

On the ultradistributions of Beurling type

Manuel Valdivia

Abstract. Let Ω be a nonempty open set of the k-dimensional euclidean space \mathbb{R}^k . In this paper, we show that if S is an ultradistribution in Ω , belonging to a class of Beurling type stable under differential operators, then S can be represented in the form $\sum_{\alpha \in \mathbb{N}_0^k} D^{\alpha} f_{\alpha}$, where f_{α} is a complex function defined in Ω which is Lebesgue measurable and essentially bounded in each compact subset of Ω . Other structure results on certain ultradistributions are obtained, too.

Ultradistribuciones de tipo Beurling

Resumen. Sea Ω un conjunto abierto no vacío del espacio euclídeo. En este artículo se demuestra que si S es una ultradistribución en Ω , perteneciente a una clase de tipo Beurling que sea estable frente a operadores diferenciales, entonces S se puede representar en la forma $\sum_{\alpha \in \mathbb{N}_0^k} D^{\alpha} f_{\alpha}$, donde f_{α} es una función compleja definida en Ω que es Lebesgue medible y esencialmente acotada en cada subconjunto compacto de Ω . También se obtienen otros resultados de estructura de ciertas ultradistribuciones.

1 Introduction and notation

Throughout this paper all linear spaces are assumed to be defined over the field \mathbb{C} of complex numbers. We write \mathbb{N} for the set of positive integers and by \mathbb{N}_0 we mean the set of nonnegative integers. If E is a locally convex space, E' will be its topological dual and $\langle \cdot, \cdot \rangle$ will denote the standard duality between E and E'. Given a Banach space X, B(X) denotes its closed unit ball and X^* is the Banach space conjugate of X. Given a positive integer k, if $\alpha := (\alpha_1, \alpha_2, \ldots, \alpha_k)$ is a multiindex of order k, i.e., an element of \mathbb{N}_0^k , we put $|\alpha|$ for its length, that is, $|\alpha| = \alpha_1 + \alpha_2 + \cdots + \alpha_k$, and $\alpha! := \alpha_1!\alpha_2!\cdots\alpha_k!$.

Given a complex function f defined in the points $x = (x_1, x_2, ..., x_k)$ of an open subset O of the k-dimensional euclidean space \mathbb{R}^k , and being infinitely differentiable, we write

$$D^{\alpha}f(x) := \frac{\partial^{|\alpha|}f(x)}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \dots \partial x_k^{\alpha_k}}, \qquad x \in O, \quad \alpha \in \mathbb{N}_0^k.$$

We consider a sequence $M_0, M_1, \ldots, M_n, \ldots$ of positive numbers satisfying the following conditions:

- 1. $M_0 = 1$.
- 2. Logarithmic convexity:

 $M_n^2 \le M_{n-1}M_{n+1}, \qquad n \in \mathbb{N}.$

Recibido / Received: 20 de febrero de 2008 Aceptado / Accepted: 4 de marzo de 2009.

Palabras clave / Keywords: Beurling type, differential operators, ultradistributions.

Mathematics Subject Classifications: 46F05.

Presentado por / Submitted by Darío Maravall Casesnoves.

^{© 2009} Real Academia de Ciencias, España.

3. Non-quasi-analyticity:

$$\sum_{n=1}^{\infty} \frac{M_{n-1}}{M_n} < \infty$$

Let us take a nonempty open set Ω in \mathbb{R}^k . A complex function f, defined and infinitely differentiable in Ω , is said to be *ultradifferentiable of class* (M_n) whenever, given h > 0 and a compact subset K of Ω , there is C > 0 such that

$$|D^{\alpha}f(x)| \le Ch^{|\alpha|}M_{|\alpha|}, \qquad x \in K, \quad \alpha \in \mathbb{N}_0^k.$$

We put $\mathcal{E}^{(M_n)}(\Omega)$ to denote the linear space over \mathbb{C} formed by all the ultradifferentiable functions of class (M_n) defined in Ω , with the ordinary topology, [2]. By $\mathcal{D}^{(M_n)}(\Omega)$ we denote the linear subspace of $\mathcal{E}^{(M_n)}(\Omega)$ formed by those functions which have compact support.

We now choose a fundamental sequence of compact subsets of Ω :

$$K_1 \subset K_2 \subset \cdots \subset K_m \cdots$$

If K is an arbitrary compact subset of Ω , we use $\mathcal{D}^{(M_n)}(K)$ to denote the subspace of $\mathcal{E}^{(M_n)}(\Omega)$ formed by those functions which have their support in K. We then have that

$$\mathcal{D}^{(M_n)}(\Omega) = \bigcup_{m=1}^{\infty} \mathcal{D}^{(M_n)}(K_m).$$

We consider $\mathcal{D}^{(M_n)}(\Omega)$ as the inductive limit of the sequence $(\mathcal{D}^{(M_n)}(K_m))$ of Fréchet spaces. The elements of the topological dual $\mathcal{D}^{(M_n)'}(\Omega)$ of $\mathcal{D}^{(M_n)}(\Omega)$ are called *ultradistributions of Beurling type* in Ω . We assume that $\mathcal{D}^{(M_n)'}(\Omega)$ has its strong topology.

By $\mathcal{K}(\Omega)$ we mean the linear space over \mathbb{C} of the complex functions defined in Ω which are continuous and have compact support. If K is any compact subset of Ω , $\mathcal{K}(K)$ is the subspace of $\mathcal{K}(\Omega)$ formed by the functions with support contained in K. If f is in $\mathcal{K}(K)$, we put

$$|f|_{\infty} := \sup_{x \in \Omega} |f(x)|,$$

and assume that $\mathcal{K}(K)$ is endowed with the norm $|\cdot|_{\infty}$.

We consider $\mathcal{K}(\Omega)$ as the inductive limit of the sequence $(\mathcal{K}(K_m))$ of Banach spaces. A Radon measure in Ω is an element of the topological dual $\mathcal{K}'(\Omega)$ of $\mathcal{K}(\Omega)$. Given a Radon measure u in Ω and a compact subset K of Ω , we put ||u||(K) for the norm of the restriction of u to the Banach space $\mathcal{K}(K)$.

In [2, p. 76], a structure theorem for ultradistributions of Beurling type in Ω is given. It can be stated as follows:

Result a) If S is an element of $\mathcal{D}^{(M_n)'}(\Omega)$ and G is an open subset of Ω which is relatively compact, for each $\alpha \in \mathbb{N}_0^k$, we may find an element v_α in the conjugate of the Banach space $\mathcal{K}(\overline{G})$, whose norm we represent by $||v_\alpha||$, such that, for some h > 0,

$$\sup_{\alpha \in \mathbb{N}_0^k} h^{|\alpha|} M_{|\alpha|} \| v_\alpha \| < \infty$$

and

$$S_{|G} = \sum_{\alpha \in \mathbb{N}_0^k} D^{\alpha} v_{\alpha}.$$

The above result is of local character, for the elements v_{α} , $\alpha \in \mathbb{N}_0^k$, depend on G. In [4], we give a structure theorem of global character for the ultradistributions of Beurling type in Ω . This theorem contains result a) as a particular case and can be stated as follows:

Result b) If S is an element of $\mathcal{D}^{(M_n)'}(\Omega)$, then there is a family $(u_\alpha : \alpha \in \mathbb{N}_0^k)$ of Radon measures in Ω such that

$$\langle \varphi, S \rangle = \sum_{\alpha \in \mathbb{N}_0^k} \langle D^{\alpha} \varphi, u_{\alpha} \rangle, \qquad \varphi \in \mathcal{D}^{(M_n)}(\Omega),$$

where the series converges absolutely and uniformly on every bounded subset of $\mathcal{D}^{(M_n)}(\Omega)$. Also, given a compact subset K of Ω , there is h > 0 such that

$$\sup_{\alpha \in \mathbb{N}_0^k} h^{|\alpha|} M_{|\alpha|} \| u_\alpha \| (K) < \infty.$$

We now put $\mathcal{L}^{\infty}_{loc}(\Omega)$ for the linear space over \mathbb{C} formed by the complex functions defined in Ω , which are Lebesgue-measurable and essentially bounded in every compact subset of Ω . The elements of this space are considered as Radon measures on Ω in the usual way. If f is in $\mathcal{L}^{\infty}_{loc}(\Omega)$ and K is a compact subset of Ω , we write $|f|_{K,\infty}$ for the essential supremum of |f| in K.

We say that the sequence $M_0, M_1, \ldots, M_n, \ldots$ satisfies the stability condition for differential operators provided there are A > 0 and h > 0 such that

$$M_{n+1} \le Ah^n M_n, \qquad n \in \mathbb{N}_0. \tag{1}$$

In this paper, we give a structure theorem for ultradistributions of Beurling type in Ω , which contains the following result as a particular case:

Result c) If M_0 , M_1 , ..., M_n , ... satisfies condition (1) and S is an element of $\mathcal{D}^{(M_n)'}(\Omega)$, then there is a family $(f_{\alpha} : \alpha \in \mathbb{N}_0^k)$ of elements of $\mathcal{L}^{\infty}_{loc}(\Omega)$ such that, given an arbitrary compact subset K of Ω , there is h > 0 with

$$\sup_{\alpha \in \mathbb{N}_0^k} h^{|\alpha|} M_{|\alpha|} |f_\alpha|_{K,\infty} < \infty$$

and

$$S = \sum_{\alpha \in \mathbb{N}_0^k} D^{\alpha} f_{\alpha}.$$

2 Basic constructions

Let X be a Banach space. We put $\|\cdot\|$ for the norm of X and also for the norm of X^* . Given $r \in \mathbb{N}$ and $\alpha \in \mathbb{N}_0^k$, we put, for each $x \in X$,

$$|x|_{r,\alpha} := \frac{r^{|\alpha|} ||x||}{M_{|\alpha|}}$$

We denote by $X_{r,\alpha}$ the linear space X provided with the norm $|\cdot|_{r,\alpha}$. By $X_{r,\alpha}^*$ we mean the Banach space conjugate of $X_{r,\alpha}$ with $|\cdot|_{r,\alpha}$ as its norm. Clearly, if u is in X^* , then

$$|u|_{r,\alpha} = \frac{M_{|\alpha|}}{r^{|\alpha|}} ||u||.$$

We put Z_r for the linear space over \mathbb{C} of the families $(x_\alpha : \alpha \in \mathbb{N}_0^k)$ of elements of X, which we shall just denote by (x_α) , such that

$$\|(x_{\alpha})\|_{r} := \sup_{\alpha \in \mathbb{N}_{0}^{k}} \frac{r^{|\alpha|} \|x_{\alpha}\|}{M_{|\alpha|}} < \infty.$$

We assume that Z_r is provided with the norm $\|\cdot\|_r$ It then follows that $Z_r \supset Z_{r+1}$ and that the canonical injection from Z_{r+1} into Z_r is continuous.

We write Z to denote the Fréchet space given by the projective limit of the sequence (Z_r) of Banach spaces. We assume Z' endowed with the strong topology.

Given β in \mathbb{N}_0^k , we put Z^β for the subspace of Z whose elements (x_α) satisfy that $x_\alpha = 0$ when α is distinct from β . We then have that Z^β is topologically isomorphic to X and, considering Z^β as a subspace of Z_r , then it is isometric to $X_{r,\beta}$.

If u is an arbitrary element of Z' and $r \in \mathbb{N}$, we put

$$||u||_{(r)} := \sup\left\{ \left| \langle (x_{\alpha}), u \rangle \right| : (x_{\alpha}) \in B(Z_r) \cap Z \right\}$$

For each $u \in Z'$ and each $\beta \in \mathbb{N}_0^k$, we identify, in the usual manner, the restriction of u to Z^β with an element u_β of X^* .

If (x_{α}) is an element of Z and β is in \mathbb{N}_{0}^{k} , we write

$$x_{lpha}^{eta} := egin{cases} x_{eta}, & ext{if } lpha = eta, \ 0, & ext{if } lpha
eq eta. \end{cases}$$

Clearly, (x_{α}^{β}) belongs to Z and, for each $r \in \mathbb{N}$,

$$||(x_{\alpha}^{\beta})||_{r} \le ||(x_{\alpha})||_{r}.$$

The next proposition unifies Proposition 1 and the Note in [4].

Proposition 1. If M is a bounded subset of Z', then there is r in \mathbb{N} such that

$$\sup_{\substack{\alpha \in \mathbb{N}_0^k \\ u \in M}} r^{-|\alpha|} M_{|\alpha|} \|u_\alpha\| \le 1$$

and

$$\langle (x_{\alpha}), u \rangle = \sum_{\alpha \in \mathbb{N}_0^k} \langle x_{\alpha}, u_{\alpha} \rangle, \qquad u \in M, \quad (x_{\alpha}) \in Z,$$

where the series converges absolutely and uniformly when u varies in M and (x_{α}) varies in any given bounded subset of Z.

PROOF. If M° is the polar set of M in Z, we find $r \in \mathbb{N}$ such that $B(Z_r) \cap Z$ is contained in M° . Then, for each $u \in M$, we have, if we fix $\beta \in \mathbb{N}_0^k$,

$$1 \ge \|u\|_{(r)} = \sup\left\{ \left| \langle (x_{\alpha}), u \rangle \right| : (x_{\alpha}) \in B(Z_r) \cap Z \right\} \\ \ge \sup\left\{ \left| \langle (x_{\alpha}^{\beta}), u \rangle \right| : (x_{\alpha}) \in B(Z_r) \cap Z \right\} \\ = \sup\left\{ \left| \langle (x_{\beta}), u_{\beta} \rangle \right| : |x_{\beta}|_{r,\beta} \le 1 \right\} = |u_{\beta}|_{r,\beta} \\ = \frac{M_{|\beta|}}{r^{|\beta|}} \|u_{\beta}\|$$

from where we deduce

$$\sup_{\substack{\alpha \in \mathbb{N}_0^k \\ u \in M}} r^{-|\alpha|} M_{|\alpha|} \|u_{\alpha}\| \le 1.$$

We take (x_{α}) in Z and we see that $((x_{\alpha}^{\beta}) : \beta \in \mathbb{N}_{0}^{k})$ is summable in Z to (x_{α}) . Let s, q be in \mathbb{N} . We then have

$$\begin{split} \left\| (x_{\alpha}) - \sum_{|\beta| \le q} (x_{\alpha}^{\beta}) \right\|_{s} &= \sup_{|\alpha| > q} \frac{s^{|\alpha|} \|x_{\alpha}\|}{M_{|\alpha|}} \\ &= \sup_{|\alpha| > q} \frac{(2s)^{|\alpha|} \|x_{\alpha}\|}{2^{|\alpha|} M_{|\alpha|}} \\ &\le \frac{1}{2^{q}} \sup_{\alpha \in \mathbb{N}_{0}^{k}} \frac{(2s)^{|\alpha|} \|x_{\alpha}\|}{M_{|\alpha|}} \\ &= \frac{1}{2^{q}} \| (x_{\alpha}) \|_{2s} \end{split}$$

and the conclusion follows. From

$$(x_{\alpha}) = \sum_{\beta \in \mathbb{N}_0^k} (x_{\alpha}^{\beta})$$

in Z, we obtain

$$\langle (x_{\alpha}), u \rangle = \sum_{\beta \in \mathbb{N}_0^k} \langle (x_{\alpha}^{\beta}), u \rangle = \sum_{\beta \in \mathbb{N}_0^k} \langle x_{\beta}, u_{\beta} \rangle, \qquad u \in Z'.$$

We consider now a bounded subset B of Z. We find b > 0 such that $B \subset bB(Z_{2kr})$. We choose arbitrary elements $(x_{\alpha}) \in B$ and $u \in M$. We fix $\beta \in \mathbb{N}_0^k$. Then

$$\begin{aligned} \left| \langle x_{\beta}, u_{\beta} \rangle \right| &\leq \|x_{\beta}\| \cdot \|u_{\beta}\| \\ &= \frac{(2kr)^{|\beta|} \|x_{\beta}\|}{M_{|\beta|}} \cdot \frac{M_{|\beta|} \|u_{\beta}\|}{(2kr)^{|\beta|}} \\ &\leq \frac{1}{(2k)^{|\beta|}} \|(x_{\alpha})\|_{2kr} \sup_{\substack{\alpha \in \mathbb{N}_{0}^{k} \\ u \in M}} r^{-|\alpha|} M_{|\alpha|} \|u_{\alpha}\| \\ &\leq \frac{1}{(2k)^{|\beta|}} b \end{aligned}$$

and, since

$$\sum_{\beta \in \mathbb{N}_0^k} \frac{1}{(2k)^{|\beta|}} = 2,$$

the conclusion follows.

The following proposition may be found in [4].

Proposition 2. Let $\{v_{\alpha} : \alpha \in \mathbb{N}_0^k\}$ a family of elements of X^* such that there is h > 0 with

$$\sup_{\alpha \in \mathbb{N}_0^k} h^{|\alpha|} M_{|\alpha|} \| v_\alpha \| < \infty$$

Then, there is a unique element $u \in Z'$ such that $u_{\alpha} = v_{\alpha}$, $\alpha \in \mathbb{N}_0^k$.

3 The space $\mathcal{D}_{(L^p)}^{(M_n)}(\Omega)$

We put $L^p(\Omega \text{ and } \mathcal{L}^p(\Omega), 1 \leq p \leq \infty$, for the classical Lebesgue spaces. If $f \in \tilde{f} \in \mathcal{L}^p(\Omega), 1 \leq p < \infty$, we write

$$||f||_p = ||\tilde{f}||_p = \left(\int_{\Omega} |f|^p \,\mathrm{d}x\right)^{1/p},$$

and, if $f \in \tilde{f} \in L^{\infty}(\Omega)$, then

$$||f||_{\infty} = ||f||_{\infty} = \operatorname{supess}\{ |f(x)| : x \in \Omega \}.$$

 $\mathcal{D}_{L^p}(\mathbb{R}^k)$, $1 \leq p < \infty$, is the classical L. Schwartz's space, [3, p. 199]. We put $\mathcal{B}_{L^p}(\Omega)$ for the linear space over \mathbb{C} of the complex functions f defined in Ω which are infinitely differentiable and such that $D^{\alpha}f$ is in $\mathcal{L}^p(\Omega)$, $\alpha \in \mathbb{N}_0^k$. We assume that $\mathcal{B}_{L^p}(\Omega)$ is endowed with the metrizable locally convex topology such that a sequence (f_n) in $\mathcal{B}_{L^p}(\Omega)$ converges to the origin if and only if $(||D^{\alpha}f_n||_p)$ converges to zero for each $\alpha \in \mathbb{N}_0^k$. We then have that $\mathcal{B}_{L^p}(\Omega)$ is a Fréchet space. Clearly, $\mathcal{B}_{L^p}(\mathbb{R}^k)$ coincides with $\mathcal{D}_{L^p}(\mathbb{R}^k)$.

Given $r \in \mathbb{N}$ and $1 \leq p < \infty$, we put $\mathcal{B}_{L^p}^{(M_n),1/r}(\Omega)$ for the linear space over \mathbb{C} of the functions $f \in \mathcal{B}_{L^p}(\Omega)$ which satisfy:

$$\|f\|_{p,1/r} := \sup_{\alpha \in \mathbb{N}_0^k} \frac{r^{|\alpha|} \|D^{\alpha}f\|_p}{M_{|\alpha|}} < \infty.$$

We assume $\mathcal{B}_{L^p}^{(M_n),1/r}(\Omega)$ provided with the norm $\|\cdot\|_{p,1/r}$. Given a Cauchy sequence (f_m) in $\mathcal{B}_{L^p}^{(M_n),1/r}(\Omega)$, it is immediate that (f_m) is a Cauchy sequence in $\mathcal{B}_{L^p}(\Omega)$ and hence it converges in this space to a function f. Given $\varepsilon > 0$, there is a positive integer m_0 such that

$$\|f_m - f_s\|_{p,1/r} < \varepsilon, \qquad m, s \ge m_0.$$

Then, for those values of m and s, and for each $\alpha \in \mathbb{N}_0^k$, we have that

$$\frac{r^{|\alpha|} \|D^{\alpha} f_m - D^{\alpha} f_s\|_p}{M_{|\alpha|}} < \varepsilon$$

and therefore, for $m \ge m_0$,

$$\frac{r^{|\alpha|} \|D^{\alpha} f_m - D^{\alpha} f\|_p}{M_{|\alpha|}} \le \varepsilon,$$

from where we deduce that f belongs to $\mathcal{B}_{L^p}^{(M_n),1/r}(\Omega)$ and that $\|f_m - f\|_{p,1/r} \leq \varepsilon, m \geq m_0$. Consequently, $\mathcal{B}_{L^p}^{(M_n),1/r}(\Omega)$ is a Banach space.

It is plain that $\mathcal{B}_{L^p}^{(M_n),\frac{1}{r+1}}(\Omega)$ is contained in $\mathcal{B}_{L^p}^{(M_n),1/r}(\Omega)$ and also that the canonical injection from $\mathcal{B}_{L^p}^{(M_n),\frac{1}{r+1}}(\Omega)$ into $\mathcal{B}_{L^p}^{(M_n),1/r}(\Omega)$ is continuous. We denote by $\mathcal{B}_{L^p}^{(M_n)}(\Omega)$ the projective limit of the sequence $(\mathcal{B}_{L^p}^{(M_n),1/r}(\Omega))$ of Banach spaces. We assume that the topological dual $\mathcal{B}_{L^p}^{(M_n)'}(\Omega)$ of $\mathcal{B}_{L^p}^{(M_n)}(\Omega)$ is endowed with the strong topology.

In this section we substitute the Banach space X of the previous section by $L^p(\Omega)$. Then, every element of Z_r is a family $(\tilde{f}_{\alpha} : \alpha \in \mathbb{N}_0^k)$ of elements of $L^p(\Omega)$ such that

$$\|(\tilde{f}_{\alpha})\|_{r} = \sup_{\alpha \in \mathbb{N}_{0}^{k}} \frac{r^{|\alpha|} \|f_{\alpha}\|_{p}}{M_{|\alpha|}} < \infty$$

If f belongs to $\mathcal{B}_{L^p}^{(M_n)}(\Omega)$, we put $\tilde{D}^{\alpha}f$ for the element of $L^p(\Omega)$ to which $D^{\alpha}f$ belongs, $\alpha \in \mathbb{N}_0^k$. By V_r we represent the linear subspace of Z_r formed by those families ($\tilde{D}^{\alpha}f : \alpha \in \mathbb{N}_0^k$) such that $f \in \mathcal{B}_{L^p}^{(M_n),1/r}(\Omega)$. Let

$$\Phi_r \colon \mathcal{B}_{L^p}^{(M_n), p, 1/r}(\Omega) \longrightarrow V_r$$

be such that

$$\Phi_r(f) = (\tilde{D}^{\alpha} f), \qquad f \in \mathcal{B}_{L^p}^{(M_n), 1/r}(\Omega).$$

Then, Φ_r is a linear onto isometry. We put $V := \bigcap \{ V_r : r \in \mathbb{N} \}$ considered as a subspace of Z. Let

$$\Phi\colon \mathcal{B}_{L^p}^{(M_n)}(\Omega)\longrightarrow V$$

be such that

$$\Phi(f) = (\tilde{D}^{\alpha} f), \qquad f \in \mathcal{B}_{L^p}^{(M_n)}(\Omega)$$

Clearly, Φ is a topological isomorphism from $\mathcal{B}_{L^p}^{(M_n)}(\Omega)$ onto V. In the following, we fix $1 \leq p < \infty$. By q we denote the conjugate of p, i.e., $q = \infty$ when p = 1, and, if p > 1 then $\frac{1}{p} + \frac{1}{q} = 1$.

Proposition 3. For each j in a set J, let $(f_{\alpha,j} : \alpha \in \mathbb{N}_0^k)$ be a family of elements of $\mathcal{L}^q(\Omega)$ such that there is h > 0 with

$$\sup_{\substack{\alpha \in \mathbb{N}_0^k \\ i \in J}} h^{|\alpha|} M_{|\alpha|} \| f_{\alpha,j} \|_q < \infty$$

Then, there is a bounded subset $\{S_j : j \in J\}$ of $\mathcal{B}_{L^p}^{(M_n)'}(\Omega)$ such that

$$\langle \varphi, S_j \rangle = \sum_{\alpha \in \mathbb{N}_0^k} \int_{\Omega} D^{\alpha} \varphi \cdot f_{\alpha,j} \, \mathrm{d}x, \qquad j \in J, \quad \varphi \in \mathcal{B}_{L^p}^{(M_n)}(\Omega),$$

where the series converges absolutely and uniformly when j varies in J and φ varies in any given bounded subset of $\mathcal{B}_{L^p}^{(M_n)}(\Omega)$.

PROOF. We identify in the usual fashion $f_{\alpha,j}$ with a continuous linear functional on $L^p(\Omega)$ whose norm is $||f_{\alpha,j}||_q$. We apply Proposition 2 to obtain, for each j in J, a unique element u_j in Z' whose restriction to Z^{α} coincides with $f_{\alpha,j}$, $\alpha \in \mathbb{N}_0^k$. If we fix j in J, we apply Proposition 1 for $M = \{u_j\}$ and so obtain that

$$\langle (\tilde{g}_{\alpha}), u_j \rangle = \sum_{\alpha \in \mathbb{N}_0^k} \int_{\Omega} g_{\alpha} \cdot f_{\alpha,j} \, \mathrm{d}x, \qquad g_{\alpha} \in \tilde{g}_{\alpha}, \quad (\tilde{g}_{\alpha}) \in Z.$$
 (2)

We find $r \in \mathbb{N}$ such that 1/r < h. We fix (\tilde{g}_{α}) in Z. We then have

$$\begin{split} \left| \left\langle (\tilde{g}_{\alpha}), u_{j} \right\rangle \right| &\leq \sum_{\alpha \in \mathbb{N}_{0}^{k}} \int_{\Omega} |g_{\alpha}| \cdot |f_{\alpha,j}| \, \mathrm{d}x \\ &\leq \sum_{\alpha \in \mathbb{N}_{0}^{k}} \|g_{\alpha}\|_{p} \cdot \|f_{\alpha,j}\|_{q} \\ &\leq \sum_{\alpha \in \mathbb{N}_{0}^{k}} \frac{(2kr)^{|\alpha|} \|g_{\alpha}\|_{p}}{M_{|\alpha|}} \frac{1}{(2k)^{|\alpha|}} r^{-|\alpha|} M_{|\alpha|} \|f_{\alpha,j}\|_{q} \\ &\leq \sum_{\alpha \in \mathbb{N}_{0}^{k}} \|(\tilde{g}_{\alpha})\|_{2kr} \cdot \frac{1}{(2k)^{|\alpha|}} \sup_{\substack{\gamma \in \mathbb{N}_{0}^{k} \\ j \in J}} h^{|\gamma|} M_{|\gamma|} \|f_{\gamma,j}\|_{q} \\ &= 2 \|(\tilde{g}_{\alpha})\|_{2kr} \cdot \sup_{\substack{\gamma \in \mathbb{N}_{0}^{k} \\ j \in J}} h^{|\gamma|} M_{|\gamma|} \|f_{\gamma,j}\|_{q} \end{split}$$

and thus

$$\sup_{j\in J} |\langle (\tilde{g}_{\alpha}), u_j \rangle < \infty.$$

Applying now the Theorem of Banach-Steinhaus, we obtain that $\{u_j : j \in J\}$ is a bounded subset of Z'. Proposition 1 yields that, for $M = \{u_j : j \in J\}$, the series in (2) converges absolutely and uniformly when j varies in J and (\tilde{g}_{α}) varies in any given bounded subset of Z.

We put w for the mapping Φ considered from $\mathcal{B}_{L^p}^{(M_n)}(\Omega)$ into Z. Let ^tw be the transpose of w. We write

$$S_j :=^t w(u_j), \qquad j \in J$$

Then $\{S_j : j \in J\}$ is a bounded subset of $\mathcal{B}_{L^p}^{(M_n)'}(\Omega)$. On the other hand, for each $\varphi \in \mathcal{B}_{L^p}^{(M_n)}(\Omega)$, we have

$$\langle (D^{\alpha}\varphi), u_j \rangle = \langle w(\varphi), u_j \rangle = \langle \varphi, {}^t w(u_j) \rangle = \langle \varphi, S_j \rangle.$$

Consequently, for each φ of $\mathcal{B}_{L^p}^{(M_n)}(\Omega)$ and each $j \in J$, it follows

$$\langle \varphi, S_j \rangle = \left\langle (\tilde{D}^{\alpha} \varphi), u_j \right\rangle = \sum_{\alpha \in \mathbb{N}_0^k} D^{\alpha} \varphi \cdot f_{\alpha, j} \, \mathrm{d}x.$$

Finally, when φ varies in a bounded subset of $\mathcal{B}_{L^p}^{(M_n)}(\Omega)$, $(\tilde{D}^{\alpha}\varphi)$ varies in a bounded subset of Z. The conclusion is now obvious.

Proposition 4. If $\{S_j : j \in J\}$ is a bounded subset of $\mathcal{B}_{L^p}^{(M_n)'}(\Omega)$, there are h > 0 and, for each $j \in J$, a family $(f_{\alpha,j} : \alpha \in \mathbb{N}_0^k)$ of elements of $\mathcal{L}^q(\Omega)$ such that

$$\sup_{\substack{\alpha \in \mathbb{N}_0^k \\ j \in J}} h^{|\alpha|} M_{|\alpha|} \| f_{\alpha,j} \|_q < \infty$$

and

$$\langle \varphi, S_j \rangle = \sum_{\alpha \in \mathbb{N}_0^k} \int_{\Omega} D^{\alpha} \varphi \cdot f_{\alpha,j} \, \mathrm{d}x, \qquad j \in J, \quad \varphi \in \mathcal{B}_{L^p}^{(M_n)}(\Omega)$$

where the series converges absolutely and uniformly when j varies in J and φ varies in any given bounded subset of $\mathcal{B}_{L^p}^{(M_n)}(\Omega)$.

PROOF. We have

$${}^tw\colon Z'\longrightarrow \mathcal{B}_{L^p}^{(M_n)'}(\Omega)$$

is onto. It is easy to verify that there is a bounded subset $\{u_j : j \in J\}$ in Z' such that

$${}^tw(u_j) = S_j, \qquad j \in J$$

We put $f_{\alpha,j}$ for the element of $\mathcal{L}^q(\Omega)$ given by the restriction of u_j to X^{α} . We apply Proposition 1 for $M = \{u_j : j \in J\}$ and so obtain $r \in \mathbb{N}$ such that

$$\sup_{\substack{\alpha \in \mathbb{N}_0^k \\ j \in J}} r^{-|\alpha|} M_{|\alpha|} \| f_{\alpha,j} \|_q < \infty$$

and

$$\left\langle (\tilde{D}^{\alpha}\varphi), u_{j} \right\rangle = \sum_{\alpha \in \mathbb{N}_{0}^{k}} \langle \tilde{D}^{\alpha}\varphi, \tilde{f}_{\alpha,j} \rangle = \sum_{\alpha \in \mathbb{N}_{0}^{k}} \int_{\Omega} D^{\alpha}\varphi \cdot f_{\alpha,j} \,\mathrm{d}x, \qquad j \in J, \quad \varphi \in \mathcal{B}_{L^{p}}^{(M_{n})}(\Omega).$$

where the series converges absolutely and uniformly when j varies in J and φ varies in any given bounded subset of $\mathcal{B}_{L^p}^{(M_n)}(\Omega)$. Finally, for each $j \in J$, we have

$$\left\langle (\tilde{D}^{\alpha}\varphi), u_j \right\rangle = \left\langle w(\varphi), u_j \right\rangle = \left\langle \varphi, ^t w(u_j) \right\rangle = \left\langle \varphi, S_j \right\rangle$$

and the conclusion follows.

Given a compact subset K of Ω and $r \in \mathbb{N}$, we put $\mathcal{D}_{(L^p)}^{(M_n),1/r}(K)$ to denote the subspace of $\mathcal{B}_{L^p}^{(M_n),1/r}(\Omega)$ whose elements have their support in K. If (f_m) is a sequence in $\mathcal{D}_{(L^p)}^{(M_n),1/r}(K)$ which converges to f in $\mathcal{B}_{L^p}^{(M_n),1/r}(\Omega)$, there is a subsequence (f_{m_i}) of (f_m) which converges to f almost everywhere. Since $f_{m_i}(x) = 0, x \in \Omega \setminus K$, we have that f belongs to $\mathcal{D}_{(L^p)}^{(M_n),1/r}(K)$, from where we get that this space is a Banach space. We put $\mathcal{D}_{(L^p)}^{(M_n)}(K)$ for the projective limit of the sequence $(\mathcal{D}_{(L^p)}^{(M_n),1/r}(K))$ of Banach spaces. It is immediate that $\mathcal{D}_{(L^p)}^{(M_n)}(K)$ coincides with the subspace of $\mathcal{B}_{L^p}^{(M_n)}(\Omega)$ formed by the functions with support in K. We now write

$$\mathcal{D}_{(L^p)}^{(M_n)}(\Omega) := \bigcup_{r=1}^{\infty} \mathcal{D}_{(L^p)}^{(M_n)}(K_r)$$

and assume that $\mathcal{D}_{(L^p)}^{(M_n)}(\Omega)$ is the inductive limit of the sequence $\left(\mathcal{D}_{(L^p)}^{(M_n)}(K_r)\right)$ of Fréchet spaces. We also assume that the topological dual $\mathcal{D}_{(L^p)}^{(M_n)'}(\Omega)$ of $\mathcal{D}_{(L^p)}^{(M_n)}(\Omega)$ is endowed with the strong topology.

If $g \in \mathcal{L}^{p_1}(\mathbb{R}^k)$ and $l \in \mathcal{L}^{p_2}(\mathbb{R}^k)$, with $1 \le p_1, p_2 \le \infty$ and $1/p_1 + 1/p_2 \ge 1$, then the convolution of g and l exists almost everywhere. We extend this convolution to the whole of \mathbb{R}^k by assigning the zero value for the points where it is not defined. Thus g * l belongs to $\mathcal{L}^s(\mathbb{R}^k)$, where $\frac{1}{s} = \frac{1}{p_1} + \frac{1}{p_2} - 1$ and we then have

$$\|g * l\|_{s} \le \|g\|_{p_{1}} \cdot \|l\|_{p_{2}}.$$
(3)

This property will be used in the proof of the next result.

Proposition 5. The linear space $\mathcal{D}^{(M_n)}(\Omega)$ is dense in $\mathcal{D}^{(M_n)}_{(L^p)}(\Omega)$.

PROOF. We may assume that $\overset{\circ}{K}_1 \neq \emptyset$ and that $K_m \subset \overset{\circ}{K}_{m+1}, m = 1, 2, \ldots$. Given $\rho > 0$, we write $B(\rho)$ for the closed ball in \mathbb{R}^k with center in the origin and radius ρ . We take f in $\mathcal{D}^{(M_n)}_{(L^p)}(\Omega)$. We find a positive integer m such that $f \in \mathcal{D}^{(M_n)}_{(L^p)}(K_m)$. We choose a sequence (ψ_i) in $\mathcal{D}^{(M_n)}(\mathbb{R}^k)$ satisfying:

- (i) $\psi_i(x) \ge 0, x \in \mathbb{R}^k$.
- (ii) $\int_{\mathbb{R}^k} \psi_i(x) \, \mathrm{d}x = 1.$
- (iii) supp $\psi_i \subset B(\rho_i), \rho_1 > \rho_2 > \cdots > \rho_i > \cdots$,

$$\lim_{i} \rho_i = 0$$

and
$$K_m + B(\rho_1) \subset K_{m+1}$$
.

We extend f to \mathbb{R}^k by putting $f(x) = 0, x \in \mathbb{R}^k \setminus \Omega$. We set $f_i := f * \psi_i, i \in \mathbb{N}$. We see next that (f_i) is a sequence in $\mathcal{D}^{(M_n)}(K_{m+1})$ which converges to f in $\mathcal{D}^{(M_n)}_{(L^p)}(K_{m+1})$. For each $\alpha \in \mathbb{N}_0^k$, we have

$$D^{\alpha}f_i(x) = \int_{\mathbb{R}^k} f(y)(D^{\alpha}\psi_i)(x-y) \,\mathrm{d}y, \qquad x \in \mathbb{R}^k,$$

and hence f_i is in $\mathcal{D}^{(M_n)}(K_{m+1})$.

Let us take $\varepsilon > 0$ and $r \in \mathbb{N}$. We find a positive integer s_0 such that

$$\left(\frac{r}{r+1}\right)^{s_0} \|f\|_{p,1/r+1} < \frac{\varepsilon}{4}$$

Given $\alpha \in \mathbb{N}_0^k$, we have, for $x \in \mathbb{R}^k$,

$$|D^{\alpha}f_{i}(x) - D^{\alpha}f(x)| \leq \int_{\mathbb{R}^{k}} |(D^{\alpha}f)(x-y) - D^{\alpha}(x)| \cdot \psi_{i}(y) \, \mathrm{d}y$$
$$\leq \sup \left\{ |(D^{\alpha}f)(x-y) - D^{\alpha}f(x)| \colon y \in B(\delta_{i}) \right\}$$

and so, if μ is the Lebesgue measure in \mathbb{R}^k , we may find $i_0 \in \mathbb{N}$ such that

$$|D^{\alpha}f_i(x) - D^{\alpha}f(x)| < \frac{\varepsilon}{2r^{s_0}\mu(K_{m+1})}, \qquad i \ge i_0, \quad x \in \mathbb{R}^k, \quad |\alpha| \le s_0$$

6	2
U	J

Then

$$\|D^{\alpha}f_i - D^{\alpha}f\|_p \le \frac{\varepsilon}{2r^{s_0}}, \qquad i \ge i_0, \quad |\alpha| \le s_0.$$

Applying (3) for $p_1 = p$, $p_2 = 1$, $g = D^{\alpha}f$ and $l = \psi_i$, we obtain

$$||D^{\alpha}f_i||_p = ||(D^{\alpha}f) * \psi_i||_p \le ||D^{\alpha}f||_p \cdot ||\psi_i||_1 = ||D^{\alpha}f||_p.$$

Therefore, for $i \ge i_0$, we have that

$$\begin{split} \|f - f_i\|_{p,1/r} &= \sup_{\alpha \in \mathbb{N}_0^k} \frac{r^{|\alpha|} \|D^{\alpha} (f - f_i)\|_p}{M_{|\alpha|}} \\ &\leq \sup_{|\alpha| \leq s_0} \frac{r^{|\alpha|} \|D^{\alpha} (f - f_i)\|_p}{M_{|\alpha|}} + \sup_{|\alpha| > s_0} \frac{r^{|\alpha|} \|D^{\alpha} (f - f_i)\|_p}{M_{|\alpha|}} \\ &\leq \frac{\varepsilon}{2} + \sup_{|\alpha| > s_0} \left(\frac{r}{r+1}\right)^{|\alpha|} \frac{(r+1)^{|\alpha|} (\|D^{\alpha} f\|_p + \|D^{\alpha} f_i\|_p)}{M_{|\alpha|}} \\ &\leq \frac{\varepsilon}{2} + \left(\frac{r}{r+1}\right)^{s_0} \sup_{\alpha \in \mathbb{N}_0^k} \frac{2(r+1)^{|\alpha|} |D^{\alpha} f\|_p}{M_{|\alpha|}} \\ &= \frac{\varepsilon}{2} + \left(\frac{r}{r+1}\right)^{s_0} \cdot 2\|f\|_{p,1/r+1} \\ &< \varepsilon, \end{split}$$

from where the conclusion follows.

The previous proposition tells us that the elements of $\mathcal{D}_{(L^p)}^{(M_n)'}(\Omega)$ may be considered as ultradistributions.

Proposition 6. If $\varphi \in \mathcal{B}_{(L^p)}^{(M_n)}(\Omega)$ and $g \in \mathcal{D}^{(M_n)}(\Omega)$, then $g\varphi$ is in $\mathcal{D}_{(L^p)}^{(M_n)}(\Omega)$.

PROOF. The support of $g\varphi$ is a compact subset of Ω . We take a positive integer r. We find a constant C_r such that

$$|D^{\alpha}g(x)| \le C_r(2r)^{-|\alpha|}M_{|\alpha|}, \qquad x \in \Omega, \quad \alpha \in \mathbb{N}_0^k.$$

We have that, for each $\alpha \in \mathbb{N}_0^k$,

$$\begin{split} \|D^{\alpha}(g\varphi)\|_{p} &\leq \sum_{\beta \leq \alpha} \frac{\alpha!}{\beta!(\alpha-\beta)!} \|D^{\beta}g \cdot D^{\alpha-\beta}\varphi\|_{p} \\ &\leq \sum_{\beta \leq \alpha} \frac{\alpha!}{\beta!(\alpha-\beta)!} C_{r}(2r)^{-|\beta|} M_{|\beta|} \|D^{\alpha-\beta}\varphi\|_{p} \\ &\leq C_{r} \sum_{\beta \leq \alpha} \frac{\alpha!}{\beta!(\alpha-\beta)!} (2r)^{-|\beta|} M_{|\beta|} \|\varphi\|_{p,1/2r} M_{|\alpha-\beta|}(2r)^{-|\alpha-\beta|} \\ &\leq C_{r} \sum_{\beta \leq \alpha} \frac{\alpha!}{\beta!(\alpha-\beta)!} (2r)^{-|\alpha|} M_{|\alpha|} \|\varphi\|_{p,1/2r} = C_{r} \|\varphi\|_{p,1/2r} r^{-|\alpha|} M_{|\alpha|} \end{split}$$

and thus

$$\sup_{\alpha \in \mathbb{N}_0^k} \frac{r^{|\alpha|} \|D^{\alpha}(g\varphi)\|_p}{M_{|\alpha|}} \le C_r \|\varphi\|_{p,1/2r}$$

and the conclusion follows.

In what follows, before stating our next lemma, we shall give the details of a previous construction. We take a bounded subset $\{S_j : j \in J\}$ of $\mathcal{D}_{(L^p)}^{(M_n)'}(\Omega)$ so that there is a compact subset H of Ω with

$$\operatorname{supp} S_j \subset H, \qquad j \in J$$

Let K be a compact subset of Ω with $H \subset \overset{\circ}{K}$. We choose an element η of $\mathcal{D}^{(M_n)'}(\Omega)$ which takes value one in a neighborhood of K and whose support is compact. For each $\varphi \in \mathcal{B}_{L^p}^{(M_n)}(\Omega)$, we have that, after the previous proposition, $\eta \varphi$ is in $\mathcal{D}_{(L^p)}^{(M_n)}(\Omega)$. We put

$$\langle \varphi, W_j \rangle := \langle \eta \varphi, S_j \rangle, \qquad j \in J, \quad \varphi \in \mathcal{B}_{(L^p)}^{(M_n)}(\Omega).$$

It is easy to see that $\{W_j : j \in J\}$ is a bounded subset of $\mathcal{B}_{L^p}^{(M_n)'}(\Omega)$. We apply Proposition 4 to obtain h > 0 and, for each $j \in J$, a family $(f_{\alpha,j} : \alpha \in \mathbb{N}_0^k)$ of elements of $\mathcal{L}^q(\Omega)$ such that

$$\sup_{\substack{\alpha \in \mathbb{N}_0^k \\ i \in J}} h^{|\alpha|} M_{|\alpha|} \| f_{\alpha,j} \|_q < \infty$$

and

$$\langle \varphi, W_j \rangle = \sum_{\alpha \in \mathbb{N}_0^k} \int_{\Omega} D^{\alpha} \varphi \cdot f_{\alpha,j} \, \mathrm{d}x, \qquad j \in J, \quad \varphi \in \mathcal{B}_{L^p}^{(M_n)}(\Omega)$$

Let g be an element of $\mathcal{D}^{(M_n)}(\Omega)$ which takes value one in a neighborhood of H and whose support is contained in $\overset{\circ}{K}$. Then, on account of the previous proposition, we have

$$\langle g\varphi, S_j \rangle = \langle \eta g\varphi, S_j \rangle = \langle g\varphi, W_j \rangle = \sum_{\alpha \in \mathbb{N}_0^k} \int_{\Omega} D^{\alpha}(g\varphi) \cdot f_{\alpha,j} \, \mathrm{d}x$$

$$= \sum_{\alpha \in \mathbb{N}_0^k} \int_{\Omega} \left(\sum_{\beta \le \alpha} \frac{\alpha!}{\beta! (\alpha - \beta)!} D^{\beta}g \cdot D^{\alpha - \beta}\varphi \right) \cdot f_{\alpha,j} \, \mathrm{d}x, \qquad j \in J, \quad \varphi \in \mathcal{B}_{L^p}^{(M_n)}(\Omega).$$
(4)

We now take a positive integer $r > \frac{4k}{h}$. Let C_r be a positive constant such that

$$|D^{\beta}g(x)| \le C_r r^{-|\beta|} M_{|\beta|}, \qquad x \in \Omega, \quad \beta \in \mathbb{N}_0^k$$

We then have that

$$\begin{split} \sum_{\beta \leq \alpha} \frac{\alpha!}{\beta!(\alpha - \beta)!} \int_{\Omega} |D^{\beta}g| \cdot |D^{\alpha - \beta}\varphi| \cdot |f_{\alpha,j}| \, \mathrm{d}x \\ &\leq \sum_{\beta \leq \alpha} \frac{\alpha!}{\beta!(\alpha - \beta)!} C_{r} r^{-|\beta|} M_{|\beta|} \int_{\Omega} |D^{\alpha - \beta}\varphi| \cdot |f_{\alpha,j}| \, \mathrm{d}x \\ &\leq \sum_{\beta \leq \alpha} \frac{\alpha!}{\beta!(\alpha - \beta)!} C_{r} r^{-|\beta|} M_{|\beta|} \|D^{\alpha - \beta}\varphi\|_{p} \cdot \|f_{\alpha,j}\|_{q} \\ &\leq \sum_{\beta \leq \alpha} \frac{\alpha!}{\beta!(\alpha - \beta)!} C_{r} r^{-|\beta|} M_{|\beta|} \|\varphi\|_{p,1/r} r^{-|\alpha - \beta|} M_{|\alpha - \beta|} \|f_{\alpha,j}\|_{q} \\ &\leq \sum_{\beta \leq \alpha} \frac{\alpha!}{\beta!(\alpha - \beta)!} C_{r} r^{-|\alpha|} M_{|\alpha|} \|\varphi\|_{p,1/r} \|f_{\alpha,j}\|_{q} \\ &= C_{r} \|\varphi\|_{p,1/r} \left(\frac{r}{2}\right)^{-|\alpha|} M_{|\alpha|} \|f_{\alpha,j}\|_{q} \end{split}$$

$$\leq C_r \|\varphi\|_{p,1/r} \frac{1}{(2k)^{|\alpha|}} h^{|\alpha|} M_{|\alpha|} \|f_{\alpha,j}\|_q \leq C_r \|\varphi\|_{p,1/r} \frac{1}{(2k)^{|\alpha|}} \sup_{\substack{\delta \in \mathbb{N}_0^k \\ j \in J}} h^{|\delta|} M_{|\delta|} \|f_{\alpha,j}\|_q$$

and, noticing that

$$\sum_{\alpha \in \mathbb{N}_0^k} \frac{1}{(2k)^{|\alpha|}} = 2,$$

we have that the series (4) converges absolutely and so we may write, putting $\gamma := \alpha - \beta$,

$$\sum_{\alpha \in \mathbb{N}_{0}^{k}} \sum_{\beta \leq \alpha} \frac{\alpha!}{\beta!(\alpha - \beta)!} \int_{\Omega} D^{\beta} g \cdot D^{\alpha - \beta} \varphi \cdot f_{\alpha, j} \, \mathrm{d}x$$
$$= \sum_{\gamma \in \mathbb{N}_{0}^{k}} \sum_{\beta \in \mathbb{N}_{0}^{k}} \frac{(\beta + \gamma)!}{\beta! \gamma!} \int_{\Omega} D^{\beta} g \cdot D^{\gamma} \varphi \cdot f_{\beta + \gamma, j} \, \mathrm{d}x.$$
(5)

Lemma 1. Let $\{S_j : j \in J\}$ be a bounded subset of $\mathcal{D}_{(L^p)}^{(M_n)'}(\Omega)$ such that there is a compact subset H in Ω with

$$\operatorname{supp} S_j \subset H, \qquad j \in J.$$

Let K be a compact subset of Ω such that $H \subset \overset{\circ}{K}$. Then there are h > 0 and, for each $j \in J$, a family $(g_{\alpha,j} : \alpha \in \mathbb{N}_0^k)$ of elements of $\mathcal{L}^q(\Omega)$ such that

$$\sup_{\substack{\alpha \in \mathbb{N}_0^k \\ j \in J}} h^{|\alpha|} M_{|\alpha|} \|g_{\alpha,j}\|_q < \infty$$

$$\operatorname{supp} g_{\alpha,j} \subset \overset{\circ}{K}, \qquad j \in J, \quad \alpha \in \mathbb{N}_0^k,$$

and

$$\langle \varphi, S_j \rangle = \sum_{\alpha \in \mathbb{N}_0^k} \int_{\Omega} D^{\alpha} \varphi \cdot g_{\alpha,j} \, \mathrm{d}x, \qquad j \in J, \quad \varphi \in \mathcal{D}_{(L^p)}^{(M_n)}(\Omega),$$

where the series converges absolutely and uniformly when j varies in J and φ varies in any given bounded subset of $\mathcal{D}_{(L^p)}^{(M_n)}(\Omega)$.

PROOF. We choose h > 0 and, for each $j \in J$, the family $(f_{\alpha,j} : \alpha \in \mathbb{N}_0^k)$ of elements of $\mathcal{L}^q(\Omega)$ with the properties above cited. We fix $\gamma \in \mathbb{N}_0^k$ and take $\rho \in \tilde{\rho} \in L^p(\Omega)$. We choose $r \in \mathbb{N}$, r > 4k/h. Then

$$\begin{split} \sum_{\beta \in \mathbb{N}_{0}^{k}} \frac{(\beta + \gamma)!}{\beta! \gamma!} \int_{\Omega} D^{\beta} g \cdot \rho \cdot f_{\beta + \gamma, j} \, \mathrm{d}x \\ & \leq \sum_{\beta \in \mathbb{N}_{0}^{k}} \frac{(\beta + \gamma)!}{\beta! \gamma!} \int_{\Omega} |D^{\beta}g| \cdot |\rho| \cdot |f_{\beta + \gamma, j}| \, \mathrm{d}x \\ & \leq |\sum_{\beta \in \mathbb{N}_{0}^{k}} \frac{(\beta + \gamma)!}{\beta! \gamma!} C_{r} r^{-|\beta|} M_{|\beta|} \|\rho\|_{p} \cdot \|f_{\beta + \gamma, j}\|_{q} \\ & \leq \frac{C_{r} \|\rho\|_{p}}{M_{|\gamma|}} \sum_{\beta \in \mathbb{N}_{0}^{k}} 2^{|\beta + \gamma|} r^{-|\beta|} M_{|\beta + \gamma|} \|f_{\beta + \gamma, j}\|_{q} \end{split}$$

On the ultradistributions of Beurling type

$$\leq \frac{C_r \|\rho\|_p r^{|\gamma|}}{M_{|\gamma|}} \sum_{\beta \in \mathbb{N}_0^k} (r/2)^{-|\beta+\gamma|} M_{|\beta+\gamma|} \|f_{\beta+\gamma,j}\|_q$$

$$\leq \frac{C_r \|\rho\|_p}{M_{|\gamma|}} r^{|\gamma|} \sum_{\beta \in \mathbb{N}_0^k} (2k/h)^{-|\beta+\gamma|} M_{|\beta+\gamma|} \|f_{\beta+\gamma,j}\|_q$$

$$\leq \frac{C_r \|\rho\|_p}{M_{|\gamma|}} r^{|\gamma|} \left(\sup_{\substack{\alpha \in \mathbb{N}_0^k \\ j \in J}} h^{|\alpha|} M_{|\alpha|} \|f_{\alpha,j}\|_q \right) \sum_{\beta \in \mathbb{N}_0^k} \frac{1}{(2k)^{|\beta|}}$$

from where we get that there is $A_{\gamma} > 0$ such that

$$\left|\sum_{\beta \in \mathbb{N}_0^k} \frac{(\beta + \gamma)!}{\beta! \, \gamma!} \int_{\Omega} D^{\beta} g \cdot \rho \cdot f_{\beta + \gamma, j} \, \mathrm{d}x\right| \le A_{\gamma} \|\tilde{\rho}\|_p.$$
(6)

If we put, for each $\rho \in \tilde{\rho} \in L^p(\Omega)$,

$$v_{\gamma,j}(\tilde{\rho}) := \sum_{\beta \in \mathbb{N}_0^k} \frac{(\beta + \gamma)!}{\beta! \, \gamma!} \int_{\Omega} D^{\beta} g \cdot \rho \cdot f_{\beta + \gamma,j} \, \mathrm{d}x,$$

we then have that $v_{\gamma,j}$ is a complex function defined in $L^p(\Omega)$, clearly linear, such that after (6) is also continuous. Then there is $g_{\gamma,j}$ in $\mathcal{L}^q(\Omega)$ such that

$$v_{\gamma,j}(\tilde{\rho}) = \int_{\Omega} \rho \cdot g_{\gamma,j} \,\mathrm{d}x, \qquad \rho \in \tilde{\rho} \in L^p(\Omega).$$

If M is the support of g, then it is clear that

$$\operatorname{supp} g_{\alpha,j} \subset M \subset \overset{\circ}{K}, \qquad j \in J, \quad \gamma \in \mathbb{N}_0^k.$$

For each $\varphi \in \mathcal{B}_{L^p}^{(M_n}(\Omega)$, we have

$$\sum_{\beta \in \mathbb{N}_0^k} \frac{(\beta + \gamma)!}{\beta! \, \gamma!} \int_{\Omega} D^{\beta} g \cdot D^{\gamma} \varphi \cdot f_{\beta + \gamma, j} \, \mathrm{d}x = \int_{\Omega} D^{\gamma} \varphi \cdot g_{\gamma, j} \, \mathrm{d}x$$

and, by (4) and (5),

$$\langle g\varphi, S_j \rangle = \sum_{\gamma \in \mathbb{N}_0^k} \int_{\Omega} D^{\gamma} \varphi \cdot g_{\alpha,j} \, \mathrm{d}x, \qquad j \in J, \quad \varphi \in \mathcal{B}_{L^p}^{(M_n)}(\Omega).$$
 (7)

We now fix $\gamma \in \mathbb{N}_0^k$ and $j \in J$. We choose $\tilde{\rho} \in L^p(\Omega)$ such that $\|\tilde{\rho}\|_p < 2$ and $v_{\gamma,j}(\tilde{\rho}) = \|g_{\gamma,j}\|_q$. We take $r \in \mathbb{N}$ with r > 4k/h. If we put

$$C := 2 \sup_{\alpha \in \mathbb{N}_0^k} h^{|\alpha|} M_{|\alpha|} ||f_{\alpha,j}||_q,$$

we have obtained above

$$\left|\sum_{\beta \in \mathbb{N}_0^k} \frac{(\beta + \gamma)!}{\beta! \, \gamma!} \int_{\Omega} D^{\beta} g \cdot \rho \cdot f_{\beta + \gamma, j} \, \mathrm{d}x\right| \leq \frac{C_r \|\tilde{\rho}\|_p \, r^{|\gamma|}}{M_{|\gamma|}} \cdot C.$$

Consequently,

$$\begin{aligned} r^{-|\gamma|} M_{|\gamma|} \|g_{\alpha,j}\|_{q} &= r^{-|\gamma|} M_{|\gamma|} v_{\gamma,j}(\tilde{\rho}) \\ &= r^{-|\gamma|} M_{|\gamma|} \left| \sum_{\beta \in \mathbb{N}_{0}^{k}} \frac{(\beta + \gamma)!}{\beta! \gamma!} \int_{\Omega} D^{\beta} g \cdot \rho \cdot f_{\beta + \gamma,j} \, \mathrm{d}x \right| \\ &\leq r^{-|\gamma|} M_{|\gamma|} \frac{C_{r} \|\rho\|_{p} r^{|\gamma|}}{M_{|\gamma|}} \\ &= 2C_{r} C \end{aligned}$$

and so

$$\sup_{\substack{\gamma \in \mathbb{N}_0^k \\ j \in J}} r^{-|\gamma|} M_{|\gamma|} \|g_{\alpha,j}\|_q \le 2C_r C.$$

We apply now Proposition 3 to the families $(g_{\alpha,j} : \alpha \in \mathbb{N}_0^k), j \in J$, and so obtain, for each $j \in J$, an element T_j in $\mathcal{B}_{L^p}^{(M_n)'}(\Omega)$ such that

$$\langle \varphi, T_j \rangle = \sum_{\alpha \in \mathbb{N}_0^K} \int_{\Omega} D^{\alpha} \varphi \cdot g_{\alpha,j} \, \mathrm{d}x, \qquad j \in J, \quad \varphi \in \mathcal{B}_{L^p}^{(M_n)}(\Omega),$$

where the series converges absolutely and uniformly when j varies in J and φ varies in any given bounded subset of $\mathcal{B}_{L^p}^{(M_n)}(\Omega)$. On the other hand, we have

$$\langle \varphi, S_j \rangle = \langle g\varphi, S_j \rangle = \sum_{\alpha \in \mathbb{N}_0^K} \int_{\Omega} D^{\alpha} \varphi \cdot g_{\alpha,j} \, \mathrm{d}x = \langle \varphi, T_j \rangle.$$

The conclusion is now obvious.

We now put $\mathcal{L}^q_{\text{loc}}(\Omega)$ for the linear space over \mathbb{C} of the complex functions defined in Ω such that, for each compact subset K of Ω , $f_{|K}$ belongs to $\mathcal{L}^q(K)$. We write $|f|_{K,q} := ||f_{|K}||_q$.

Theorem 1. For each j in a set J, let $(f_{\alpha,j} : \alpha \in \mathbb{N}_0^k)$ be a family of elements of $\mathcal{L}^q_{loc}(\Omega)$ such that, given any compact subset K of Ω , there is h > 0 such that

$$\sup_{\substack{\alpha \in \mathbb{N}_0^k \\ j \in J}} h^{|\alpha|} M_{|\alpha|} |f_{\alpha,j}|_{K,q} < \infty.$$

Then, there is a bounded subset $\{S_j : j \in J\}$ in $\mathcal{D}_{(L^p)}^{(M_n)'}(\Omega)$ such that

$$\langle \varphi, S_j \rangle = \sum_{\alpha \in \mathbb{N}_0^K} \int_{\Omega} D^{\alpha} \varphi \cdot f_{\alpha,j} \, \mathrm{d}x, \qquad j \in J, \quad \varphi \in \mathcal{D}_{(L^p)}^{(M_n)}(\Omega),$$

where the series converges absolutely and uniformly when j varies in J and φ varies in any given bounded subset of $\mathcal{D}_{(L^p)}^{(M_n)}(\Omega)$.

PROOF. For each $m \in \mathbb{N}$, we put

$$f^m_{\alpha,j} := f_{\alpha,j|\overset{\circ}{K}_m}, \qquad \alpha \in \mathbb{N}^k_0, \quad j \in J.$$

On the ultradistributions of Beurling type

We apply Proposition 3 and thus obtain a bounded subset $\{S_j^m : j \in J\}$ of $\mathcal{B}_{L^p}^{(M_n)'}(\overset{\circ}{K_m})$ such that

$$\langle \varphi, S_j^m \rangle = \sum_{\alpha \in \mathbb{N}_0^K} \int_{\Omega} D^{\alpha} \varphi \cdot f_{\alpha, j}^m \, \mathrm{d}x, \qquad j \in J, \quad \varphi \in \mathcal{B}_{L^p}^{(M_n)}(\overset{\circ}{K_m})$$

where the series converges absolutely and uniformly when j varies in J and φ varies in any given bounded subset of $\mathcal{D}_{(L^p)}^{(M_n)}(\overset{\circ}{K_m})$.

For a given element φ of $\mathcal{D}_{(L^p)}^{(M_n)}(\Omega)$, we find $m \in \mathbb{N}$ such that

$$\operatorname{supp} \varphi \subset \overset{\circ}{K_m}$$

and set

$$\langle \varphi, S_j \rangle := \langle \varphi, S_j^m \rangle$$

It is easy to see that S_j is well defined and that $\{S_j : J \in J\}$ is a bounded subset of $\mathcal{D}_{(L^p)}^{(M_n)'}(\Omega)$, which leads us to the desired result.

Theorem 2. If $\{S_j : j \in J\}$ is a bounded subset of $\mathcal{D}_{(L^p)}^{(M_n)'}(\Omega)$, then there is, for each $j \in J$, a family $(f_{\alpha,j} : \alpha \in \mathbb{N}_0^k)$ in $\mathcal{L}_{loc}^p(\Omega)$ such that, given any compact subset K of Ω , there is h > 0 with

$$\sup_{\substack{\alpha \in \mathbb{N}_0^k \\ j \in J}} h^{|\alpha|} M_{|\alpha|} |f_{\alpha,j}|_{K,q} < \infty$$

and

$$\langle \varphi, S_j \rangle = \sum_{\alpha \in \mathbb{N}_0^K} \int_{\Omega} D^{\alpha} \varphi \cdot f_{\alpha, j}^m \, \mathrm{d}x, \qquad j \in J, \quad \varphi \in \mathcal{D}_{(L^p)}^{(M_n)}(\Omega),$$

where the series converges absolutely and uniformly when j varies in J and φ varies in any given bounded subset of $\mathcal{D}_{(L^p)}^{(M_n)}(\Omega)$.

PROOF. Let $\{O_m : m \in \mathbb{N}\}$ be a locally finite open covering of Ω such that O_m is relatively compact in Ω , $m \in \mathbb{N}$. Let $\{g_m : m \in \mathbb{N}\}$ be a partition of unity of class (M_n) subordinated to that covering. It follows that $\{g_m S_j : j \in J\}$ is a bounded subset of $\mathcal{D}_{(L^p)}^{(M_n)'}(\Omega)$ whose elements have their supports contained in a compact subset of O_m . Applying the previous lemma, we obtain, for each $j \in J$, a family $(f_{\alpha,j}^m : \alpha \in \mathbb{N}_0^k)$ of elements of $\mathcal{L}^q(\Omega)$ such that there is $h_m > 0$ with

$$\sup_{\substack{\alpha \in \mathbb{N}_{0}^{k} \\ j \in J}} h_{m}^{|\alpha|} M_{|\alpha|} \| f_{\alpha,j}^{m} \|_{q} < \infty,$$
$$\sup_{j \in J} f_{\alpha,j}^{m} \subset O_{m}, \qquad j \in J, \quad \alpha \in \mathbb{N}_{0}^{k},$$

and

$$\langle \varphi, g_m S_j \rangle = \sum_{\alpha \in \mathbb{N}_0^K} \int_{\Omega} D^{\alpha} \varphi \cdot f_{\alpha,j}^m \, \mathrm{d}x, \qquad j \in J, \quad \varphi \in \mathcal{D}_{(L^p)}^{(M_n)}(\Omega),$$

where the series converges absolutely and uniformly when j varies in J and φ varies in any given bounded subset of $\mathcal{D}_{(L^p)}^{(M_n)}(\Omega)$. We put, for each $x \in \Omega$, $\alpha \in \mathbb{N}_0^k$, $j \in J$,

$$f_{\alpha,j}(x) := \sum_{m=1}^{\infty} f_{\alpha,j}^m(x).$$

Given any compact subset K of Ω , there is a positive integer m_0 such that

$$K \cap O_m = \emptyset, \qquad m \ge m_0,$$

and thus $f_{\alpha,j}$ is well defined and belongs to $\mathcal{L}^q_{\text{loc}}(\Omega)$. Besides, we have

$$|f_{\alpha,j}|_{K,q} \le \sum_{m=1}^{m_0} |f_{\alpha,j}^m|_{K,q} \le \sum_{m=1}^{m_0} ||f_{\alpha,j}^m||_q$$

and so, if

$$h := \inf\{h_m : m = 1, 2, \dots, m_0\},\$$

we have that

$$\sup_{\substack{\alpha \in \mathbb{N}_0^k \\ j \in J}} h^{|\alpha|} M_{|\alpha|} |f_{\alpha,j}|_{K,q} \le \sum_{m=1}^{m_0} \sup_{\substack{\alpha \in \mathbb{N}_0^k \\ j \in J}} h_m^{|\alpha|} M_{|\alpha|} ||f_{\alpha,j}^m||_q < \infty.$$

We now apply the previous theorem to obtain a bounded subset $\{T_j : j \in J\}$ of $\mathcal{D}_{(L^p)}^{(M_n)'}(\Omega)$ such that

$$\langle \varphi, T_j \rangle = \sum_{\alpha \in \mathbb{N}_0^K} \int_{\Omega} D^{\alpha} \varphi \cdot f_{\alpha,j} \, \mathrm{d}x, \qquad j \in J, \quad \varphi \in \mathcal{D}_{(L^p)}^{(M_n)}(\Omega),$$

where the series converges absolutely and uniformly when j varies in J and φ varies in any given bounded subset of $\mathcal{D}_{(L^p)}^{(M_n)}(\Omega)$.

We next choose φ in $\mathcal{D}_{(L^p)}^{(M_n)}(\Omega)$. We find $m_0 \in \mathbb{N}$ for which

$$O_m \cap \operatorname{supp} \varphi = \emptyset, \qquad m \ge m_0.$$

Then

$$\begin{split} \langle \varphi, T_j \rangle &= \sum_{\alpha \in \mathbb{N}_0^K} \int_{\Omega} D^{\alpha} \varphi \cdot f_{\alpha,j} \, \mathrm{d}x \\ &= \sum_{\alpha \in \mathbb{N}_0^k} \int_{\Omega} \left(\sum_{m=1}^{m_0} D^{\alpha} \varphi \cdot f_{\alpha,hj}^m \right) \mathrm{d}x \\ &= \sum_{m=1}^{m_0} \sum_{\alpha \in \mathbb{N}_0^k} \int_{\Omega} D^{\alpha} \varphi \cdot f_{\alpha,j}^m \, \mathrm{d}x \\ &= \sum_{m=1}^{m_0} \langle \varphi, g_m S_j \rangle \\ &= \langle \sum_{m=1}^{m_0} \varphi \cdot g_m, S_j \rangle \\ &= \langle \varphi, S_j \rangle. \end{split}$$

Consequently, $S_j = T_j, j \in J$, and the conclusion follows.

Proposition 7. If M_n , n = 0, 1, ..., satisfies condition (1), then the canonical injection ζ from $\mathcal{D}^{(M_n)}(\Omega)$ into $\mathcal{D}^{(M_n)}_{(L^p)}(\Omega)$ is a topological isomorphism.

PROOF. Clearly ζ is well defined linear and continuous. It is also plain that there exist b > 0 and l > 0 such that

$$M_{n+k} \leq b \, l^n M_n, \qquad n \in \mathbb{N}_0.$$

We take now an arbitrary element φ of $\mathcal{D}_{(L^1)}^{(M_n)}(\Omega)$ and $r \in \mathbb{N}$. Let s be an integer greater that rl. We extend φ to \mathbb{R}^k such that $\varphi(x) = 0, x \in \mathbb{R}^k \setminus \Omega$. Given $\alpha \in \mathbb{N}_0^k$ and $x \in \mathbb{R}^k$, we have that

$$D^{\alpha}\varphi(x) = \int_{-\infty}^{x_1} \int_{-\infty}^{x_2} \cdots \int_{-\infty}^{x_k} \frac{\partial^{|\alpha|+k}\varphi(t)}{\partial^{\alpha_1+1}t_1\partial^{\alpha_2+1}t_2\dots\partial^{\alpha_k+1}t_k} \,\mathrm{d}t_1 \,\mathrm{d}t_2\dots\mathrm{d}t_k$$

and hence

$$\begin{split} |D^{\alpha}\varphi(x)| &\leq \int_{\Omega} \left| \frac{\partial^{|\alpha|+k}\varphi(t)}{\partial^{\alpha_{1}+1}t_{1}\partial^{\alpha_{2}+1}t_{2}\dots\partial^{\alpha_{k}+1}t_{k}} \right| \mathrm{d}t_{1} \,\mathrm{d}t_{2}\dots\mathrm{d}t_{k} \\ &\leq \|\varphi\|_{1,1/s}s^{-|\alpha|-k}M_{|\alpha|+k} \\ &\leq \|\varphi\|_{1,1/s}s^{-|\alpha|-k}b\,l^{|\alpha|}M_{|\alpha|} \\ &\leq \|\varphi\|_{1,1/s}b\,s^{-k}\left(\frac{s}{l}\right)^{-|\alpha|}M_{|\alpha|} \\ &\leq b\,s^{-k}\|\varphi\|_{1,1/s}r^{-|\alpha|}M_{|\alpha|} \end{split}$$

and so

$$\varphi \in \mathcal{D}^{(M_n)}(\Omega)$$

Thus ζ is onto. The conclusion now follows by applying a theorem of Grothendieck's, [1, p. 17].

Theorem 3. If M_n , $n = 0, 1, \ldots$ satisfies condition (1) and $\{S_j : j \in J\}$ is a bounded subset of $\mathcal{D}^{(M_n)'}(\Omega)$, then there is, for each $j \in J$, a family $(f_{\alpha,j} : \alpha \in \mathbb{N}_0^k)$ of elements of $\mathcal{L}^{\infty}_{loc}(\Omega)$ such that, given a compact subset K of Ω , there is h > 0 such that

$$\sup_{\substack{\alpha \in \mathbb{N}_0^k \\ j \in J}} h^{|\alpha|} M_{|\alpha|} |f_{\alpha,j}|_{K,\infty} < \infty$$

and

$$\langle \varphi, S_j \rangle = \sum_{\alpha \in \mathbb{N}_0^k} \int_{\Omega} D^{\alpha} \varphi \cdot f_{\alpha,j} \, \mathrm{d}x, \qquad j \in J, \quad \varphi \in \mathcal{D}^{\mathsf{c}}(M_n)(\Omega),$$

where the series converges absolutely and uniformly when j varies in J and φ varies in any given bounded subset of $\mathcal{D}^{(M_n)}(\Omega)$.

PROOF. It is an immediate consequence of the previous proposition and Theorem 2.

We put now $\mathcal{D}_{L^p}^{(M_n)}(\Omega)$ for the subspace of $\mathcal{B}_{L^p}^{(M_n)}(\Omega)$ given by the closure of $\mathcal{D}^{(M_n)}(\Omega)$ in that space. $\mathcal{D}_{L^p}^{(M_n)'}(\Omega)$ will be the strong dual of $\mathcal{D}_{L^p}^{(M_n)}(\Omega)$. The two theorems that follow next are not difficult to prove by following a similar procedure to those in the proofs of Proposition 3 and Proposition 4, respectively. Those theorems constitute characterizations of certain ultradistributions of Beurling type in Ω .

Theorem 4. For each j in a set J, let $(f_{\alpha,j} : \alpha \in \mathbb{N}_0^k)$ be a family of elements of $\mathcal{L}^q(\Omega)$ such that there is h > 0 with

$$\sup_{\substack{\alpha \in \mathbb{N}_0^k \\ j \in J}} h^{|\alpha|} M_{|\alpha|} \| f_{\alpha,j} \|_q < \infty.$$

Then there exists a bounded subset $\{S_j : j \in J\}$ of $\mathcal{D}_{L^p}^{(M_n)'}(\Omega)$ such that

$$\langle \varphi, S_j \rangle = \sum_{\alpha \in \mathbb{N}_0^k} \int_{\Omega} D^{\alpha} \varphi \cdot f_{\alpha,j} \, \mathrm{d}x, \qquad j \in J, \quad \varphi \in \mathcal{D}_{L^p}^{(M_n)}(\Omega),$$

where the series converges absolutely and uniformly when j varies in J and φ varies in any given bounded subset of $\mathcal{D}_{L^p}^{(M_n)}(\Omega)$.

Theorem 5. If $\{S_j : j \in J\}$ is a bounded subset of $\mathcal{D}_{L^p}^{(M_n)}(\Omega)$, there are h > 0 and, for each $j \in J$, a family $(f_{\alpha,j} : \alpha \in \mathbb{N}_0^k)$ of elements of $\mathcal{L}^q(\Omega)$ such that

$$\sup_{\substack{\alpha \in \mathbb{N}_0^k \\ j \in J}} h^{|\alpha|} M_{|\alpha|} \| f_{\alpha,j} \|_q < \infty$$

and

$$\langle \varphi, S_j \rangle = \sum_{\alpha \in \mathbb{N}_0^k} \int_{\Omega} D^{\alpha} \varphi \cdot f_{\alpha,j} \, \mathrm{d}x, \qquad j \in J, \quad \varphi \in \mathcal{D}_{L^p}^{(M_n)}(\Omega)$$

where the series converges absolutely and uniformly when j varies in J and φ varies in any given bounded subset of $\mathcal{D}_{L^p}^{(M_n)}(\Omega)$.

4 Structure of the ultradistributions of Beurling type

Given h > 0, we put $\mathcal{E}_0^{(M_n),h}(\Omega)$ to denote the space over \mathbb{C} of the complex functions f, defined and infinitely differentiable in Ω which vanish at infinity, as well as each of their derivatives of any order, that is, given $\epsilon > 0$, and $\beta \in \mathbb{N}_0^k$, there is a compact subset K in Ω for which

$$|D^{\beta}f(x)| < \varepsilon, \qquad x \in \Omega \setminus K$$

satisfying also that there is C > 0, depending only on f, such that

$$|D^{\alpha}f| \le Ch^{|\alpha|} M_{|\alpha|}, \qquad x \in \Omega, \quad \alpha \in \mathbb{N}_0^k.$$

We put

$$|f|_h := \sup_{\alpha \in \mathbb{N}_0^k} \sup_{x \in \Omega} \frac{D^{\alpha} f(x)}{h^{|\alpha|} M_{|\alpha|}}$$

and assume that $\mathcal{E}_0^{(M_n),h}(\Omega)$ is endowed with the norm $|\cdot|_h.$ We set

$$\mathcal{E}_0^{(M_n)}(\Omega) := \bigcap_{m=1}^{\infty} \mathcal{E}_0^{(M_n), 1/m}(\Omega)$$

and consider $\mathcal{E}_0^{(M_n)}(\Omega)$ as the projective limit of the sequence $(\mathcal{E}_0^{(M_n),1/m}(\Omega))$ of Banach spaces. $\mathcal{E}_0^{(M_n)'}(\Omega)$ will be the strong dual of $\mathcal{E}_0^{(M_n)}(\Omega)$. By $C_0(\Omega)$ we represent the linear space over \mathbb{C} of the complex functions f defined and continuous in Ω which vanish at infinity. We put

$$|f|_{\infty} := \sup_{x \in \Omega} |f(x)|$$

and assume that $C_0(\Omega)$ is provided with this norm.

If we replace the Banach space X of Section 2 by $C_0(\Omega)$, following a argument similar to that of the previous section, and also using results of [4], we may obtain the next two theorems, which are a generalization of result b).

Theorem 6. For each j in a set J, let $(u_{\alpha,j}, \alpha \in \mathbb{N}_0^k)$ be a family of Radon measures in Ω . If, given an arbitrary compact subset K of Ω , there is h > 0 such that

$$\sup_{\substack{\alpha \in \mathbb{N}_0^k \\ j \in J}} h^{|\alpha|} M_{|\alpha|} \| u_{\alpha,j} \| (K) < \infty,$$

then there exists a bounded subset $\{S_j : j \in J\}$ of $\mathcal{D}^{(M_n)'}(\Omega)$ such that

$$\langle \varphi, S_j \rangle = \sum_{\alpha \in \mathbb{N}_0^k} \langle D^{\alpha} \varphi, u_{\alpha, j} \rangle, \qquad j \in J, \quad \varphi \in \mathcal{D}^{(M_n)}(\Omega),$$

where the series converges absolutely and uniformly when j varies in J and φ varies in any given bounded subset of $\mathcal{D}^{(M_n)}(\Omega)$.

Theorem 7. If $\{S_j : j \in J\}$ is a bounded subset of $\mathcal{D}^{(M_n)'}(\Omega)$, there is, for each $j \in J$, a family $(u_{\alpha,j} : \alpha \in \mathbb{N}_0^k)$ of Radon measures in Ω such that, given a compact subset K of Ω , there is h > 0 with

$$\sup_{\substack{\alpha \in \mathbb{N}_0^k \\ j \in J}} h^{|\alpha|} M_{|\alpha|} \| u_{\alpha,j} \| (K) < \infty,$$

and

$$\langle \varphi, S_j \rangle = \sum_{\alpha \in \mathbb{N}_0^k} \langle D^{\alpha} \varphi, u_{\alpha, j} \rangle, \qquad j \in J, \quad \varphi \in \mathcal{D}^{(M_n)}(\Omega).$$

where the series converges absolutely and uniformly when j varies in J and φ varies in any given bounded subset of $\mathcal{D}^{(M_n)}(\Omega)$.

We put $\mathcal{E}^{(M_n)}(\Omega)$ for the subspace of $\mathcal{E}^{(M_n)}_0(\Omega)$ given by the closure of $\mathcal{D}^{(M_n)}(\Omega)$. $\mathcal{E}^{(M_n)'}(\Omega)$ will denote its strong dual. The elements of this last space may be considered as Beurling ultradistributions in Ω . We characterize those ultradistributions in the following two theorems. Their proofs may be obtained by conveniently adapting the proofs of Proposition 3 and Proposition 4, respectively.

Theorem 8. For each j in a set J, let $(\mu_{\alpha,j}, \alpha \in \mathbb{N}_0^k)$ be a family of complex Borel measures in Ω such that there is h > 0 with

$$\sup_{\substack{\alpha \in \mathbb{N}_0^k \\ j \in J}} h^{|\alpha|} M_{|\alpha|} |\mu_{\alpha,j}|(\Omega) < \infty.$$

Then there exists a bounded subset $\{S_j : j \in J\}$ of $\mathcal{E}^{(\overset{\circ}{M_n})'}(\Omega)$ such that

$$\langle \varphi, S_j \rangle = \sum_{\alpha \in \mathbb{N}_0^k} \int_{\Omega} D^{\alpha} \varphi \cdot \mathrm{d}\mu_{\alpha,j}, \qquad j \in J, \quad \varphi \in \mathcal{E}^{(\overset{\circ}{M}_n)}(\Omega),$$

where the series converges absolutely and uniformly when j varies in J and φ varies in any given bounded subset of $\mathcal{E}^{(M_n)}(\Omega)$.

Theorem 9. If $\{S_j : j \in J\}$ is a bounded subset of $\mathcal{E}^{(\overset{\circ}{M}_n)'}(\Omega)$, there is h > 0 and, for each $j \in J$, a family $(\mu_{\alpha,j} : \alpha \in \mathbb{N}_0^k)$ of complex Borel measures in Ω with

$$\sup_{\substack{\alpha \in \mathbb{N}_0^n \\ j \in J}} h^{|\alpha|} M_{|\alpha|} |\mu_{\alpha,j}|(\Omega) < \infty,$$

and

$$\langle \varphi, S_j \rangle = \sum_{\alpha \in \mathbb{N}_0^k} \int_{\Omega} D^{\alpha} \varphi \cdot \mathrm{d}\mu_{\alpha,j}, \qquad j \in J, \quad \varphi \in \mathcal{E}^{(M_n)}(\Omega),$$

where the series converges absolutely and uniformly when j varies in J and φ varies in any given bounded subset of $\mathcal{E}^{(\hat{M}_n)}(\Omega)$.

Acknowledgement. The author has been partially supported by MEC and FEDER Project MTM2008-03210.

References

- [1] GROTHENDIECK, A., (1955). Produits Tensoriels Topologiques et Espaces Nucléaires, *Memoirs of the American Mathematical Society*, **16**.
- [2] KOMATSU, H., (1973). Ultradistributions I. Structure theorems and characterizations, *J. Fac. Sci. Uni. Tokyo*, **20**, 25–105.
- [3] SCHWARTZ, L., (1966). Théorie des Distributions, Hermann, Paris.
- [4] VALDIVIA, M., (2008). On the structure of the ultradistributions of Beurling type, *RACSAM, Rev. R. Acad. Cien. Serie A. Mat.*, **102**, 221–235.

Manuel Valdivia

Departamento de Análisis Matemático, Facultad de Matemáticas Universidad de Valencia Calle Doctor Moliner, 50 46100 Burjassot (Valencia, Spain).