + k2 − 1 ≤ R − k2 + k2 − 1 = R − 1 < R, we have that:

pn+1 = max{pn − floor((pn − R)/k2) − k1 · N, th}

= max{pn − floor((R − k1 · k2 · N + i − R)/k2) − k1 · N, th}

= max{pn − floor(i/k2), th}

Since0 ≤ i ≤ k2 − 1, we have thatfloor(i/k2) = 0, and consequently:

pn+1 = max{pn − floor((i/k2), th} = max{pn, th} = pn

Casepn = th ≥ R − k1 · k2 · N + i
We have that:

th − floor((th −R)/k2) − k1 · N ≤ th − floor((R − k1 · k2 · N + i − R)/k2) − k1 · N

≤ th +k1 · N − floor(i/k2) − k1 · N

= th
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Therefore,

pn+1 = max{th − floor((th −R)/k2) − k1 · N, th} = th = pn.

�

Theorem 3 If N ≥ 1, we have that:

i) If p0 ≤ max{R − k1 · k2 · N, th}, then∃n ≥ 0 ∀m ≥ n pm = max{R − k1 · k2 · N, th}.

ii) If p0 ≥ max{R−k1·k2·N+k2−1, th}, then∃n ≥ 0 ∀m ≥ n pm = max{R−k1·k2·N+k2−1, th}

iii) If max{R − k1 · k2 ·N + k2 − 1, th} ≤ p0 ≤ max{R − k1 · k2 · N, th}, then∀m ≥ 0 pm = p0.

PROOF.

i) By taking into accounti) in lemma2, ∃n > 0 pn = max{R − k1 · k2 · N, th}.
By taking into accountiv) in lemma2, ∀m > n pm = pn.

ii) By taking into accountii) in lemma2, ∃n > 0 pn = max{R − k1 · k2 · N + k2 − 1, th}.
By taking into accountiv) in lemma2, ∀m > n pm = pn.

iii) By taking into accountiv) in lemma2, ∀m ≥ 0 pm = p0.

�

4 Conclusions

As has been seen, assigning relevance values to the various elements shaping a problem representation is
really useful in order to solve it. This paper describes somenew techniques for establishing and modifying
such relevance values within the performance of a computer problem solver we have implemented and
which, unlike its predecessors, is able to execute crucial changes in the problem representation in virtually
any moment of the solving process. These representation changes occur as an autonomous fulfillment of
our problem solver, with no need for the user to order or activate them, being related to the measure of
relevance values in the way described in this paper. Thus, automatic representation changes within the
system, dependent on relevance values of the problem elements, offer a valid simulation of unconscious
human behavior while problem solving. Further specific details about the architecture and performance of
our problem solver are to be found in some of the references below.
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