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LUR renormings through Deville’s Master Lemma

J. Orihuela and S. Troyanski

Abstract. A completely geometrical approach for the constructionogglly uniformly rotund norms
and the associated networks on a normed spéds presented. A new proof providing a quantitative
estimate for a central theorem by M. Raja, A. Molt6 and thihars is given with the only external use of
Deville-Godefory-Zizler decomposition method.

Renormamientos LUR atrav és del Lema Maestro de Deville

Resumen. Presentamos una aproximacion completamente geompaieda construccion de normas
localmente uniformemente convexas y sus network asoc&das espacio normad¥. Se da una nueva
demostracion, con estimaciones cuantitativas, de uitaélsucentral de M. Raja, A. Molto y los autores
usando Gnicamente el método de descomposicion de B&vddefroy-Zizler.

1 Introduction

Let (X, | -||) be anormed space. The nolim|| in X is said to be locally uniformly rotund.UR for short)
if
[l (2l + 2l ~ o+ ) = 0] = limz — | =0

for any sequencgr,,) andz in X. The construction of this kind of norms in separable Bangettes lead
Kadec to the proof of the existence of homeomorphisms betaéeseparable Banach spaceH, [For a
non separable Banach space is not always possible to havaswrjuivalent norm: the spak® does not
have it, see for instance p. 74 i#][ When such a norm exists its construction is usually based good
system of coordinates that we must have on the normed spdcem the very beginning, for instance a
biorthogonal system,

{(l‘i,fi)EXXX*:iEI}

with some additional properties such as being a strong Mdudwich basis,Z0]. Sometimes there is
not such a system and the norm is constructed providing énooigvex functions on the given spa&e
adding all of them up with the powerful lemma of Deville, seenma VII 1.1 in P]. Deville’s lemma has
been extensively used by R. Haydon in his seminal pag#@rg{], as well as in §]. It is based on the
construction of an equivalemfUR norm on a weakly compactly generated Banach space by thedgeco
named author in19], where the convex functions are distances to suitableefitiinensional subspaces
as well as evaluations on some coordinate functionals irdtiz spaceX *; see PO, Theorem 7.3]. We
have been able to show the connection between biorthoggstaiss and LUR renormings inf]. Using
Deville’s lemma we have proved the following:
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Theorem 1 ([ 17]) LetX be a Banach space anfd C X* a norming subspace in the dual spaké. X
has an equivalent (X, F')-lower semicontinuous and locally uniformly rotund normaifid only if, there
are countably many families of convex am(lX, F')-lower semicontinuous functionsy!: X — R* :
i € I, }22, such that there are open subsets

Gi c{ei >0 n{pf =0:j#i,jeln}
with { G : i € I,,, n € N } a basis for the norm topology df.

The method to prove Theoreins mainly based on Stone’s theorem about paracompactnesstat
spaces,16]. Thes-discrete basis for the norm topology of a normed sp8azan be refined to obtain the
basis described in Theoretn More recent contributions show an interplay between threshod and the
one based on Deville’s lemma,[11, 12]. It is our intention here to give a straightforward prooftog
main renorming construction iiB, 18]. This result is in the core of the theory, and we shall praweith
a geometrical approach based just on Deville’s lemma, withoy use of paracompactness at all. Indeed,
the Theorem we are going to prove reads as follows:

Theorem 2 ([ 18, 13]) Let X be a normed space anfd a norming subspace in the dual*. X admits
a o(X, F)-lower semicontinuous and equivalent locally uniformlyured norm if, and only if, there is a
sequencgA,,) of subsets o such that for every: € X and everye > 0 there is ao(X, F')-open half
spaceH and a positive integep with z € A, N H anddiam(A, N H) <e.

The known proofs of this result go through a delicate prooésenvexification of the setd,, needed
to construct a countable family of seminorms, and they ww&@tone’s theorem if additional information on
the structure of the set4,, is required, seelfs, 18, 17]. We are going to present here a different approach
where either Stone’s theorem or the convexification proaessiot needed any more. We shall do it by
developing our main result here with the use of Deville’s Matemma only, indeed we are going to prove
the following localization result showing that for any fdynif slices of a bounded set of a normed space
X, we can always construct an equivalent norm such thatthie condition for a sequende:,,), and a
fixed pointz in A, implies that the sequence eventually belongs to sliceggung the point:,too. When
the involved slices have small diameter, then the sequeneeecintually close ta. If the diameter can be
made small enough, then the sequeficg converges ta: and the norm will be locally uniformly rotund
at the pointz. The precise statement reads as follows:

Theorem 3 (Slice Localization Theorem) Let X be a normed space with a norming subsp&te
X*. Let A be a bounded subset i andH a family of (X, F')-open half spaces such that for every
H € H the setA N H is non empty. Then there is an equivaleiifX, F')-lower semicontinuous norm
|l - [|7,4 such that for every sequente, ),cn in X andz € AN H for someH € H, if

lim (2]|zall3 4 + 2|27, 4 = Iz + 2al3,4) =0,
then there is a sequence of open half spdcHs, € H: n =1,2,...} such that

1. Thereisng € N such thatz, x,, € H,, forn > ng if z,, € A.

2. For everys > 0 there is somes such that

2, an € (AN H) + B0,8))

for all n > ns.

We use standard notation in the geometry of Banach space®polbgy that can be found ird] 4]
and [3, 10]. In particular,Bx (resp.Sx) is the unit ball (resp. the unit sphere) of a normed sp¥céf F'
is a subset oX*, theno (X, F') denotes the topology of pointwise convergencéorGivenz* € X* and
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x € X, we write(z*, x) andz* (z) to indistinctively denote the evaluation of atx. If D is a subset of a
normed spac& we denote byo(D) the convex hull ofD. If z € X andd > 0 we denote byB(z, §) the
norm open ball centered atof radiusd. A subspacé” C X* is said to be a norming subspace in the dual
spaceX* when

lz||F :=sup{ (z, f): f € Bx-NF}

define an equivalent norm oK. When the original norm coincides with || 7, the subspacé’ is called
1-norming.

2 The tool

A main result here is TheoreBabove. It is a refinement of the Connection Lemma we developEd/].
The difference in the present context is that we do not hayerigidity condition here for the family of
slices. In [L7] we have slices describing a discrete family of sets. Herbawe, instead, an arbitrary family
of slices without any additional assumption at all. We néwdfollowing definition:

Definition 1 ([ 17]) Let X be a normed space ankl a norming subspace in the dual spaké&. For a
bounded and convex subgebf X ** we define

F —dist(z,C) :=inf {sup{|<z— ", f>|: feBx-NF}: ™ eC}.

It has been proved iri[/] that theF —dist (-, C') is a convexg (X, F')-lower semicontinuous anidLipschitz
map fromX toR*. We are going to make extensive use of this kind of functionsir construction of the
LUR norm.
PROOF OFTHEOREM 3.  We shall consides (X, F')-lower semicontinuous and convex functiqisy )
and(y g ) for everyH € 'H defined as follows:

or(z) == F — dist (:C,HC N CO(A)U(X "X ))
for everyz € X, where we denote byl ¢ the closed half space equal to the complementary of the open

half spaceH. Let us choose a pointy € H N A and setDy = co(H N A) for everyH € 'H, and

DS, = Dy + B(0,5), whereB(0,0) := {z € X : ||zl < J} for everyé > 0 andH € H. We are
—o0o (X, F )
going to denote by, the Minkowski functional of the convex body?, e ay. Then we define the

o(X, F)-lower semicontinuous normy by the formula

bl = 30— (o} @)’

n=1

for everyz € X. Finally we define the nonnegative, convex, ad, F')-lower semicontinuous function
Yy asvy(z)? == py(xr — ay)? for everyz € X. We are now in position to apply R. Deville’s Master
Lemma, see, lemma VII.1.1, p. 279], to get an equivalent nofm||+;, 4 on X such that the condition

. 2 2 2
lim (2 i3, 4 + 2llallyy.a = llow +ll3,4) =0

for a sequencé x,, : n € N} andz in X implies that there exists a sequence of inde){és) in H such
that

1. lim, om, (x) = lim, ¢, (2,) = lim, g, (z + x,)/2) =sup{ pu(x): H € H} and

2. limy, [(1/2)9%, (za) + (1/2)0F, (2) = ¥F, ((za +2)/2)] =0

77



J. Orihuela and S. Troyanski

If the given pointz belongs to one of the open half spadés < H. then we have thapy, () > 0 and
so we have that:

sup{pg(z) : H € He} > on,(x) >0,

conditionl provide us with an integer, such that

en, (@) >0,  on,(z.) >0,  on,((x+z,)/2) >0

whenevemn > ng, from where our conclusiohin the Theorem follows. Moreover, conditi@above and
standard convexity arguments imply now that for every pasintegerq we have that

i [(1/2) 3 e — 00,))" + (1/2) (340 — 012,))" = (30 (o +2)/2 = am, )] =0,

consequently,
lim [pgf(% —an,) —pyl(z - GHH)} =0, VgeN-
If we fix a positive numbed, an open half spacl € H andy € AN H we have that
y—an +(y—an)dlly —au| ™" € B(0,8) + (y — an) C Dy — an,
thus
[(1+68)lly —anll™'] (y — an) € (DY — an)

and therefore .
Py —an) < [(1+6lly — anl|™"]

sinceD}S{ — ay is anorm open set.
Let us choose now the integgesuch thafl /¢ < ¢, and take an integer > ny. We know thatr € ANH,,
sincepy, (x) > 0 and the given point belongs toA. Therefore
_17—1
pit(@—an,) < [(1+1/q)|e—an, |71,

and we can find a numbeér< ¢ < 1 such that
pil(x —am,) <1-¢,
for all n > ng, by the boundness of. If we now take the integet big enough to have

Pyl (e, —an,) <1-¢,

o(X,F)

we arrive to the fact that,, — ay, € D}, —ag,,andindeed:,, € (co(AN H,) + B(0,0)) , so the

proofisover. W

Thus, given any family of slices on a given sétof a normed space, we have seen how it is always
possible to construct equivalent norms such that iR condition on a given sequen¢e,,) and a fixed
pointz implies that the sequence eventually belongs to halfspafdbe given family containing the point
x too.

3 LUR renormings
We can prove now a quantitative version for the main resualtg 8] and [Lg]. It corresponds with the

renorming implication of Theorerf, where the hypothesis provide the conclusion for every 0 and
everyr € X.
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Theorem 4 Let X be a normed space and C X* be al-norming subspace fak. Givene we assume
that there are subsetd,, such that for every € U2, A,, we can findp € N and ac(X, F)-open half
spaceH such thatr € A, N H anddiam(4, N H) < e. ThenX admits an equivalent (X, F')-lower
semicontinuous norifj-||| such that the condition

lm(22a]|* + 2l ~ [l + @a|?) = 0

implies that for every > 0 there is some integets such that for alln. > ns; we have||x,, — x| < e+ 4§
whenever € U2, A,,.

PROOF Let us consider the familg{,, of all (X, F')-open half spaces such thd, N H # () and
diam(A4,, N H) < e. If there is not such slice for some sé&f, we do not consider it at all. If we apply the
former Theorem for the famil§{,, and the seti,, we get an equivalent norfj ||, that verifies conditions 1
and 2 of Theoren3 for any sequencér,,, ) andz such that

lim (2]|zm 17 + 2[12l17 = [l + 2m]|3) = 0.

Let us take:, such that| - [|,, < ¢,| - |- If we set
— 1
2 ._ 2
lall® = 3 =5 el

for everyx € X, we obtain the renorming we are looking for. Indeed, if
lim (2[lzn[I* + 2/l [I* = il + zall[]*) = 0
by standard convex arguments we know that
tim (2l[Janlll; + 2Ml2lll7 = |z + zall7) =0

for every positive integep. If x € A, and there is &(X, F')-open half spacé/ such that: € A, N H and
diam(A, N H) < ¢, we have thafd € H, anddiam(co(A, N H)) < ¢, too. Moreover, the condition 2 of
Theoren® tell us that there is a sequence of half spallgse H, such that for every > 0 there is some
ns With

X.,F
2,20 € (co(A, N Hy) + B(0,0))
for all n > ns. SinceF is 1-norming the original norm i (X, F')-lower semicontinuous and we have
[l = 2z,|| < e+ 6 for everyn > ns, as we wanted to prove. l

Corollary 1 Let X be a Banach space anl C X* a norming subspace foK. Let us assume that
Z C X is asubspace ok with a sequence of subséts,,) C Z such that for every > 0 andz € Z there
is somep € N together with as (X, F')-open half spacéf suchthat: € H N A, anddiam(A4, N H) <.
Then the whole spacE admits an equivalent(X, F')-lower semicontinuous nortff-||| such all points in
the subspace are LUR points for the new norm in the whole 4f, i.e. for every point € Z and every
sequencéx,,) in X such that

i (2l ” + 2012 ]1% = 2 + %) = 0

we will have thatim,, z,, = z in norm.
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PROOFR  Without loss of generality we may and do assume that themaligorm is|| - || »; i.e. F is al-
norming subspace. If we perform the construction in Theotdar a fixede > 0 we obtain the equivalent
o(X, F)-lower semicontinuous north- | .. Let us takei, such that| - ||,,,, < d,.|-||1/». If we set

= 1
lz|I|” = Z Wl\xllf/n
n=1 "

for everyx € X, we obtain the renorming we are looking for. Indeed, as ajibve
lim (2|2 [I* + 21l 2[11* = [llz + zaII*) = 0,
by standard convex arguments we know that
lim (2fllznll /5 + 2Ml12013 /= 2+ 2all?/p) =0

for every positive integey, and Theoremd says thaf||z,, — z||| < 2/pforn > ny,, whenever € Z. B

Remark 1 The corollary provide us with a geometrical proof of the remng implication in Theorer?
based on the Deville-Godefroy-Zizler decomposition nktirdy.

Corollary 2 Let X andY be normed spaces witlhthorming subspaceg ¢ X*, G C Y* and
T: X —Y

a bounded linear map, continuous for théX, ') ando (Y, G) topologies. Givern > 0 we assume there
are subsets!,, C Y such that for every € US>, A,, we can find» € N and ac (Y, G)-open half spacé&
suchthaty € A, NL anddiam(A,NL) < e. ThenX admits an equivalent(X, F')-lower semicontinuous
norm||| - ||| such that the condition

lim (2[[Jzn[l7 + 2lllll7 - llz + 2al7) = 0
implies that for every > 0 there is some integer;s such that for alln > ns we have
1T (zn) — T(2)[| < e+ [T

whenevelT (z) € U2, A,. In particular, whenY admits an equivalent (Y, G)-lower semicontinuous
andLUR norm we will have that the condition

lim (2f[Jn |7 + 2/l (7 = llz + za17) = 0
implies thatlim,, T'(z,,) = T'(x) in the norm ofY".

PROOF.  Let us fix the integen and apply Theorer8 to the sefl’~1(A4,,) together with the family,, of
o(X, F)-open half spaces given Wy~ (L) for everyL, ac(Y, G)-open half space, such thdf, N L # ()
anddiam(A,, N L) < e. We will get an equivalent norr- ||,, on X such that, the condition

tim (2flJm 5 + 2Ml2l% = 2+ 2mll7) =0

implies thatr,,andx are in the sets

oA NT-1(Lm) + BO,5)

for m > ms, wherediam(A4,, N L,,,) < ¢, and therefordT'(x,,) — T'(x)|| < e + o||T|| for all m > ms
whenevefT'(z) € A, N L with someo (Y, G)-open half spac& anddiam(A, N L) < e. Adding all this
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norms we get the equivalent notfjm||;- we are looking for. Indeed, let us take such that| - ||, < h,| - |;

if we set a
=1
2._ 2
llall? = 3 gl

for everyx € X, we obtain the renorming we are looking for. The proof fokkothe same arguments as
above. When Y admits thHeUR norm we have the former conditions for alt> 0 by Theoren®, and the
conclusion then follows. W

4 The network construction

Our approach foLUR renormings is also based on the topological concepebfork A family of subsets
N in a topological spacé€Tl’, 7') is a network for the topology if for every open set¥’ € 7, and every
x € W, there is soméV € N suchthatt € N Cc W.

Let us recall the following definitions and results:

Definition 2 Let X be a normed space andl a norming subspace in the dual*. A family5 :=
{B; :i €1} of subsets oiX is calledo (X, F)-slicely isolated (oo (X, F)-slicely relatively discrete) if
it is a disjoint family of sets such that for every

ve| {Biziel}
there exist ar (X, F')-open half spacél andiy € I such that
HOHBi:ieli#i}=0 and z € B;,NH.

A main result, obtained by using the approachld@] is the following one; it is equivalent to TheoreZn
if we have in mind Stone’s theorem on the paracompactnesmettiac space, seé §, chapter Il1].

Theorem 5 ([ 16, chapter Ill, Theorem 3.1, pag 49]) LetX be a normed space arfda norming sub-
space in the duak*. The spaceX admits an equivalert (X, F')-lower semicontinuous and locally uni-
formly rotund norm if, and only if, the norm topology has ametk \ that can be written ag/ = U2, N,
where each of the familie¥’, is o(X, F)- slicely isolated.

In the monographl[6] the network point of view for locally uniformly rotund renmings is the central
one. The approach to construct networks make extensivef&erme’s theorem on the paracompactness of
metric spaces. We shall construct in this section the nétthat characterize the property of being locally
uniformly rotund renormable, but our approach will be coetply geometrical as the one presentedlifi [
for the weak topology, see lemma 3.19 ] too. We have presented the next result 1n][but using
Stone’s theorem in the construction.

Theorem 6 LetX be a normed space with& X, F')-lower semicontinuous and locally uniformly rotund
norm for some subspade C X*. Then the norm topology admits a netwdvksuch that\" = US2 | A,
where the familiesV,, are norm discreteg (X, F')-slicely isolated, and consisting of sets which are the
difference of convex ang( X, F')-closed subsets of for everyn € N.

PrROOF InaLUR norm all points in the unit sphere are denting points, ther fe 0 fixed we will have a
family of o(X, F')-open half spaceX., covering the unit sphergy of ouro (X, F)-lower semicontinuous
and LUR norm, and such thdt || — diam(H N Bx) < ¢ for all H € H,. Let us choose a well order
relation for the elements ik, and let us write

He={H,:v<T}
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where we denotél, = {z € X : f,(z) > A\, }, fy € Bx- N F.
We set

M, ::HWQBX\(U{HBQBX? ﬁ<7})

for everyy < I'. Let us define the se®l := {z € M, : f,(¥) > A\, + 1/n}. It follows that, when
r € M} andy € My for # 3 then we have either

fy@) = fy(y) = 1/n (wheny < f), 1)
or
fo(y) = fa(z) = 1/n (whenj <), 2)
but in any case
lz—yll =1/n 3)

since the linear functionalg,, fz are assumed to be Bx- N F. If we fix z € Sx theLUR condition of
the norm gives a slice

G={yeBx:g(y)>pn}
with g(z) > u, g € Bx- N F and|| - || — diam(G) < 1/n, thusG meets at most one member of the family
of sets{ M7 : v < T} by (3).

These families of closed and convex subsetX afover the unit spher8x and they suffice to describe
the network there. Nevertheless, to go over the whole spaae need to make the difference of closets
convex sets. Indeed, takee X \ {0}, andy := z/||z|. If we take, < I" so thaty € M,, andn big
enough to have,, (y) > \,, + 1/n, we will have a rational numbér < p, < 1, close enough to one,
such thatf., (12y) > Ay, + 1/n. TheLUR condition of the norm tell us that thereds > 0 such that
Il(y + 2)/2|| > 1 — ¢, implies that|y — z|| < 1/n whenever the conditiofiz|| < 1 holds.

Let us take a rational numbersuch that

p>llall > p(1—3,) and pp. < |al.

Thenz € pMy and| .| — diam(pMI) < pe. Moreover, if we choosg, € Bx- N F such that
gz(x) > p(1 = d,) then, forany: € U{ pM : v < T } with g..(2) > p(1 — d,.), we will have

p(l — 6m)

]|

gm(z/p)>1_§w and gm(y)> >1_6I7

thuus || > 1—46,, and we will have|y — z/p|| < 1/n, from where it follows thaty = ~,. Therefore,
if we consider setd/7? := { x € M}' N Sx : d, > 1/p }, and we take the family

{pMPP\p(1=1/p)Bx 1y <T'}

for rational numberg and integer, n fixed, we form an slicely isolated family of sets. All togethsith
the same construction done for every 0 we obtain a family

U {27\ p(1 = 1/p)Bx s <T}:pe@npeN, e >0}

which is a network for the norm topology. Takiag= 1/r, r = 1, 2, ... we get the network for the norm
we are looking for,. W

Remark 2 Let us observe that we have completed a geometrical prodi@frfém2. Indeed, Theoreré
provides us with the: (X, F')-slicely isolated network/ = U°_ ; NV, for the norm topology. Setting,, :=
U{N : N € N, }forq € Nand givenz € X ande > 0, if we takep and M € N, withz € M C
B(x,¢€/2), then by the slicely isolatedness property of the farkilythere is as (X, F')-open half spacél
withz € HN A, C M. Thus|-|| — diam(H N A4,) < ||| — diam(M) < e. The reverse implication
follows from corollaryl.
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Let us remark that the spatg is a complemented subspace of a Banach spaséth a Markushevich
basis{ (z;, f;) € X x X* : i € I} by aresult of Plichko,4, Theorem 6.45], and tha{, does not admit
equivalentLUR norm, [2, Theorem I1.7.10]. It follows that the linear span

E:=span{z;:ie€l}

give us an example of a normed space with an equivalegR norm, [5, Theorem 3.48] or15, example
2], since the proof is valid for a normed space, but such teaidmpletionX doest not have it.

The network provides us with criteria to see when the closfire LUR renormable space could be
LUR renormable too. For instance, we can prove the following:

Theorem 7 Let E be a normed space with a norming subspate E* and X its completion. There is
a network\" = UN,, of the norm topology oz where each of the familie¥’, is o(E, F)-slicely isolated
and such that the family of sets:

B:={N+eBx:NecN,e>0}

is a basis for the norm topology &f if, and only if, the completio’X admits an equivalent(X, F')-lower
semicontinuous and LUR equivalent norm.

In the proof we are going to use the following result that weehabtained in17].

Proposition 1 Let X be a normed space with a norming subsp&te- X* and|| - ||» the equivalent
norm associated with it. Given @(X, F')-slicely isolated family4d := { A; : i € I} there exist de-
compositions with increasing sequences of subséts,,, A; = U2, A" for everyi € I, such that the
families

{ A7 + By (0,1/4n) : i € I'}
areo(X, I')-slicely isolated and norm discrete for everye N.

PROOF OFTHEOREM 7.  If the normed spac&” admits an equivalent(X, F')-lower semicontinuous
andLUR norm, we have proved irL[/] that it has a basis of the norm topology= UZ,, such that every
one of the families of open sef3, is o(X, F')-slicely isolated and norm discrete. It now follows that
N, = B, N F are families of non- void subsets i sinceF is dense inX, and they are (E, I')-slicely
isolated and norm discrete witkf := U2, \V,, a basis of the norm topology @. It is clear that the family
of sets

B:={N+eBx:NeN,e>0}

is a basis of the norm topology of. Indeed, since every sé& < B is open andF is dense we have
B C BN E. This fact together with the regularity of the norm topologymplete the proof for this
implication.

Let us prove now the converse result. Without loss of geitgnake can assume that the given norm in
X coincides with|| - | . Let us fix ac-slicely isolated (fow (£, F')) network " of the norm topology in&/
such that the family of sets

B:={N+eBx:NeN,e>0}

is a basis of the norm topology of. Let us write\ = UN,, where each of the familie¥’, is ac(FE, F)-
slicely isolated family of sets ifv, thuso (X, F)-slicely isolated inX, too. We apply the Propositidhand
we can write:

No={NP:jel,},
NP =J>>_, N*(m), whereN*(1) C N*(2) C --- C N*(m) C --- and the families

A m=1""1

{N(m)+ (1/4m)Bx) :i € I, },
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for every fixed integem, arec (X, F')-slicely isolated and norm discrete. Moreover, the fargilie

U {N'(m):iel}

n,meN

form ao (X, F)-slicely isolated network of the norm topology on the whalese X as we are going to
see now. Let us take € X ande > 0. Then there is some pair of positive integersy such that
z € Ni(q) C B(x,e) for somei € I,,. Indeed, if not we will have some point, , € N?(¢)N (X \ B(z,¢))
whenever

z € NP(q) + 0Bx C B(z,¢)

for somep, ¢ € N, somei € I, and som& > 0. Let us begin with the first integegs such that
x € N; + 61Bx C B(xz,¢),
for somei € I,,, and some&); > 0. Thus we can select the first integgrsuch that

S Nfl(ql) + 6 Bx C B(:v,e)

and taker; € NP (q1) N (X \ B(z,¢)) by our assumption. Takin@ < d, small enough we will have
B(z,d2) C B(z,€) too. Let us take again first integers such that

x € N; +63Bx C B(I,ég),
for somei € I,,, and some&; > 0 together with the first integeg such that

xr € Nfz(QQ) +d3Bx C B(I,ég),
then we can take again a poirt € N (¢1) N (X \ B(z, €)) together with) < §4 < d2/2. If we continue
in this way, by induction we obtain a sequeriecg) in the closed seX \ B(z, €) with a decreasing sequence
(d2,) | 0 such thate,, € B(x, d2,), @ contradiction, and the proof is over.l

Acknowledgement.  Supported in part by Project MTM2008-05396/MTM Fondos FEEDE. Ori-
huela and S. Troyanski). Supported in part by Fundaciore&208848/P1/08 CARM (J. Orihuela and S.
Troyanski) Supported in part by Institute of Mathematicd &rformatics of the Bulgarian Academy of
Sciences, and grant of the Bulgarian National Fund for Si¢iefResearch contract DO 02 — 360 / 2008
(S. Troyanski).

References

[1] BEssAGA C. AND PELCZYNSKI, A., (1975).Selected Topics in Infinite-dimensional Topolo@§onografie
Matematyczne, vol 58, PWN-Polish Scientific Publishers.

[2] DEVILLE, R., GODEFROY, G. AND ZIZLER, V., (1993).Smoothness and renormings in Banach spaeéman
Monographs and Surveys in Pure and Applied Mathematicsg4pNew York.

[3] ENGELKING, R., (1977).General topology PWN—Polish Scientific Publishers, Warsaw, Translatedhftbe
Polish by the author, Monografie Matematyczne, T@®n[Mathematical Monographs, Vdb0].

[4] FABIAN, M., HABALA, P., HAJEK, P., MONTESINOS V., PELANT, J.AND ZIZLER, V., (2001).Functional
Analysis and Infinite Dimensional Geomet§MS Books in Mathematicas, Springer Verlag, New York

[5] HAJEK, P., MONTESINOS V., VANDERWERFF, J. AND ZIZLER, V., (2008).Biorthogonal Systems in Banach
spacesCMS Books in Mathematics, Springer Verlag, New York.

[6] HAYDON, R., (1999). Trees in renorming theoBroc. London Math. Soc78, (3), 541-584.

84



(7]

(8]

(9]

(10]

(11]
(12]

(13]

(14]

(15]

(16]

(17]

(18]
(19]

(20]

LUR renormings through Deville’s Master Lemma

HAYDON, R., (2008). Locally uniformly rotund norms in Banach spaead their dualsjournal Functional
Analysis 254, 2023—-2039.

HAYDON, R., MOLTO, A. AND ORIHUELA, J., (2007). Spaces of functions with countably many dignaities,
Israel Journal Math,. 158 19-39.

JOHNSON, W. B. AND LINDENSTRAUSS J., (2001). Basic concepts in the geometry of Banach spbicesl-
book of the geometry of Banach spacéd. |, North-Holland, Amsterdam, 1-84.

KELLEY, J. L., (1975).General topologyReprint of the 1955 edition [Van Nostrand, Toronto, Oraiaduate
Texts in Mathematics, N27, Springer-Verlag, New York.

MARTINEZ ROMEROQ, J. F., (2007)Renormings irC(K ) spacesDoctoral disertation, Valencia University.

MARTINEZ ROMERO, J. F., MOLTO, A., ORIHUELA, J. AND TROYANSKI S., (2007). On locally uniformly
rotund renormings of’(K) spaces.To appear in Canadian Journal Math.

MoLTO, A., ORIHUELA, J. AND TROYANSKI, S., (1977). Locally uniformly rotund renorming and frag-
mentability, Proc. London Math. Sog(3), 75, 619-640.

MoOLTO, A., ORIHUELA, J., TROYANSKI, S.AND VALDIVIA , M., (1999). On weakly locally uniformly rotund
Banach spacesd, Funct. Anal. 163 2, 252—-271.

MoLTO, A., ORIHUELA, J., TROYANSKI, S.AND VALDIVIA , M., (2006). Continuity properties up to a count-
able partitionRACSAM, Rev. R. Acad. Cien. Serie A. M&0Q, (1-2), 279-294.

MoOLTO, A., ORIHUELA, J., TROYANSKI, S.AND VALDIVIA , M., (2009).A nonlinear transfer technique for
renorming Lecture Notes in Mathematics 1951, Springer Verlag, NevwkYo

ORIHUELA, J. AND TROYANSKI, S., (2008). Devilles’s Master Lemma and Stone discretimesenorming
theory.To appear in Journal Convex Analysis

RAJA, M., (1999). On locally uniformly rotund norm&)athematika46, 343—-358.

TROYANSKI, S., (1971). On locally uniformly convex and differentialsiorms in certain non separable Banach
sapces,Studia Math, 37, 173-180.

ZI1ZLER V., (2003). Non separable Banach spaddandbook of Banach spagesdt. Johnson and Lindenstrauss.
\ol Il, 1743-1816. North-Holland, Amsterdam.

Jo<t Orihuela Stanimir Troyanski
Departamento de Matematicas. Departamento de Matessatic
Facultad de Matemaéticas. Facultad de Matemaéticas.
Campus de Espinardo. Campus de Espinardo.
Universidad de Murcia. Universidad de Murcia.
E-30100 Espinardo. SPAIN. E-30100 Espinardo. SPAIN.

j oseori @m es stroya@m es

85



	Introduction
	The tool
	LUR renormings
	The network construction

