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A technique for dynamically measuring and modifying
relevance while problem solving

Antonio Hernando and Luis de Ledesma

Abstract. Although there is general agreement that efficiency of mnohbilesolution is strongly related
to the problem representation adopted, computer problérarschave been traditionally designed to keep
the same representation throughout the whole of the probtewing process. A system able to change
representation whilst the actual problem solving processis has advantages over traditional ones, not
only because a representation change can improve the edfyoid problem resolution (as already proven
through much research), but also because the choice of thiesuitable representation may be decisively
enhanced after learning about the problem during its résolprocess. A natural and interesting way of
performing representation changes is related to detettigigvant elements which can be removed out
of the problem representation. In this paper, we deal fdgnwaith a new technique for assigning and
changing the relevance of the elements involved in the sgpitation during the problem resolution, on
behalf of their respective importance so as to actuallyestite problem.

Una técnica para medir y modificar din  amicamente la relevancia en la
resoluci 6n de problemas

Resumen. Aunque existe un consenso general sobre la fuerte depeadantce la eficiencia en la
resolucion de problemas y la representacion de los misjnesse adopta, los programas resolvedores
de problemas tradicionalmente se han disefiado teniendoegria Unicamente una sola representacion
a lo largo de todo el proceso de resolucion. Un sistema cd@azambiar la representacion mientras el
mismo proceso de resolucion tiene lugar ofrece ventagerto de los tradicionales, no so6lo porque
ciertos cambios de representacion pueden mejorar largfiaiel proceso de resolucion (como muchas
investigaciones han demostrado), sino también debide d¢agarea de seleccionar la representacion mas
adecuada para un problema puede facilitarse decisivamerdinte el conocimiento adquirido durante
el proceso de su resolucion. Una manera interesante yahateirejecutar cambios de representacion
se apoya en detectar la informacion irrelevante que pul@deaarse de la representacion del problema.
En el presente trabajo, presentamos formalmente una neevigd para asignar y modificar valores de
relevancia a los elementos que integran la representdeidws problemas durante el mismo proceso de
resolucion, de acuerdo con la importancia que tienen jga@werlos.

1 Introduction

Problem Solvers are computational systems able to solve swoblems by simulating human problem
solving performance. The choice of an adequate probleneseptation is no doubt an important issue
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in problem solving, since it is strongly related to the efficty of the resolution process, both in hu-
man [LO, 13, 14] and computer problem solvind.[3]. Although traditional problem solvers have not
undertaken the task of changing the states representatidhat the user alone is actually responsible for
choosing a suitable representation beforeh@&nd ], some efforts have been done to allow the system
select an adequate representation before the actual tiesaddi the problem start?]. Other approaches,
involving reformulation techniques in the context of regisg about physical system$][ do not imply any
representation change occurring during the problem sglpincess.

Since these latter systems only change the representatioretihe resolution process starts, it becomes
apparent that they allow no further alteration of the protiestates space throughout the entire resolution
process. Therefore, for such systems the choice of a saitiaibibl representation comes to be necessarily
critical. In this way, the choice of an adequate represematepends on prior knowledge the system has
about the problem in question; that is to say, the more kndgédehe system has about the problem, the
more likely may the system choose an appropriate reprasmmtbélowever, it may be noted that during the
resolution process, the system can gain further knowlefifeegoroblem which may eventually happen to
be crucial so as to actually enabling the system select ancgpresentation which may reduce the problem
states space to a significant extent, and therefore drifgtioarove the efficiency of the resolution process.
Besides, many psychological studies on human problemrsplidpport the evidence that humans change
continuously the conception of the problem while they atgisg it, by progressively acknowledging the
rising importance of some problem features, as well as disgoof those regarded as irrelevant. That is
to say, humans do perform a great amount of representatargels while they are solving problenis].
Moreover, there is a specific kind of problems, namely insgbblems, which are typically solved only
by means of a critical representation change occurringidubie actual resolution process [L5].

Taking all this into consideration, in this paper we will {con demonstrating mathematically a novel
technique for measuring and modifying automatically thew@&nce of problem features during the res-
olution process. A representation change consisting ipplny those irrelevant elements from the rep-
resentation not only results in a new conception of the gmblbut it may also involve an outstanding
improvement in the efficiency of the problem’s resolution [1] we have already studied mathematically
the relationship between a given problem and the need féoqeing suitable representation changes. Us-
ing this technique for measuring and modifying relevanahave so far implemented a prototype problem
solver able to perform representation changes while pnoklaving. This technique has been successfully
tested in connection to some interesting problem examg|és ).

In section2, we explain our procedure of measuring a problem elemeelevance. In sectio we
deal with some relevant mathematical properties aboutghblmique. In sectiod, we summarize the main
conclusions of this research.

2 The measure of the relevance

A computer problem solver able to perform representaticangles during the resolution of a problem
requires some methods for measuring the relevance of eagtest in the problem representation, that is to
say, the importance of each element in question, so as talbcsolving the problem. Therefore the need
of assigning, to every feature in the problem representatiaertain relevance level, measuring its present
importance in the resolution process. Obviously, relegdacels must be dynamic ones, susceptible to be
modified during the whole of the resolution process.

We have designed relevance levels so that they can osdilkitee a range of values betwe@and100,
signifying that when the relevance level of an elemelfy, ihis element is considered as completely irrele-
vant, and when its relevance level reaches the vEl0ethis element is considered of the utmost relevance.
We will define a threshold relevance valug, under which any representation element will be considered
as irrelevant. Indeed, when the relevance value assod@mttelement of the representation keeps on this
threshold value for some period of time, the element will besidered as irrelevant and the problem solver
will eliminate it from the current representation.
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Now, we will study a procedure for changing the relevanceleduring actual problem resolution. First
of all, we show here some intuitive guidelines which havehdlus design such procedure:

i) The higher the relevance level of an element in the probigpnesentation is, the more this element
will be used for the resolution of the problem. If an elemanthe problem representation is no
longer used in connection to any task of problem resoluitanust be considered as irrelevant. On
the contrary, if an element in the problem representatidreguently used, this must be considered
as very relevant.

i) The higher the relevance of an element in the problemasgnmtation is, the higher will become the
importance of the tasks about problem resolution this efgértakes part in. An element is more
relevant than another if the first one takes part in more agletasks than the second one.

The procedure adopted in this paper is based on the idea efdesimg two types of relevance levels
associated to each element in the problem representation:

e Global Relevance Levebf an element (denoted hy). It measures the importance of an element
in the problem representation. It is updated periodicalkimg use of the Recent Relevance Level
associated to this element in this way:

g/ = f(gar)

wherer stands for the recent relevance level (see next itgrmsjands for the global relevance level
the element has when just before it is updatgds a functionN x N — N, termed as ‘Relevance
change function’ (see definitiol); andg’ stands for the updated value of the global relevance level
associated to this element.

e Recent Relevance Levebf an element (denoted by. It measures the importance of this element
since its global relevance level was last updated. The ‘ReRelevance Level’ of an element is
modified in two ways:

— When the element takes part in a task with importandke recent relevance level is updated
in this way:
r’ = max{r,t}

wherer stands for the recent relevance level which the elementusadéfore it is updated;
stands for the importance of this element in a task; @drmstands for the updated value of the
recent relevance level associated to this element.

— The ‘Recent Relevance Level’ of an element is also resetlicevaeach time that its ‘Global
Relevance Level' is updated.

In this way, a valud in the ‘Recent Relevance Level’ of an element involves that ¢lement has
not been used since the ‘Global Relevance Level’ has betugdated. When the ‘Global Relevance
Level’ of an element is updated, it comes nearer to its pteRaEtent Relevance Level’ (as we will
see in propositiord). In this way, the ‘Global Relevance Level’ of an elementlwié continuously
decreased when this element is not used for a long time

Now, we will define the ‘relevance change function’ over acfgiarameters:

th (threshold relevance valug. It must fullfil the following requiremen® < th < 100. This level is
established for detecting irrelevant elements. Indeexsglelements whose global relevance level is
under the threshold value are regarded as irrelevant andmegnsequently eliminated.

k1 must fulfill the following requirement < k; < th. It stands for the relevance loss derived from the
lack of use of an elemenk{ = g — f(g,0))
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k2 must fulfill the following requirement, > 1. Itis related to the increase of the updated global rele-
vance on behalf of the recent relevance, when the latteester than the global relevance function.

Definition 1 (Relevance Change Function)  The relevance change functiofjs defined as follows:

g — floor(%") ifg<r
Jgm) = max(g—i—ﬂoor(k”)—kl,th) ifg>r

q
wherefloor stands for the integer part of a real number.
The relevance change function satisfies the following prtogse
Proposition 1  The following holds:
i) If r=g,thenf(g,r) =g
i) If g1 > g2 > th, thenf(gi,7) > f(g2,7)
i) If 1y > 7o, thenf(g,m1) > f(g,72)
v) min{g,r} < f(g,r) < max{g,r} forg > th
v) If g > thandr < g, thenth < f(g,r) < g
vi) If g > th andr = 0, thenf(g,0) = max{g — k1, th} < g
vii) If g =thandr < g,thenf(g,r) = f(th,r) = th
viii) If r > g, thenf(g,7) > ¢
ix) If g > th, thenf(g,r) > th
x) If g > th andr > th, thenf(g,r) > th
PROOF
) f(g,9) =g —floor((g —g)/k2) = g
i) We have different cases

Caser < g <o
We will take the functiorh(g,r) = g + floor(ky - /g) — k1. In this case, the functiofi(g, r)
takes the value:

f(g,7) = max{h(g,r), th}
First, we will prove thati(gs, ) < h(g1,7)

h(g1,7) — h(ga,r) = g1 — g2 + floor(ky - /g1) — floor(ky - 7/ g2)
> g1 — g2 + floor(ky - /g1 — k1 -7/92)
= (91 — g2) + floor(ky -7 - (92 — 91)/(91 - 92))

Sincel < k; < th < g2 < g1, andr < g, we have that:

h(g1,7) —h(g2,7) > (91 —92) + (92 —91) = 0

Thereforeh(ga, ) < h(g1,7)

114



A technique for dynamically measuring and modifying refe@while problem solving

glaT)

Now, we will prove thatf (g2, ) < f(
h < h(g2,7) < h(g1,r) we have that

If th < h(ge,r), then, since

f(QQ,T) = max{h(gg,r), th} = h(gg,?”)

Therefore, we have thet(gs, ) = h(g2,7) < h(g1,7) = f(g91,7)
If th > h(ge,r) then

f(g%r) = max{h(gg,r), th} =th < f(glvr)

Casegy < g1 <r

f(g1,7) = f(g2,7) = g1 — floor((g1 — 7)/k2) — g2 + floor((ga — 7)/k2)
= (91 — g2) + floor((g2 — r)/kz) — floor((g1 —7)/k2)

Y

(91 — g2) + floor((g2 — 1) /k2 — (g1 — 1) /k2)
= (91 — g2) + floor(—(g1 — g2)/k2)
(91 — g2) - (1 + floor(—1/k2))

Y

Sinceks > 1, we have thafloor(—1/ks) = —1.

Consequentlyf(g1,7) — f(g2,7) > 0.
Therefore,

f(QQ,T) < f(glaT)

Casegy, <r<gn
Sincegs < r < r, by the first case, we have thétg., ) < f(r,r).
<

Sincer < r < g1, by the second case, we have tlfiat, ) (q1,7).
Therefore, we have

f(g%r) < f(glvr)'

iii) We have different cases:

Casers <r; <gyg

f(g,m1) — f(g,r2) = floor(ky - 71 /g) — floor(k1 - r2/9)
> floor(ky - r1/g — k1 -712/9)
> floor(ky - (r1 —12)/9)
Sincek; > 0, (r; —72) > 0 andg > 0, we have thaf (g,71) — f(g,72) > 0.
Therefore,

f(gvrl) > f(gvr2)'

Caseg <719y <1

f(r1,9) — f(r2,g) = floor((g — r2)/k2) — floor((g — r1)/k2)
> floor((g —r2)/ka — (9 — 71)/k2)
> floor((r1 — r2)/ke)
Sincek, > 1 and(r; — r2) > 0 we have thaif (g,71) — f(g,72) > 0.
Therefore,

f(gvrl) > f(gvr2)'
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Casers <g<mnr
Sincery < g < g, by the first case, we hav& g, r2) < f(g, 9).
Sinceg < g < rq, by the second case, we hafgy, g) < f(g,71).
Therefore,

fg;r2) < fg1,71)-

iv) By propertiedii) andi), we have that
min{g,r} = f(min{g,r}, min{g,r}) < f(g,r) < f(max{g,r} max{g,r}) = max{g,r}
v) Sincek; > 1,r < g —1,andg > 0, we have that:
floor(ky - r/g) < floor(ky - (g —1)/g) = k1 + floor(—1/g) < k1 — 1 < k.
Therefore:
f(g,r) = max{g + floor(ky - r/g) — k1, th} <max{g+ ki — 1 — k1, th} = max{g — 1, th}.

As g — 1 < gandth < g, we have that
th< f(g,r) <g.

vi) If r =0, thenf(g,r) = f(g,0) = max{g + floor(ky - 0/g) — k1, th} = max{g — k1, th}

vii) If r = th, thenf(g,r) = f(th,th) = th
If r < th, then, sincd < k; < th andr < th —1, we have that:

th + floor(k1 -7/ th) — ki < th+ floor(ky - (th—1)/th) — k1
< th+ floor(—k1/ th)
=th-1
< th

Therefore,
f(th,r) = max{th+floor(ky - r/ th) — k1, th} = th.

viii) If r > g, then, sincdg — r)/ks < 0, if r > g, we have thafloor((g — r)/ks) < —1.
Therefore, ifr > g, then

f(g,r) =g —floor((g —7)/ka) > g +1>g.

ix) We show this statement considering different cases:
If » > g, then, byviii), we have thaff (g, ) > g > th
If r = g, then, byi), we have thaif (g,7) = g > th
If < gandg > th then, byv), we have thaf (g, ) > th
If < g andg = th then, byvii), we have thaf (g,r) = th > th

X) We show this statement considering different cases:

If g = th, by viii) we have thaif (¢, ) > g = th,
If g > th, byiv), we have thaf (g,r) > min{g,r} > th.

116



A technique for dynamically measuring and modifying refe@while problem solving

3 Relation between use and global relevance level

In this section we will undertake a formal study of the relatbetween the use made of an element and its
global relevance level, by analyzing the evolution of thabgll relevance in elements that are used regularly.
We will consider the successiops, r,, indicating respectively the global and recent relevancelseof a
elementin the instant (n indicates exactly the number of global relevance updatéshitave been carried
out). We will consider that this element is used regulathgttis to say, that it always takes part in a task
with a relevancer being performed periodically each updates of global relevance and the rest of time is
not used. In this way,

R ifnmod (N+1)=0
Tn = .
0 ifnmod (N+1)#0

The succession,, is defined through the successign
Vn >0 gn = f(gnflvrnfl)
By the next theorems and propositions we will show the follfaystatements:

i) Any initial values in the Global Relevancg,, however distant, will in the end approach to similar
levels.

i) After a certain update, the global relevangg will constantly fluctuate between some values, and
these values will be undét.

iii) The greaterRk and the lesseN are, the greater will the global relevance level be.
iv) The greaterV is, the greater will fluctuations in the global relevance be.

The following proposition states that the global relevatex! is always greater than the threshold
relevance levelth.

Proposition 2 If go > th, thenvn € N g,, > th.
PROOFE Itis proven by induction.
Base casen =0 , gy > th

Inductive case Suppose thaj,, > th. By ix) of propositionl, we have thay,, 1 = f(gn,r) > th. R

The following theorem is aimed to define recursively the sss®ry,,:
Theorem 1 We have that:
) Vn €N giyr).(v+1) = max{gn.(n41)+1 — k1 - N, th}
i) Vvm >1 g (vi1) = max{f(gm—1).(v+1), R) — k1 - N, th}
i) vne N Vie{l,...,N+1},if g,.(v41) < Rthen

In-(N+1)+i = max{gn. (v 1) — Hoor((gn.(v41) — R)/k2) — k1 - (i — 1), th}
V) Vne N Vie {l,...,N +1},if g, (v41) > Rthen

Gn-(N+1)+i = max{g,.(v4+1) + floor(ky - R/gn - (N + 1)) — ky - i, th}
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PrROOFR

i)

ii)

118

In case thafV = 0, we have thay,, 1 = max{gn+1,th} = gni1.
We will consider the case thaf > 0.
Letn € Nandleti € {1,...,N}.

We have thay,.(v41)+i+1 = f(In-(N+1)4i T (N4+1)+i)-
Sincen - (N + 1) + i mod (N + 1) = i # 0, we have that:

Gn-(N+1)+i+1 = S (Gn-(N+1)+i5 0) = maX{gn(NJrl)Jri — ki, th}.
By applying recursively this expressiomimes, we have that
Gn-(N+1)+i+1 = Max{Gn.(N+1)+1 — k1 - 4, th}.
Specifically, fori = N, we have that
In-(N+1)+N+1 = I(n+1)-(N+1) = Max{gn. (v41)41 — k1 - N, th}.
Letn = m — 1 and we will study the value af,,. v +1)4+1- We have these two cases:
Caseg,.(n41) < R
In-(N+1)+1 = In-(N+1) — ﬂoor((gn-(N-i-l) — R)/k2).
By i) we have that:
Int1)-(N+1) = max{gn.(v41) — floor((gn.(vy1) — R)/k2) — k1 - N, th}.
Caseg,.(n+1) = R
In-(N+1)+1 = max{g,.(v4+1) + floor(ky - R/g,.(nv41)) — k1, th}.
By i), we have that:
G(nt1)-(N+1) = Max{gy.(v41) + floor(ky - R/gn.(n41)) — k1 - (N + 1), th}.
In any of these two cases, we have that
I(n+1)-(N+1) = max{ f(gn.(v41), R) — k1 - N, th}
We will prove it by induction

Base casé = 1
Sincer,,.(n+1) = R, we have thay,,.(v1)+1 = f(gn-(v+1), R) > th.
Besides, we have that:

In-(N+1)+1 = f(Gn-(v+1) B) = Gn.(n41) — floor((gn.(n41) — R)/k2)
= gn-(n+1) — floor((gn.(nv41) — R)/k2) — k1 - (1 —1).

Inductive case We will suppose that the following holds:
In-(N+1)+i = max{gn.(NH) + floor(ky - R/gn-(N-l—l)) —ky -i,th} wherel <i < N + 1.
Sincer,,.(n41)+: = 0, we have that:

In-(N+1)+i+1 = f(Gn-(N+1)44,0)
= max{g,.(N4+1)4i — k1, th}
= max{g,.(n+1) + floor(ky - R/gp.(v41)) — k1 - (i + 1), th}
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iv) Letn e Nandleti € {1,...,N +1}
We will prove it by induction

Base case
Sincer,,.(y41) = R, we have that

In-(N+1)+1 = f(Gn-(N41); R) = max{g,.(n41) + floor(k1 - R/gn.(n+1)) — k1, th}

Inductive case
In-(N+1)+i = max{gn.(NH) + floor(ky - R/gn-(N-l—l)) —ky i, th}andl <i < N+ 1.

SinCE’I’n.(]\H_l)_H‘ =0

In-(N+1)+i+1 = f(Gn-(N+1)44,0)
= max{g,.(N4+1)+i — k1, th}
= max{g,.(n+1) + floor(ky - R/gpn.(n41)) — k1 - (i + 1), th}

Next, we will prove that when tends to infiniteg,, fluctuates within a constant range. In order to prove
this, we will study the evolution of,, in certain specific moments. First, we will define the sucoes®,,,
as follows:

Pn = gn-(N+1)-

Next, we will show thatp,, tends to a fixed point. BYi) in theoreml, we may define,, recursively as
follows:

Po = 9o
Prt1 = max{f(pn, R) — k1 - N, th}

In lemmasl and 2 we will show a relation betweep,, andp,,,1. Both these lemmas are used in
theorem® and3 for showing that the successipp tends to a fixed value.

Lemma 1l The following holds:
i) If th<p, <R-1,thenp,1 = R.
i) If p, =R, thenp,; = R.
i) If p, >R+ 1,thenR < ppi1 < pn.
PROOF
i) We have that:
Pn+1 = max{p, — floor((p,, — R)/k2), th} > max{p, — floor((R — 1 — R)/k2), th}
Sincek, > 1, we have thafloor(—1/k2) = —1, and therefore
Pnt+1 > max{p, — floor(—1/ks), th} = max{p, + 1, th}

Sincep,, > th, we have thap,, + 1 > th, and therefore:

DPrnt1 > max{p, + 1,th} = p, +1 > p,

Besides, we have that, .1 < R. Therefore

Pn+1 = max{f(pn, R)? th} < maX{f(R, R)? R} =R
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i) We have that:
Prnt1 = max{R + floor(ky - R/R) — ki, th} = max{R + k1 — k1, th} = max{R, th}.

SinceR > th, we have that
Pn4+1 = R

iii) We have that:

Pnt1 = max{p, + floor(ky - R/p,) — k1, th}
< max{p, + floor(ky - (pr, — 1)/pn) — k1, th}
< max{p, + k1 + floor(—k1 /p,) — k1, th}
< max{p, + floor(—k1/pn), th}.

Sincek; < th < p, andfloor(—k;/p,) = —1, we have that
Prnt+1 < max{p, — 1, th}.
Sinceth < R andR < p,, we have thath < p,, — 1 and therefore
D1 <max{p, —1,th} =p, — 1 < p,.
Besides, we have that, 1 > R

Pnt1 = max{f(pn, R), th} > max{f(R, R), th} = R.

Theorem 2 If N = 0, then we have that:
dneN VYm>n Pm =R

PROOF  We will prove thatdn > 0 such thap,, = R. Once we have proved it, we will prove this lemma
by applyingii)in lemmal. We will consider these cases:

Caseth <pg < R-1
By i) in lemmal, we have thap; = R. By ii) in lemmal, we have that

VYm > 1 Pm =R
Casepy = R

By ii) in lemmal, we have that

Casepy > R+ 1
By iii) in lemmal we have that:

dn > 0suchthat p, =R
Therefore, byi) in lemmal, we have that

Ym >n Pm =R
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Lemma?2 If N > 1, then we have that:
i) If p, <max{R—Fk;-ko-N —1,th} then
D < Pny1 < max{R —ky - ko - N, th}
i) If p, >max{R —ky-ko- N+ ko —1,th} andth < p, < R, then
max{R — ki -ko - N+ ko — 1, th} < ppi1 < pn
i) If p, >max{R —ky -ko- N+ ky—1,th} andp, > R+ 1, then
max{R — ki - ko - N+ ko — 1,th} < ppy1 <pn
iv) If p, = max{R — ky - ko - N 4+ i, th} where0 < i < ko — 1, then
Pn+1 = Pn
PrROOF
i) Sincep,, < max{R —ky-ky- N —1,th}, we havethap, <R—Fk; -ka- N—1<R

We will prove thatp,, 1 > p,.
Since we have that, < R.

Pn+1 = max{ f(pn, R) — k1 - N, th}

= max{p, — floor((p, — R)/ka) — k1 - N, th}

max{p, — floor((R — k1 - ko - N —1— R)/ka) — k1 - N, th}
max{pn + ki - N — floor(—1/k2) — ky - N, th}

= max{p, — floor(—1/ks), th}.

>
2

Sinceks > 1, we have thafloor(—1/k2) = —1. Therefore
Prt1 > max{p, — floor(—1/ks), th} = max{p, + 1, th}.

Sincep,, > th, we have thap,, + 1 > th. Thereforep, 1 > max{p,+1, th} = p,+1 > p,.
We will prove thatp,, 1 < max{R — k1 - k2 - N, th}.

Pnt1 = max{f(pn, R) — ki - N,th} <max{f(R—ky ko -N—1,R)—Fky-N,th}
SinceR — k1 - ko - N — 1 < R, we have that

pn+1SmaX{R—kl'kQ'N—l—ﬂOOF((R—kl'kQ-N—l—R)/kQ)—kl-N,th}
SmaX{R—kl'kQ'N—1+k1'N+1—k1-N,th}
:maX{R—k1~k2~N,th}

i)  We will prove thatp,,11 < pn.
Sincep,, < R, we have that:

Pn+1 = max{f(pn, R) — k1 - N, th} = max{p, — floor((p, — R)/k2) — k1 - N, th}.
Sincep,, > R — ky - ko - N + ko, we have that:
Prn+1 < max{p, — floor((R— ki - ko - N + ko — R)/ka) — k1 - N, th} = max{p,, — 1, th}.
Sincep,, > th, we have thath < p,, — 1. Therefore:

Prt1 < max{p, — 1,th} =p, — 1 < p,
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We will prove thatp,, 11 > max{R — ki - ko - N + ko — 1, th}
SinceR — ki - ko - N + ko < p, < R, we have that
Pn+1 = max{f(pm R) — k1N, th}
Z Inax{f(R—k1 'kg N+k2,R) —kl N,th}
Z Inax{R—kl 'kg N—l—kg —ﬂOOI‘((R—kl 'kg N—l—kg —R)/kg)—kl N,th}
ZmaX{R—kl-kQ'N-f—kg-f—kl'N—l—l -N,th}
zmaX{R—kl-kg-N+k2—1,th}
i)  We will prove thatp,, 11 < pa.
Sincep,, > R, we have that:
Pnt+1 = max{ f(pn, R) — k1 - N, th}
= max{p, + floor(ky - R/pn) — k1 - (N + 1), th}
< max{pn + ﬂOOI’(kl 'pn/pn) - kl : (N + 1)7 th}
= max{p, — k1 - N, th} < max{p, — 1, th}.
Sinceth < R+ 1 < p,, we have thath < p,, — 1
Prt1 < max{p, — 1,th} =p, — 1 < p,

We will prove thatp,, 11 > max{R — ki - ko - N + ko — 1, th}.
Sincep, > R — ki - ko - N + ko, we have that:

Pnt+1 = max{ f(pn, R) — k1 - N, th}
= max{p, + floor(ky - R/pn) — k1 - (N +1),th}
Zmax{f(R—kl 'kQ'N+k2,R)—/€1-N,th}
Sincek; > 1andN > 1,we havethaR — k1 - ko - N+ ks < R—ko+ ko =R
Pn+1 Z rnax{R—k1 'kg N—l—kg —ﬂOOI‘((R—kl 'kg N—l—kg —R)/kg)—kl N,th}
ZmaX{R—kl-kQ-N—I—kQ—I—kl-N—l—kl-N,th}
:maX{R—kl-kg-N—f—kg—l,th}.
iv) We will consider these two cases:

Casep, =R—ky -ko-N+1i>th
Sincep, < R—ky ko N+kos—1<R—ko+ky—1=R-—1< R,we have that:

Dnt1 = max{p, — floor((p, — R)/k2) — k1 - N, th}
= Inax{pn - ﬂOOI‘((R — kl . kg -N +1— R)/kg) — kl . N, th}
= max{p,, — floor(i/kz), th}
Since0 < i < ko — 1, we have thafloor(i/k2) = 0, and consequently:

Pn+1 = max{p, — floor((i/ka), th} = max{p,, th} = p,

Casep, =th>R—ky-ko-N+1i
We have that:

th — floor((th —R)/ka) — k1 - N < th —floor((R— k1 - ko - N+i— R)/ks) — k1 - N
< th+k - N —floor(i/ks) — ki - N
=th

122



A technique for dynamically measuring and modifying refe@while problem solving

Therefore,

Prnt1 = max{th — floor((th —R)/k2) — k1 - N, th} = th = p,,.

Theorem 3 If NV > 1, we have that:
i) If po <max{R—ky-ko-N,th},thendn >0 Vm >n p, = max{R —ky - ka2 - N, th}.
i)y If po > max{R—ky-ko-N+ko—1,th}, thendn >0Vm >n p,, = max{R—kqi-ka-N+ko—1, th}
i) If max{R—Fky-ko-N+ko—1,th} <pg<max{R—ky-ko-N,th}, thenVm >0 p,, = po.
PROOF

i) By taking into accouni) in lemma2, 3n >0 p, = max{R — k1 - ko - N, th}.
By taking into accouniv) in lemma2, Vim >n  pm,, = pa.

i) By takinginto accouni) inlemma2,3n >0 p, = max{R —k; -ko- N + ko — 1,th}.
By taking into accouniv) in lemma2, Vm >n  p,, = pn.

iii) By taking into account) in lemma2, vim >0 p,, = po.

4 Conclusions

As has been seen, assigning relevance values to the val@usrdgs shaping a problem representation is
really useful in order to solve it. This paper describes saee techniques for establishing and modifying
such relevance values within the performance of a computdylegm solver we have implemented and
which, unlike its predecessors, is able to execute crub@hges in the problem representation in virtually
any moment of the solving process. These representatiargelsasoccur as an autonomous fulfillment of
our problem solver, with no need for the user to order or attithem, being related to the measure of
relevance values in the way described in this paper. Thuspatic representation changes within the
system, dependent on relevance values of the problem etenadfer a valid simulation of unconscious
human behavior while problem solving. Further specific idietbout the architecture and performance of
our problem solver are to be found in some of the referendesvbe
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