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LUR renormings through Deville’s Master Lemma

J. Orihuela and S. Troyanski

Abstract. A completely geometrical approach for the construction of locally uniformly rotund norms
and the associated networks on a normed spaceX is presented. A new proof providing a quantitative
estimate for a central theorem by M. Raja, A. Moltó and the authors is given with the only external use of
Deville-Godefory-Zizler decomposition method.

Renormamientos LUR a trav és del Lema Maestro de Deville

Resumen. Presentamos una aproximación completamente geométricapara la construcción de normas
localmente uniformemente convexas y sus network asociadasen un espacio normadoX. Se da una nueva
demostración, con estimaciones cuantitativas, de un resultado central de M. Raja, A. Moltó y los autores
usando únicamente el método de descomposición de Deville-Godefroy-Zizler.

1 Introduction

Let (X, ‖ · ‖) be a normed space. The norm‖ · ‖ inX is said to be locally uniformly rotund (LUR for short)
if

[

lim
n

(2‖x‖2 + 2‖xn‖
2 − ‖x+ xn‖

2) = 0
]

=⇒ lim
n
‖x− xn‖ = 0

for any sequence(xn) andx in X . The construction of this kind of norms in separable Banach spaces lead
Kadec to the proof of the existence of homeomorphisms between all separable Banach spaces, [1]. For a
non separable Banach space is not always possible to have such an equivalent norm: the spacel∞ does not
have it, see for instance p. 74 in [2]. When such a norm exists its construction is usually based on a good
system of coordinates that we must have on the normed spaceX from the very beginning, for instance a
biorthogonal system,

{ (xi, fi) ∈ X ×X∗ : i ∈ I }

with some additional properties such as being a strong Markushevich basis, [20]. Sometimes there is
not such a system and the norm is constructed providing enough convex functions on the given spaceX
adding all of them up with the powerful lemma of Deville, see lemma VII 1.1 in [2]. Deville’s lemma has
been extensively used by R. Haydon in his seminal papers [6], [7], as well as in [8]. It is based on the
construction of an equivalentLUR norm on a weakly compactly generated Banach space by the second
named author in [19], where the convex functions are distances to suitable finite dimensional subspaces
as well as evaluations on some coordinate functionals in thedual spaceX∗; see [20, Theorem 7.3]. We
have been able to show the connection between biorthogonal systems and LUR renormings in [17]. Using
Deville’s lemma we have proved the following:
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Theorem 1 ([ 17]) LetX be a Banach space andF ⊂ X∗ a norming subspace in the dual spaceX∗. X
has an equivalentσ(X,F )-lower semicontinuous and locally uniformly rotund norm if, and only if, there
are countably many families of convex andσ(X,F )-lower semicontinuous functions{ϕn

i : X → R+ :
i ∈ In }∞n=1 such that there are open subsets

Gn
i ⊂ {ϕn

i > 0} ∩ {ϕn
j = 0 : j 6= i, j ∈ In }

with {Gn
i : i ∈ In, n ∈ N } a basis for the norm topology ofX .

The method to prove Theorem1 is mainly based on Stone’s theorem about paracompactness ofmetric
spaces, [16]. Theσ-discrete basis for the norm topology of a normed spaceX can be refined to obtain the
basis described in Theorem1. More recent contributions show an interplay between this method and the
one based on Deville’s lemma,[7, 11, 12]. It is our intention here to give a straightforward proof ofthe
main renorming construction in [13, 18]. This result is in the core of the theory, and we shall prove it with
a geometrical approach based just on Deville’s lemma, without any use of paracompactness at all. Indeed,
the Theorem we are going to prove reads as follows:

Theorem 2 ([ 18, 13]) LetX be a normed space andF a norming subspace in the dualX∗. X admits
a σ(X,F )-lower semicontinuous and equivalent locally uniformly rotund norm if, and only if, there is a
sequence(An) of subsets ofX such that for everyx ∈ X and everyǫ > 0 there is aσ(X,F )-open half
spaceH and a positive integerp with x ∈ Ap ∩H anddiam(Ap ∩H) ≤ ǫ.

The known proofs of this result go through a delicate processof convexification of the setsAn needed
to construct a countable family of seminorms, and they involve Stone’s theorem if additional information on
the structure of the setsAn is required, see [16, 18, 17]. We are going to present here a different approach
where either Stone’s theorem or the convexification processare not needed any more. We shall do it by
developing our main result here with the use of Deville’s Master Lemma only, indeed we are going to prove
the following localization result showing that for any family of slices of a bounded setA of a normed space
X , we can always construct an equivalent norm such that theLUR condition for a sequence(xn), and a
fixed pointx in A, implies that the sequence eventually belongs to slices containing the pointx,too. When
the involved slices have small diameter, then the sequence is eventually close tox. If the diameter can be
made small enough, then the sequence(xn) converges tox and the norm will be locally uniformly rotund
at the pointx. The precise statement reads as follows:

Theorem 3 (Slice Localization Theorem) LetX be a normed space with a norming subspaceF in
X∗. LetA be a bounded subset inX andH a family ofσ(X,F )-open half spaces such that for every
H ∈ H the setA ∩ H is non empty. Then there is an equivalentσ(X,F )-lower semicontinuous norm
‖ · ‖H,A such that for every sequence(xn)n∈N in X andx ∈ A ∩H for someH ∈ H, if

lim
n

(

2‖xn‖
2
H,A + 2‖x‖2

H,A − ‖x+ xn‖
2
H,A

)

= 0,

then there is a sequence of open half spaces{Hn ∈ H : n = 1, 2, . . . } such that

1. There isn0 ∈ N such thatx, xn ∈ Hn for n ≥ n0 if xn ∈ A.

2. For everyδ > 0 there is somenδ such that

x, xn ∈ (co(A ∩Hn) +B(0, δ))
σ(X,F )

for all n ≥ nδ.

We use standard notation in the geometry of Banach spaces andtopology that can be found in [9, 4]
and [3, 10]. In particular,BX (resp.SX ) is the unit ball (resp. the unit sphere) of a normed spaceX . If F
is a subset ofX∗, thenσ(X,F ) denotes the topology of pointwise convergence onF . Givenx∗ ∈ X∗ and
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x ∈ X , we write〈x∗, x〉 andx∗(x) to indistinctively denote the evaluation ofx∗ atx. If D is a subset of a
normed spaceX we denote byco(D) the convex hull ofD. If x ∈ X andδ > 0 we denote byB(x, δ) the
norm open ball centered atx of radiusδ. A subspaceF ⊂ X∗ is said to be a norming subspace in the dual
spaceX∗ when

‖x‖F := sup{ 〈x, f〉 : f ∈ BX∗ ∩ F }

define an equivalent norm onX . When the original norm coincides with‖ · ‖F , the subspaceF is called
1-norming.

2 The tool

A main result here is Theorem3 above. It is a refinement of the Connection Lemma we developedin [17].
The difference in the present context is that we do not have any rigidity condition here for the family of
slices. In [17] we have slices describing a discrete family of sets. Here wehave, instead, an arbitrary family
of slices without any additional assumption at all. We need the following definition:

Definition 1 ([ 17]) LetX be a normed space andF a norming subspace in the dual spaceX∗. For a
bounded and convex subsetC ofX∗∗ we define

F − dist(x,C) := inf
{

sup
{

|< x− c∗∗, f >| : f ∈ BX∗ ∩ F
}

: c∗∗ ∈ C
}

.

It has been proved in [17] that theF−dist(·, C) is a convex,σ(X,F )-lower semicontinuous and1-Lipschitz
map fromX to R+. We are going to make extensive use of this kind of functions in our construction of the
LUR norm.
PROOF OFTHEOREM 3. We shall considerσ(X,F )-lower semicontinuous and convex functions(ϕH)
and(ψH) for everyH ∈ H defined as follows:

ϕH(x) := F − dist
(

x,Hc ∩ co(A)
σ(X∗∗,X∗)

)

for everyx ∈ X , where we denote byHc the closed half space equal to the complementary of the open
half spaceH . Let us choose a pointaH ∈ H ∩ A and setDH = co(H ∩ A) for everyH ∈ H, and
Dδ

H := DH + B(0, δ), whereB(0, δ) := {x ∈ X : ‖x‖ < δ } for everyδ > 0 andH ∈ H. We are

going to denote bypδ
H the Minkowski functional of the convex bodyDδ

H

σ(X,F )
− aH . Then we define the

σ(X,F )-lower semicontinuous normpH by the formula

pH(x)2 =
∞
∑

n=1

1

n22n

(

p
1/n
H (x)

)2

for everyx ∈ X . Finally we define the nonnegative, convex, andσ(X,F )-lower semicontinuous function
ψH asψH(x)2 := pH(x − aH)2 for everyx ∈ X . We are now in position to apply R. Deville’s Master
Lemma, see [2, lemma VII.1.1, p. 279], to get an equivalent norm‖ · ‖H,A onX such that the condition

lim
n

(

2 ‖xn‖
2
H,A + 2 ‖x‖2

H,A − ‖xn + x‖2
H,A

)

= 0

for a sequence{xn : n ∈ N } andx in X implies that there exists a sequence of indexes(Hn) in H such
that

1. limn ϕHn
(x) = limn ϕHn

(xn) = limn ϕHn
((x + xn)/2) = sup {ϕH(x) : H ∈ H} and

2. limn

[

(1/2)ψ2
Hn

(xn) + (1/2)ψ2
Hn

(x) − ψ2
Hn

((xn + x)/2)
]

= 0
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If the given pointx belongs to one of the open half spacesH0 ∈ Hǫ then we have thatϕH0
(x) > 0 and

so we have that:
sup {ϕH(x) : H ∈ Hǫ} ≥ ϕH0

(x) > 0,

condition1 provide us with an integern0 such that

ϕHn
(x) > 0, ϕHn

(xn) > 0, ϕHn

(

(x+ xn)/2
)

> 0

whenevern ≥ n0, from where our conclusion1 in the Theorem follows. Moreover, condition2 above and
standard convexity arguments imply now that for every positive integerq we have that

lim
n

[

(1/2)
(

p
1/q
Hn

(xn − aHn
)
)2

+ (1/2)
(

p
1/q
Hn

(x− aHn
)
)2

−
(

p
1/q
Hn

((xn + x)/2 − aHn
)
)2

]

= 0,

consequently,

lim
n

[

p
1/q
Hn

(xn − aHn
) − p

1/q
Hn

(x− aHn
)
]

= 0, ∀q ∈ N−

If we fix a positive numberδ, an open half spaceH ∈ H andy ∈ A ∩H we have that

y − aH + (y − aH)δ‖y − aH‖−1 ∈ B(0, δ) + (y − aH) ⊂ Dδ
H − aH ,

thus
[

(1 + δ)‖y − aH‖−1
]

(y − aH) ∈ (Dδ
H − aH)

and therefore
pδ

H(y − aH) <
[

(1 + δ‖y − aH‖−1
]−1

sinceDδ
H − aH is a norm open set.

Let us choose now the integerq such that1/q < δ, and take an integern ≥ n0.We know thatx ∈ A∩Hn

sinceϕHn
(x) > 0 and the given pointx belongs toA. Therefore

p
1/q
Hn

(x− aHn
) <

[

(1 + (1/q)‖x− aHn
‖−1

]−1
,

and we can find a number0 < ξ < 1 such that

p
1/q
Hn

(x− aHn
) < 1 − ξ,

for all n ≥ n0, by the boundness ofA. If we now take the integern big enough to have

p
1/q
Hn

(xn − aHn
) < 1 − ξ,

we arrive to the fact thatxn − aHn
∈ Dδ

Hn
− aHn

, and indeedxn ∈ (co(A ∩Hn) +B(0, δ))
σ(X,F )

, so the
proof is over. �

Thus, given any family of slices on a given setA of a normed space, we have seen how it is always
possible to construct equivalent norms such that theLUR condition on a given sequence(xn) and a fixed
pointx implies that the sequence eventually belongs to halfspacesof the given family containing the point
x too.

3 LUR renormings

We can prove now a quantitative version for the main results in [13] and [18]. It corresponds with the
renorming implication of Theorem2, where the hypothesis provide the conclusion for everyǫ > 0 and
everyx ∈ X .
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Theorem 4 LetX be a normed space andF ⊂ X∗ be a1-norming subspace forX . Givenǫ we assume
that there are subsetsAn such that for everyx ∈ ∪∞

n=1An we can findp ∈ N and aσ(X,F )-open half
spaceH such thatx ∈ Ap ∩ H anddiam(Ap ∩ H) ≤ ǫ. ThenX admits an equivalentσ(X,F )-lower
semicontinuous norm9·9 such that the condition

lim
n

(29xn92 + 29x92 − 9x+ xn92) = 0

implies that for everyδ > 0 there is some integernδ such that for alln ≥ nδ we have‖xn − x‖ < ǫ + δ
wheneverx ∈ ∪∞

n=1An.

PROOF. Let us consider the familyHn of all σ(X,F )-open half spaces such thatAn ∩ H 6= ∅ and
diam(An ∩H) ≤ ǫ. If there is not such slice for some setAn we do not consider it at all. If we apply the
former Theorem for the familyHn and the setAn we get an equivalent norm‖ · ‖n that verifies conditions 1
and 2 of Theorem3 for any sequence(xm) andx such that

lim
m

(

2‖xm‖2
n + 2‖x‖2

n − ‖x+ xm‖2
n

)

= 0.

Let us takecn such that‖ · ‖n ≤ cn‖ · ‖. If we set

9x92 :=

∞
∑

n=1

1

cn2n
‖x‖2

n

for everyx ∈ X , we obtain the renorming we are looking for. Indeed, if

lim
n

(

29xn92 + 29x92 − 9|x+ xn|9
2
)

= 0

by standard convex arguments we know that

lim
n

(

29xn92
p + 29x92

p − 9x+ xn92
p

)

= 0

for every positive integerp. If x ∈ Aq and there is aσ(X,F )-open half spaceH such thatx ∈ Aq ∩H and
diam(Aq ∩H) ≤ ǫ, we have thatH ∈ Hq anddiam(co(Ap ∩H)) ≤ ǫ, too. Moreover, the condition 2 of
Theorem3 tell us that there is a sequence of half spacesHn ∈ Hq such that for everyδ > 0 there is some
nδ with

x, xn ∈ (co(Aq ∩Hn) +B(0, δ))
σ(X,F )

for all n ≥ nδ. SinceF is 1-norming the original norm isσ(X,F )-lower semicontinuous and we have
‖x− xn‖ ≤ ǫ+ δ for everyn ≥ nδ, as we wanted to prove. �

Corollary 1 Let X be a Banach space andF ⊂ X∗ a norming subspace forX . Let us assume that
Z ⊂ X is a subspace ofX with a sequence of subsets(An) ⊂ Z such that for everyǫ > 0 andz ∈ Z there
is somep ∈ N together with aσ(X,F )-open half spaceH such thatz ∈ H ∩Ap anddiam(Ap ∩H) ≤ ǫ.
Then the whole spaceX admits an equivalentσ(X,F )-lower semicontinuous norm9·9 such all points in
the subspaceZ are LUR points for the new norm in the whole ofX , i.e. for every pointz ∈ Z and every
sequence(xn) in X such that

lim
n

(29xn92 + 29z92 − 9z + xn92) = 0

we will have thatlimn xn = z in norm.
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PROOF. Without loss of generality we may and do assume that the original norm is‖ · ‖F ; i.e.F is a1-
norming subspace. If we perform the construction in Theorem4 for a fixedǫ > 0 we obtain the equivalent
σ(X,F )-lower semicontinuous norm‖ · ‖ǫ. Let us takedn such that‖ · ‖1/n ≤ dn‖·‖1/n. If we set

9x92 :=

∞
∑

n=1

1

dn2n
‖x‖2

1/n

for everyx ∈ X , we obtain the renorming we are looking for. Indeed, as above, if

lim
n

(29xn92 + 29z92 − 9z + xn92) = 0,

by standard convex arguments we know that

lim
n

(29xn92
1/p + 29z92

1/p − 9z + xn92
1/p) = 0

for every positive integerp, and Theorem4 says that9xn − z9 < 2/p for n ≥ n1/p wheneverz ∈ Z. �

Remark 1 The corollary provide us with a geometrical proof of the renorming implication in Theorem2
based on the Deville-Godefroy-Zizler decomposition method only.

Corollary 2 LetX andY be normed spaces with1-norming subspacesF ⊂ X∗,G ⊂ Y ∗ and

T : X −→ Y

a bounded linear map, continuous for theσ(X,F ) andσ(Y,G) topologies. Givenǫ > 0 we assume there
are subsetsAn ⊂ Y such that for everyy ∈ ∪∞

n=1An we can findp ∈ N and aσ(Y,G)-open half spaceL
such thaty ∈ Ap∩L anddiam(Ap∩L) ≤ ǫ. ThenX admits an equivalentσ(X,F )-lower semicontinuous
norm9 ·9T such that the condition

lim
n

(

29xn92
T + 29x92

T − 9x+ xn92
T

)

= 0

implies that for everyδ > 0 there is some integernδ such that for alln ≥ nδ we have

9T (xn) − T (x)9 < ǫ+ δ‖T ‖

wheneverT (x) ∈ ∪∞
n=1An. In particular, whenY admits an equivalentσ(Y,G)-lower semicontinuous

andLUR norm we will have that the condition

lim
n

(29xn92
T + 29x92

T − 9x+ xn92
T ) = 0

implies thatlimn T (xn) = T (x) in the norm ofY .

PROOF. Let us fix the integern and apply Theorem3 to the setT−1(An) together with the familyHn of
σ(X,F )-open half spaces given byT−1(L) for everyL, aσ(Y,G)-open half space, such thatAn ∩ L 6= ∅
anddiam(An ∩ L) ≤ ǫ. We will get an equivalent norm‖ · ‖n onX such that, the condition

lim
m

(

29xm92
n + 29x92

n − 9x+ xm92
n

)

= 0

implies thatxmandx are in the sets

co(T−1(An) ∩ T−1(Lm)) +B(0, δ)
σ(Y,G)

for m ≥ mδ, wherediam(An ∩ Lm) ≤ ǫ, and therefore‖T (xm) − T (x)‖ ≤ ǫ + δ‖T ‖ for all m ≥ mδ

wheneverT (x) ∈ An ∩ L with someσ(Y,G)-open half spaceL anddiam(An ∩ L) ≤ ǫ. Adding all this
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norms we get the equivalent norm‖ · ‖T we are looking for. Indeed, let us takehn such that‖ · ‖n ≤ hn‖ · ‖;
if we set

9x92 :=
∞
∑

n=1

1

hn2n
‖x‖2

n

for everyx ∈ X , we obtain the renorming we are looking for. The proof follows the same arguments as
above. When Y admits theLUR norm we have the former conditions for allǫ > 0 by Theorem2, and the
conclusion then follows. �

4 The network construction

Our approach forLUR renormings is also based on the topological concept ofnetwork. A family of subsets
N in a topological space(T, T ) is a network for the topologyT if for every open setW ∈ T , and every
x ∈W , there is someN ∈ N such thatx ∈ N ⊂W .

Let us recall the following definitions and results:

Definition 2 Let X be a normed space andF a norming subspace in the dualX∗. A familyB :=
{Bi : i ∈ I } of subsets onX is calledσ(X,F )-slicely isolated (orσ(X,F )-slicely relatively discrete) if
it is a disjoint family of sets such that for every

x ∈
⋃

{Bi : i ∈ I }

there exist aσ(X,F )-open half spaceH andi0 ∈ I such that

H
⋂ ⋃

{Bi : i ∈ I, i 6= i0 } = ∅ and x ∈ Bi0 ∩H.

A main result, obtained by using the approach of [16], is the following one; it is equivalent to Theorem2
if we have in mind Stone’s theorem on the paracompactness of ametric space, see [16, chapter III].

Theorem 5 ([ 16, chapter III, Theorem 3.1, pag 49]) LetX be a normed space andF a norming sub-
space in the dualX∗. The spaceX admits an equivalentσ(X,F )-lower semicontinuous and locally uni-
formly rotund norm if, and only if, the norm topology has a networkN that can be written asN = ∪∞

n=1Nn

where each of the familiesNn is σ(X,F )- slicely isolated.

In the monograph [16] the network point of view for locally uniformly rotund renormings is the central
one. The approach to construct networks make extensive use of Stone’s theorem on the paracompactness of
metric spaces. We shall construct in this section the network that characterize the property of being locally
uniformly rotund renormable, but our approach will be completely geometrical as the one presented in [14]
for the weak topology, see lemma 3.19 in [16] too. We have presented the next result in [17] but using
Stone’s theorem in the construction.

Theorem 6 LetX be a normed space with aσ(X,F )-lower semicontinuous and locally uniformly rotund
norm for some subspaceF ⊂ X∗. Then the norm topology admits a networkN such thatN = ∪∞

n=1Nn

where the familiesNn are norm discrete,σ(X,F )-slicely isolated, and consisting of sets which are the
difference of convex andσ(X,F )-closed subsets ofX for everyn ∈ N.

PROOF. In aLUR norm all points in the unit sphere are denting points, then for ǫ > 0 fixed we will have a
family of σ(X,F )-open half spacesHǫ, covering the unit sphereSX of ourσ(X,F )-lower semicontinuous
and LUR norm, and such that‖ · ‖ − diam(H ∩ BX) < ǫ for all H ∈ Hǫ. Let us choose a well order
relation for the elements inHǫ and let us write

Hǫ = {Hγ : γ < Γ }
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where we denoteHγ = { x ∈ X : fγ(x) > λγ }, fγ ∈ BX∗ ∩ F .
We set

Mγ := Hγ ∩BX \
(

⋃

{Hβ ∩BX : β < γ }
)

for everyγ < Γ. Let us define the setsMn
γ := { x ∈ Mγ : fγ(x) ≥ λγ + 1/n }. It follows that, when

x ∈Mn
γ andy ∈Mn

β for γ 6= β then we have either

fγ(x) − fγ(y) ≥ 1/n (whenγ < β), (1)

or
fβ(y) − fβ(x) ≥ 1/n (whenβ < γ ), (2)

but in any case
‖x− y‖ ≥ 1/n (3)

since the linear functionalsfγ , fβ are assumed to be inBX∗ ∩ F . If we fix x ∈ SX theLUR condition of
the norm gives a slice

G = { y ∈ BX : g(y) > µ }

with g(x) > µ, g ∈ BX∗ ∩F and‖ · ‖ − diam(G) < 1/n, thusG meets at most one member of the family
of sets{Mn

γ : γ < Γ } by (3).
These families of closed and convex subsets ofX cover the unit sphereSX and they suffice to describe

the network there. Nevertheless, to go over the whole spaceX we need to make the difference of closets
convex sets. Indeed, takex ∈ X \ {0}, andy := x/‖x‖. If we takeγ0 < Γ so thaty ∈ Mγ0

andn big
enough to havefγ0

(y) > λγ0
+ 1/n, we will have a rational number0 < µx < 1, close enough to one,

such thatfγ0
(µxy) > λγ0

+ 1/n. TheLUR condition of the norm tell us that there isδx > 0 such that
‖(y + z)/2‖ > 1 − δx implies that‖y − z‖ < 1/n whenever the condition‖z‖ ≤ 1 holds.

Let us take a rational numberρ such that

ρ > ‖x‖ > ρ(1 − δx) and ρµx < ‖x‖.

Thenx ∈ ρMn
γ0

and ‖ · ‖ − diam(ρMn
γ0

) < ρǫ. Moreover, if we choosegx ∈ BX∗ ∩ F such that
gx(x) > ρ(1 − δx) then, for anyz ∈ ∪{ ρMn

γ : γ < Γ } with gx(z) > ρ(1 − δx), we will have

gx(z/ρ) > 1 − δx and gx(y) >
ρ(1 − δx)

‖x‖
> 1 − δx,

thus‖ y+z/ρ
2 ‖ > 1− δx, and we will have‖y− z/ρ‖ < 1/n, from where it follows thatγ = γ0. Therefore,

if we consider setsMn,p
γ := { x ∈Mn

γ ∩ SX : δx > 1/p }, and we take the family

{ ρMn,p
γ \ ρ(1 − 1/p)BX : γ < Γ }

for rational numbersρ and integersp, n fixed, we form an slicely isolated family of sets. All together, with
the same construction done for everyǫ > 0 we obtain a family

⋃

{

{ ρMn,p
γ (ǫ) \ ρ(1 − 1/p)BX : γ < Γ } : ρ ∈ Q, n, p ∈ N, ǫ > 0

}

which is a network for the norm topology. Takingǫ = 1/r, r = 1, 2, . . . we get the network for the norm
we are looking for. �

Remark 2 Let us observe that we have completed a geometrical proof of Theorem2. Indeed, Theorem6
provides us with theσ(X,F )-slicely isolated networkN = ∪∞

n=1Nn for the norm topology. SettingAq :=
∪{N : N ∈ Nq } for q ∈ N and givenx ∈ X and ǫ > 0, if we takep andM ∈ Np with x ∈ M ⊂
B(x, ǫ/2), then by the slicely isolatedness property of the familyNp there is aσ(X,F )-open half spaceH
with x ∈ H ∩ Ap ⊂ M . Thus‖ · ‖ − diam(H ∩ Ap) ≤ ‖·‖ − diam(M) ≤ ǫ. The reverse implication
follows from corollary1.
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Let us remark that the spacel∞ is a complemented subspace of a Banach spaceX with a Markushevich
basis{ (xi, fi) ∈ X ×X∗ : i ∈ I } by a result of Plichko, [4, Theorem 6.45], and thatl∞ does not admit
equivalentLUR norm, [2, Theorem II.7.10]. It follows that the linear span

E := span{ xi : i ∈ I }

give us an example of a normed space with an equivalentLUR norm, [5, Theorem 3.48] or [15, example
2], since the proof is valid for a normed space, but such that its completionX doest not have it.

The network provides us with criteria to see when the closureof a LUR renormable space could be
LUR renormable too. For instance, we can prove the following:

Theorem 7 LetE be a normed space with a norming subspaceF ⊂ E∗ andX its completion. There is
a networkN = ∪Nn of the norm topology onE where each of the familiesNn is σ(E,F )-slicely isolated
and such that the family of sets:

B := {N + ǫBX : N ∈ N , ǫ > 0 }

is a basis for the norm topology ofX if, and only if, the completionX admits an equivalentσ(X,F )-lower
semicontinuous and LUR equivalent norm.

In the proof we are going to use the following result that we have obtained in [17].

Proposition 1 LetX be a normed space with a norming subspaceF ⊂ X∗ and ‖ · ‖F the equivalent
norm associated with it. Given aσ(X,F )-slicely isolated familyA := {Ai : i ∈ I } there exist de-
compositions with increasing sequences of subsets(An

i )n, Ai = ∪∞
n=1A

n
i for everyi ∈ I, such that the

families
{An

i +B‖·‖F
(0, 1/4n) : i ∈ I }

areσ(X,F )-slicely isolated and norm discrete for everyn ∈ N.

PROOF OFTHEOREM 7. If the normed spaceX admits an equivalentσ(X,F )-lower semicontinuous
andLUR norm, we have proved in [17] that it has a basis of the norm topologyB = ∪Bn such that every
one of the families of open setsBn is σ(X,F )-slicely isolated and norm discrete. It now follows that
Nn := Bn ∩ F are families of non- void subsets inE sinceE is dense inX , and they areσ(E,F )-slicely
isolated and norm discrete withN := ∪∞

n=1Nn a basis of the norm topology ofE. It is clear that the family
of sets

B := {N + ǫBX : N ∈ N , ǫ > 0 }

is a basis of the norm topology ofX . Indeed, since every setB ∈ B is open andE is dense we have
B ⊂ B ∩ E. This fact together with the regularity of the norm topologycomplete the proof for this
implication.

Let us prove now the converse result. Without loss of generality we can assume that the given norm in
X coincides with‖ · ‖F . Let us fix aσ-slicely isolated (forσ(E,F )) networkN of the norm topology inE
such that the family of sets

B := {N + ǫBX : N ∈ N , ǫ > 0 }

is a basis of the norm topology ofX . Let us writeN = ∪Nn where each of the familiesNn is aσ(E,F )-
slicely isolated family of sets inE, thusσ(X,F )-slicely isolated inX , too. We apply the Proposition1 and
we can write:

Nn := {Nn
j : j ∈ In },

Nn
i =

⋃∞
m=1N

n
i (m), whereNn

i (1) ⊂ Nn
i (2) ⊂ · · · ⊂ Nn

i (m) ⊂ · · · and the families

{Nn
i (m) + (1/4m)BX) : i ∈ In },
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for every fixed integerm, areσ(X,F )-slicely isolated and norm discrete. Moreover, the families
⋃

n,m∈N

{Nn
i (m) : i ∈ In }

form aσ(X,F )-slicely isolated network of the norm topology on the whole spaceX as we are going to
see now. Let us takex ∈ X and ǫ > 0. Then there is some pair of positive integersp, q such that
x ∈ N

p

i (q) ⊂ B(x, ǫ) for somei ∈ Ip. Indeed, if not we will have some pointxp,q ∈ Np
i (q)∩(X \B(x, ǫ))

whenever
x ∈ Np

i (q) + δBX ⊂ B(x, ǫ)

for somep, q ∈ N, somei ∈ Ip and someδ > 0. Let us begin with the first integersp1 such that

x ∈ Ni + δ1BX ⊂ B(x, ǫ),

for somei ∈ Ip1
and someδ1 > 0. Thus we can select the first integerq1 such that

x ∈ Np1

i (q1) + δ1BX ⊂ B(x, ǫ)

and takex1 ∈ Np1

i (q1) ∩ (X \ B(x, ǫ)) by our assumption. Taking0 < δ2 small enough we will have
B(x, δ2) ⊂ B(x, ǫ) too. Let us take again first integersp2 such that

x ∈ Ni + δ3BX ⊂ B(x, δ2),

for somei ∈ Ip2
and someδ3 > 0 together with the first integerq2 such that

x ∈ Np2

i (q2) + δ3BX ⊂ B(x, δ2),

then we can take again a pointx2 ∈ Np1

i (q1)∩ (X \B(x, ǫ)) together with0 < δ4 < δ2/2. If we continue
in this way, by induction we obtain a sequence(xn) in the closed setX \B(x, ǫ) with a decreasing sequence
(δ2n) ↓ 0 such thatxn ∈ B(x, δ2n), a contradiction, and the proof is over.�
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