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On the ultradistributions of Beurling type

Manuel Valdivia

Abstract. LetQ be a nonempty open set of thedimensional euclidean spa’. In this paper, we
show that ifS is an ultradistribution irf2, belonging to a class of Beurling type stable under difféatén
operators, thers can be represented in the fo@aewg D fo, wheref, is a complex function defined
in ©2 which is Lebesgue measurable and essentially bounded lrceatpact subset 1. Other structure
results on certain ultradistributions are obtained, too.

Ultradistribuciones de tipo Beurling

Resumen. Seaf2 un conjunto abierto no vacio del espacio euclideo . Enastiteulo se demuestra
gue si S es una ultradistribucion €n perteneciente a una clase de tipo Beurling que sea estahte f
a operadores diferenciales, entonces S se puede repreeset&dormaZaeNS D“ f., dondef, es una
funcion compleja definida eft que es Lebesgue medible y esencialmente acotada en cadajsubc
compacto dé2. También se obtienen otros resultados de estructura da<idtradistribuciones.

1 Introduction and notation

Throughoutthis paper all linear spaces are assumed to eedefver the field of complex numbers. We
write N for the set of positive integers and By we mean the set of nonnegative integerd7 lis a locally
convex spacek’ will be its topological dual and , -) will denote the standard duality betwegéhand E’.
Given a Banach spack, B(X) denotes its closed unit ball add* is the Banach space conjugateXof
Given a positive integek, if a := (a1, as, ..., ;) is a multindex of ordek, i.e., an element ai, we
put|al forits length, thatisja| = a1 + ag + - - - + ag, anda! := aqlas! - - - ayl.

Given a complex functiorf defined in the points = (z1,z2,...,xx) of an open subsed of the
k-dimensional euclidean spaB¢, and being infinitely differentiable, we write

lad £z
Do) e @)

= r€0, a€cN;.
dx{*0xy? ...zt ’ 0

We consider a sequendé,, M, ..., M,, ... of positive numbers satisfying the following conditions:
1. My =1.

2. Logarithmic convexity:
M,QL < Mn—an-‘rh n € N.
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3. Non-quasi-analyticity:
- Alnfl

<0
Mn

n=1

Let us take a nonempty open $&tn R*. A complex functionf, defined and infinitely differentiable i,
is said to baultradifferentiable of clas$M/,,) whenever, giveik > 0 and a compact subsat of (2, there is
C > 0 such that

|D‘Xf(m)|§Ch|“‘M|a‘, reK, acNp

We put£Mn)(Q) to denote the linear space ovErformed by all the ultradifferentiable functions of
class(M,,) defined inQ, with the ordinary topology,q]. By D*»)(Q) we denote the linear subspace
of £ (Q) formed by those functions which have compact support.

We now choose a fundamental sequence of compact subgets of

chK2c...CKm...

If K is an arbitrary compact subset@f we useD*~) (K) to denote the subspace®f/»)(Q) formed by
those functions which have their supportin We then have that

D(Mn)(Q) - U D(Mn)(Km).

m=1

We consideD(M»)(Q) as the inductive limit of the sequen¢®M~)(K,,)) of Fréchet spaces. The ele-
ments of the topological du@+)"(Q) of DM=)(Q) are callecultradistributions of Beurling typén .
We assume tha®+)"(Q) has its strong topology.

By K£(€2) we mean the linear space ov@f the complex functions defined ia which are continuous
and have compact support.Af is any compact subset &, K(K) is the subspace df(£2) formed by the
functions with support contained . If f isin (K, we put

| floo := suplf(2)],
z€Q

and assume th&f(K) is endowed with the normt | .

We consideiC(2) as the inductive limit of the sequen(€(K,,)) of Banach spaces. A Radon measure
in © is an element of the topological dul (2) of X(f2). Given a Radon measutein {2 and a compact
subsetK of 2, we put|ju||(K) for the norm of the restriction af to the Banach spadé(K).

In [2, p. 76], a structure theorem for ultradistributions of By type in(2 is given. It can be stated as
follows:

Result a) If S is an element oD(*+)"(Q2) and G is an open subset ¢t which is relatively compact, for
eacha € NE, we may find an element, in the conjugate of the Banach spaké(G), whose norm we
represent byjv, ||, such that, for somé > 0,

sup hla‘Mla\HvaH <0
IS\

and

S‘G = Z D“va.

aENg

The above result is of local character, for the elemeptsa € Nf, depend orG. In [4], we give a
structure theorem of global character for the ultradistidns of Beurling type iff2. This theorem contains
result a) as a particular case and can be stated as follows:
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Result b) If S is an element aD(M»)'(Q2), then there is a familyu,, : o € N& ) of Radon measures in
such that
(0. 8) =Y (D, us),  peDMI(Q),

aGN’U"

where the series converges absolutely and uniformly oryes@unded subset @) (Q). Also, given a
compact subsek of 2, there ish, > 0 such that

sup hla‘MMHuaH(K) < 00.
aeNg

We now putZys, (€2) for the linear space ovél formed by the complex functions defined(t which
are Lebesgue-measurable and essentially bounded in evapect subset db. The elements of this space
are considered as Radon measure§lon the usual way. Iff is in £ (©2) and K is a compact subset of
Q, we write| f| k.~ for the essential supremum pf| in K.

We say that the sequendé,, M, ..., M, ...satisfies the stability condition for differential cptors

provided there arel > 0 andh > 0 such that
Mn-{-l < AhnMru ne NO- (1)

In this paper, we give a structure theorem for ultradistidns of Beurling type irf2, which contains
the following result as a particular case:

Result ¢) If My, My, ..., M,, ...satisfies conditiofl) and S is an element gP(*»)'(Q2), then there is a
family ( f, : « € N§ ) of elements of,(£2) such that, given an arbitrary compact subsebf 2, there is
h > 0 with

sup h“"l]\4‘o(||fa|;<7Oo < 00
aENg

and

S= > Da.

aGN’U"

2 Basic constructions

Let X be a Banach space. We gut|| for the norm ofX and also for the norm oX*. Givenr € N and
a € Nk, we put, for eachr € X,

We denote byX, , the linear spac& provided with the norm- |, .. By X, we mean the Banach space
conjugate ofX,. ,, with |- |,., as its norm. Clearly, if. is in X*, then

Mg

r|0“

|ulra = [l
We putZ, for the linear space ovét of the families(z,, : « € N’g ) of elements ofX, which we shall just
denote by(z,, ), such that
[(@a)llr := sup ——— < o0
o aENg M‘O‘|

We assume that,. is provided with the nornfl - ||, It then follows thatZ,. > Z,;, and that the canonical
injection fromZ,, into Z, is continuous.

We write Z to denote the Fréchet space given by the projective limihefsequencéZ,.) of Banach
spaces. We assuni endowed with the strong topology.
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Given 3 in NE, we putZ” for the subspace of whose elementér,,) satisfy thatz, = 0 whena is
distinct from3. We then have thaZ” is topologically isomorphic toX and, considering” as a subspace
of Z,., then it is isometric taX, g.

If v is an arbitrary element of’ andr € N, we put

ull vy = sup { [{(za),w)| : (za) € B(Z,)NZ}.

For eachu € Z’ and eachs € NE, we identify, in the usual manner, the restrictionwofo Z” with an
elementug of X*.
If (z,) is an element of andj is in N%, we write

s Jzp, ifa=p,
“7 o, ifa#p.

xT

Clearly, (z?) belongs taZ and, for each € N,
1@ < ll(za)llr-
The next proposition unifies Proposition 1 and the Notel]n [

Proposition 1. If M is a bounded subset &f, then there is in N such that

sup r_la‘M‘a|||ua|| <1
QENg
ueM

and
<(xa),u>: Z<xa;ua>; UEM, (ZQ)GZ’

aeNk
where the series converges absolutely and uniformly whearies in M and (x,,) varies in any given
bounded subset &.

PrROOF If M* is the polar set of/ in Z, we findr € N such thatB(Z,) N Z is contained il/°. Then,
for eachu € M, we have, if we fix3 € Nk,
1> [full(ry = sup { [{(za), u)| : (za) € B(Z,) N Z }
> sup{ ‘((mg),uﬂ :(zq) € B(Zy) N Z}
sup { [((zs), ug)| : |2lrp < 1} = luslrp

Mg
WH%H

from where we deduce
Squ r_“"lM‘a|||uaH <1.

a€Ngy
ueM

We take(z,) in Z and we see thefi(z5) : 3 € Nf) is summable inZ to (z,). Lets, ¢ be inN. We then
have

Bl<g o lel>a
2¢)lel
oy 290z
lal>q 2! M]q
S L 290l
T 29 heny Mg
1
= gﬂ(xa)llzs
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and the conclusion follows. From

in Z, we obtain

((za),u) = Z ((28),u) = Z (xg,ug), ueZz.

BENE BENE

We consider now a bounded sub&ebf Z. We findb > 0 such thatB C bB(Z,). We choose arbitrary
elementgz,) € B andu € M. We fix 3 € NE. Then

(x5, ug)| < llzall - lugll
_ @kn)Plllag|l  Mig)|lugl|
Mg (2kr)!7]

I(za)llzkr sup v~ 1% Mg uall
QENg
ueM

and, since

the conclusion follows. W

The following proposition may be found id].

Proposition 2. Let{ v, : a € Nt} a family of elements ot * such that there i& > 0 with

sup h‘o‘lMMHvaH < 00.
a€eNg

Then, there is a unique element Z’ such thatu, = v,, a € N§.
(M)
3 The space D1y (Q)

We putL?(Q and£P(), 1 < p < oo, for the classical Lebesgue spacesf K f € £P(Q),1 < p < oo,

we write /
1/p
= fll, = Pq
£l = [ f1lp (/Qlfl x) :

1l = [lflloc = supess{|f(2)| : z € Q}.

Dr»(RF), 1 < p < o0, is the classical L. Schwartz’s spacg, |p. 199]. We puBB.»(2) for the linear space
overC of the complex functiong defined inQ2 which are infinitely differentiable and such tha f is in
LP(Q), a € NE. We assume thd;» (2) is endowed with the metrizable locally convex topology stiet

a sequencéf,) in Brr»(2) converges to the origin if and only {f| D f,,||,) converges to zero for each
a € N§. We then have thas;»(Q) is a Fréchet space. Clearl§;.» (R*) coincides withDp,» (R¥).

and, if f € f € L>=(Q), then
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Givenr € Nandl < p < oo, we putB(M )1/’( Q) for the linear space ovet of the functions
f € Br»(Q) which satisfy:
DS
r
|| fllp.1/r := sup —— P
P aent Mg
We assumg(M" 1/’”(Q) provided with the nornfj-||,, 1 /. Given a Cauchy sequengg,,) in B(LIZI”)’I/T(Q),
itis |mmed|ate that f,,) is a Cauchy sequenceBy.»(2) and hence it converges in this space to a function
f. Givene > 0, there is a positive integen, such that

Hfm_szp,l/r <g, m,s > my.
Then, for those values of ands, and for eachv € N§, we have that

T‘alHDafm - D~ szp
Mjal

and therefore, fom > my,

el D f, — D £, <l
Mg

from where we deduce thgtbelongs ta3; , (Mn), 1/T( Q) andthat| f,,,— f|l,,1/» <&, m > mg. Consequently,
BM)1/T() is a Banach space.

It is plaln thatB( M), i () is contained irB(LAf")’l/"(Q) and also that the canonical injection from

B(LAZ")’ "H(Q) into B(L]\f")’l/’”(ﬂ) is continuous. We denote tig?(LIZI”)(Q) the projective limit of the se-

quence(B(M" 1/’”(Q)) of Banach spaces. We assume that the topologicalmﬁﬁl)'(Q) of B(LIZI”)(Q) is
endowed with the strong topology.

In this section we substitute the Banach sp&cef the previous section bi?(2). Then, every element
of Z, is a family ( f, : a € NK ) of elements of.?(2) such that

1(fa)llr = sup —— ==

IS\

If f belongs toB(M" (Q), we putD® f for the element of.?(Q) to whichD* f belongsp € NE. By V. we

represent the linear subspaceZfformed by those familie6 D f : o € N& ) such thatf € B(M mhb/r Q).
Let
o, BAMPVTQ) — v,

be such that )
©.(f)=(Df),  feBA ).

Then,®, is a linear onto isometry. We plif := N{ V,. : » € N } considered as a subspacebflet
b BEIZ[”)(Q) —V

be such that )
O(f)=(Df),  feBL Q).

Clearly,® is a topological isomorphism fror)B(LZZI")(Q) ontoV.
In the following, we fix1 < p < co. By ¢ we denote the conjugate pfi.e.,¢ = oo whenp = 1, and,
if p>1thent 2 —1.
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Proposition 3. For eachj in a setJ, let( f,; : « € N§) be a family of elements () such that
there ish > 0 with

sup Al Mo || fajllg < 00
aGNO
jeJ

Then, there is a bounded subges; : j € J } ofB(M ' (€2) such that

(0,85) = /D o fusdz,  jed peBM@),
a€eNg

where the series converges absolutely and uniformly whemies inJ and varies in any given bounded
subset oB(M )(Q).

ProOF We identify in the usual fashiofi, ; with a continuous linear functional ok (€2) whose norm
is || fa,jllq- We apply Propositio to obtain, for eacly in .7, a unique element; in Z’ whose restriction
to Z coincides withf,, ;, « € N§. If we fix j in J, we apply Propositiod for M = {u;} and so obtain
that

Z /ga f()éjdx Ja € Ja, (ga)EZ- (2)

aeNk

We findr € N such thatl /r < h. We fix (§») In Z. We then have

‘ Ga)s uj |< Z/L%z | fa,jl dz

aGN"
< Z 19allp - [ fa.illq
a€eNg
(2kr)l* 'Ilgallp L s
aeNg |
_ 1
< D (e llakr - gy sup A M1l
aENk vENg
jed
= 2||(Ga) l2&r - SUP hl’y‘MWIHf'y,ﬂ
’yeN
jed

and thus

sup|((ga), uz) < oo.

JjeJ
Applying now the Theorem of Banach-Steinhaus, we obtaih{ha : j € J } is a bounded subset &f .
Propositionl yields that, forM = {u; : j € J}, the series inZ) converges absolutely and uniformly
whenj varies inJ and(g, ) varies in any given bounded subsettf

We putw for the mappingP considered froniB(M )( Q) into Z. Let'w be the transpose af. We write
S; =" w(uy), jed

Then{S; : j € J} is a bounded subset dﬂ‘ﬂf’”)'(Q). On the other hand, for each B(LIZI”)(Q), we
have

<(Da(p),u]‘> = (w(@)7uj> = <907t w(“’])) = <90a SJ>
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Consequently, for each of B(M )( Q) and eachy € J, it follows

(9, 5;) = ((D*¢),uj) = Y D% fa;da.

aENg

Finally, whene varies in a bounded subset BQIZI”)(Q), (D) varies in a bounded subset 8t The
conclusion is now obvious. B

Proposition 4. If { S; : j € J } is a bounded subset dﬂ‘LAf”)/(Q), there areh > 0 and, for eachj € J,
afamily( f. ; : « € N§) of elements o£%(Q2) such that

sup A Mg || fajllg < o0
acNE
jed

and

(0, 5;) = /D% fasde,  jed, peBM) @),
aeNg

where the series converges absolutely and uniformly whemies inJ and varies in any given bounded
subset 0B ().

PrROOE We have ,
tw: 7/ — BEAP/I") Q)

is onto. It is easy to verify that there is a bounded subset: j € J } in Z’ such that

fw(uy) = Sj, jeJd.
We put f,, ; for the element of£9(2) given by the restriction ofi; to X*. We apply Propositiorl for
M ={u;:j e J}andso obtaim € N such that

sup r o |M|Q‘HfaJHq < 00
a€ENg
jeJ

and

(D*@),uj) = > (DY, fa ;) = Z/D‘F’foudx J€d, peBLM(Q),

a€eNE aeNk

where the series converges absolutely and uniformly whearies inJ andy varies in any given bounded
subset oB(M )(Q). Finally, for eachy € J, we have

<(Da(p),u]‘> = <’1U((p),Uj> = <(Pat U}(’U/])> = <907Sj>
and the conclusion follows. B

Given a compact subsét of 2 andr € N, we putDéf;‘;””’(K) to denote the subspacef, *'/"(€2)
whose elements have their supportin If (f,,) is a sequence i@é%’;)’l/"(

B(LJ}?"‘) 1/’“( ), there is a subsequené¢,,,) of (f,,) which converges tgf almost everywhere. Since

fm;(x) = 0,2 € Q\ K, we have thaff belongs taD M’;) 1”(K), from where we get that this space is

(Myp),1/r
(Lp) (

K) which converges tg in

a Banach space. We pim(M")( K) for the projective limit of the sequenc®

(L7) K)) of Banach
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spaces. Itis immediate th (M))(K) coincides with the subspace Bﬁ ) formed by the functions
with support inK. We now write

(Mn (Mn)
Dipsy (@ U Dipsy (K
and assume th@é%")')(Q) is the inductive limit of the sequenc(@éfp’;)(Kr)) of Fréchet spaces. We also
assume that the topological d ) ( Q) of Défp )(Q) is endowed with the strong topology.

If g € £P1(R¥) andl € £P2(RF), with 1 < py, p» < oo and1/p; + 1/p2 > 1, then the convolution
of g and! exists almost everywhere. We extend this convolution taathele of R¥ by assigning the zero
value for the points where it is not defined. Thusi belongs toC* (R¥), wherel = ;0_11 + p% —landwe
then have

g Uls < llgllp, - Nellpe- @)
This property will be used in the proof of the next result.

Proposition 5. The linear spac®~) (Q) is dense wD&i’;)(Q)

PROOF We may assume thaf; # () and thatkK,,, C K41, m = 1,2, .... Givenp > 0, we write B(p)

for the closed ball ilR* with center in the origin and radiys We takef in DEZLVQ))(Q). We find a positive

integerm such thatf € DEZLML))(Km). We choose a sequengeg;) in DM») (R*) satisfying:
() vi(z) >0,z € RF.
(i) fr ti(z)de = 1.
(iiiy suppv; C B(pi), p1 > p2 >+ > pi > -+,
lignpi =0
andK,, + B(p1) C K1

We extendf to R by puttingf(z) = 0, z € R¥ \ Q. We setf; := f x 1, i € N. We see next thatf;)

is a sequence i®*~) (K, 1) which converges tg in D(M))(Kmﬂ). For eachy € N, we have

D fi(x / F@)(D) (@ —y)dy, xR,

and hencg; is in DM (K, 11).
Let us takes > 0 andr € N. We find a positive integet; such that

ro\™
() 1

D" fia) = 0§ (@) < [ (D) =) = D (@)}
< sup {|(D") (@ —y) — D* (@) y € B(G,)}

and so, ifu is the Lebesgue measurelf, we may findiy, € N such that

|D® fi(x) = D f(z)[<

< 9
p,1/r+1 4

Givena € N£, we have, for: € R*,

€

. — P> €R” < s0.
2150 (K1)’ tzZ1%, o< so
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Then -
HDafi_DafH;DS 27"—507 i > i, |a| < s0.

Applying (3) for p; = p, p2 = 1, g = D*f andl = ;, we obtain
1D fillp = (D f) * ¥illp < 1D fllp - il = [ D fllp-
Therefore, fori > iy, we have that

D (f = i)l

”f - fi”p,l/r = Ssup

aGN’O”' M|0“
lel|| pa(f — f, lel|| pe(f — f
< PR )l DN = A
ol <s0 M, la|>s0 M,
o] « a «
<4 s < r > (r + DI D* £, + | D fill)
2 asso \TH1 Mq
S0 lad] | e
CE (" 2 DRID S,
2 r+1 QENE M|a‘
S0
g r
54 (1) W e
<e
from where the conclusion follows. l
The previous proposition tells us that the eIement@[:ﬁJ) ) may be considered as ultradistribu-

tions.

Proposition 6. If ¢ € Bé%js)(g) andg € DM (Q), thengp is in DEL;))(Q)

PROOF The support ofjp is a compact subset 6f. We take a positive integet We find a constan®’,
such that
|Dg(z)| < Cr(2r) 1M, 2€Q, aeNi.

We have that, for each € N§,

ID*(9o)lp <> = Bila — 7! D% - D P,
B<a
<y Ba— 5 Cr(2r) "I M || Do)l
B<a
<C Yy I 27“) BIM g1l p,1j2r Mgy (2r) 7107
ﬁ<aﬁ
<G Z I( QT) N Mialllellp,1/2r = Crll@llp,1 arr™ ! Mg
ﬁ<aﬁ
and thus o
rD*(g¢)llp
sup ————— < Cr[|¢llp1/2r
aEN["j M\OA ' »/

and the conclusion follows. H
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In what follows, before stating our next lemma, we shall divedetails of a previous construction. We
take a bounded subsgf; : j € J } of DE%T)') (€2) so that there is a compact subgebf (2 with

supp S; C H, jed

Let K be a compact subset 6fwith H C IO{ We choose an elementof D(M">'(Q) which takes value
one in a neighborhood d&” and whose support is compact. For eack B M”)(Q), we have that, after

the previous propositiom is in DEILVQS)(Q). We put

(0. W)) = (e, Sj),  jeJ, B

It is easy to see thdtW; : j € J} is a bounded subset dﬁ%n)/(ﬂ). We apply Propositiod to obtain
h > 0 and, for eachj € J, a family( f,,; : @ € N& ) of elements of£?(02) such that

sup hla‘MMHfaJHq < 00
aEN
]EI

and

Z/Dcpfa]dx jed. peBAM Q).

aGN’”

Let g be an element oD(~)(Q) which takes value one in a neighborhoodmfand whose support is
contained inK'. Then, on account of the previous proposition, we have

(9, 55) = (g, S;) = {9, W) = /Da 9¢) - fa,jda
aeNg
72/ Zgla_ 9Daﬁ)~fa,jdx, jed, peBYM@). ()
a€eNg B<a

We now take a positive |nteger> . Let C,. be a positive constant such that
|DPg(x)| < Cor™PIMg,  2€Q, BeN.

We then have that
> 5o " L ID%l 1D e

< ZWCT ‘ﬁ'M\m/IDa %ol |faldz

B<«

<> e Mgl D" el el
B

< Z Bl CT WlM\ﬁIH‘F’Hp,l/TT o= B‘Mla ﬁIHfaJHq
B<a

<> Ao I ~ Mol

B<«

ry —lal
= Coll@llpr (5) Mig |l faill

p,1/r ”fa,J”q
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§CTH<,0| hla‘Mla\Hfa]Hq

p1/m 51 el (Qk)\a|

< Crllol s WP Mg || faillq

p1/m 51 el (Qk)\a|
jeJ

and, noticing that

1
2. Tyl ~ 2

aGN’O”'

we have that the seried)(converges absolutely and so we may write, putting- « — (3,

Z Zﬁ'a— /Dﬁg D fa,jdx

a€eNp B<a

S ID I /Q DPg- D¢ fauy;de. 5)

1~/
~vENE BENE By

Lemmal. Let{S;:j € J} beabounded subsetﬂl‘
Q with

Lp) Q) such that there is a compact subgein

suppS; C H, jed

Let K be a compact subset 6f such thatH C IO{ Then there arér > 0 and, for eachy € J, a family
(ga,j : @ € N§) of elements of?(2) such that

sup Al M)q)l|ga,jllg < oo
aeN(lf
jeJ

Supp ga,; C K, jelJ, aecNE

and
w5)= % [ Do egusdn, el veD{i@),
a€eNE

where the series converges absolutely and uniformly whemies inJ and varies in any given bounded

subset oﬂ(%)) (Q).

PROOF We choosé: > 0 and, for eacly € J, the family( f, ; : o € N%) of elements of£?(€2) with
the properties above cited. We fixc N} and takep € p € LP(Q2). We choose € N, r > 4k/h. Then

!
) v /QDﬁg'p'fmwdx

Bl
< 3 LR [ D%l o sl da

BENE
BENE

ﬁ+7 _
<| Z G P Mg llpllp - 1| fovila
BeNE

Crllpllp
Mlv\

IN

Z 2|5+’Y\7«_|6‘M|g+7\ [ fo++.lla
BENE
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D /27 M g1 f 54,51
BENE

Cr 14 -
Cellpllp 1y > @k/B) TN Mg | £544.51

q

IN

q
My
Crllelp, 1
< 2R sup Al A 1 S, Sl -
My, aeNk el ol ﬁ%\;k (2K)15]
jeJ 0
from where we get that there i, > 0 such that
B+7)! .
Z % QDBQ'P'fﬁer da| < Ay 1pllp- (6)

BENE

If we put, for eaclp € p € LP(Q),

- B+)!
vy () =Y Dg-p- fpyq.;da,
YsJ BEN§ 5| ')/' /Q Y5J

we then have that., ; is a complex function defined ih?((2), clearly linear, such that afte6) is also
continuous. Then there ig, ; in £7(£2) such that

vy,5(P) = /QP “ Gny,j d, pEpELP(Q).
If M is the support of;, then it is clear that

suppga; C M C K, jeJ, ~eNE

(M,

For eachp € B;, " (12), we have
+)!
> (56'77')/ Dﬁg'DAQP'fﬂ—M,jdx:/Dv@'g’v,jdx
genk 7 Ja Q
and, by @) and ©),
(99,550 = > /QD”swga,j de, jelJ, peBLM Q). ()
YENE

We now fixy € Nf and;j € J. We choose € LP() such thai| ||, < 2 andv, ;(5) = ||g.5ll4- We take
r € Nwith r > 4k/h. If we put

C:=2 sup h‘a|M|a\||fa,j||qv
a€ENE

we have obtained above

Cly o113l v
Z(ﬂlif;/)/g ﬂg'p'fﬂ-f-’y,jdm Sﬁc
BeNE s
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Consequently,
r Ml gasllg = v My 5 (5)
- (B+)!
=Pl Z B D% p- foiq;da
BENE @
_ Crllpllpr!!
<Pl = —
M,
=2C,.C
and so
sup T_"YlMMHg%qu <2C,C.
YENEK
jeJ

We apply now PropositioB to the families( g, ; : « € N£), j € J, and so obtain, for eache J, an
elementl’; in B(Ll‘f") (€2) such that

<§0,Tj> = Z /Q‘Dacp'ga,jdxv je Ja @GBEA;IW)(Q%

aeNE

where the series converges absolutely and uniformly whearies inJ andy varies in any given bounded
subset oﬁ’:’(g”‘) (). On the other hand, we have

(@, 8) = (g9, 85) = Y /QDO‘W “ga,j dz = (0, Tj).

aeNE
The conclusion is now obvious. B

We now putZ] () for the linear space ovet of the complex functions defined i such that, for
each compact subsét of 2, f|x belongs tal?(K'). We write|f|x,q := || fix |l¢-

Theorem 1. Foreachjinaset/, let( f,; : a € NE ) be a family of elements &f!

¢ (Q) such that, given
any compact subséf of (2, there ish > 0 such that

sup h‘o‘lM‘a||fa7j|K7q < 00.
aENg
jeJ

Then, there is a bounded subgef; : j € J } in DEZLVQ)')I(Q) such that

<(p, SJ> = Z /QDOC(P . foc,j dl‘, .7 € J7 pE Dgé\,{s)(Q)v

aeNK

where the series converges absolutely and uniformly whemies inJ and varies in any given bounded

subset ODEILVQ;) (Q).

PROOF For eachn € N, we put

o= o, aeNk jeu

o
a,j| Km
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We apply Propositio® and thus obtain a bounded sub§&t” : j € J } of B(M n ( m) such that

(0, ST = / Do fride,  jed peBY(K,),

aeNK

where the series converges absolutely and uniformly whearies inJ andy varies in any given bounded

subset ofp M) (Km).

(LP)
For a given elemenp of D M’;)(Q), we findm € N such that

o
suppp C Ky,

and set
(0, S5) == (¢, S}”).

It is easy to see thefi; is well defined and tha{ S; : J € J } is a bounded subset dﬁgﬁ) (), which
leads us to the desired result.l

Theorem 2. If { S, : j € J} is a bounded subset GH(ILVQ; (Q), then there is, for each € J, a family
(faj:a€NE)in L] (Q) such that, given any compact subsebf 2, there ish > 0 with

loc

sup h‘a|M|a‘|fa7j|K,q < 00
acnNg
jeJ

and
(o, /Do‘cp rodz, o jed, peDp) (),
aeNE

where the series converges absolutely and uniformly whemies inJ andp varies in any given bounded

subset oﬁ)(%)) (Q).

PrRoOF Let{O,, : m € N} be alocally finite open covering &t such thatO,,, is relatively compact
inQ, m € N. Let{g, : m € N} be a partition of unity of cIas(sMn) subordinated to that covering.

It follows that{ ¢,,,S; : j € J} is a bounded subset OEP(M n)' (©2) whose elements have their supports
contained in a compact subset®@f,. Applying the prewous Iemma we obtain, for eack J, a family
(fi e N§ ) of elements of2¢((2) such that there i,,, > 0 with

Sup hnLA4kH”fnL”q < o0,

aeN
jG]

supp fI'; C Om,  j€J, a€eNg,
and
; . My,
(0, 9mS;) = /D% agdr, jelJ g€ ng)(ﬂ),

aeNK

where the series converges absolutely and uniformly whearies inJ andy varies in any given bounded
subset o) (). We put, for each: € Q, a € NE, j € J,

(LP)
fad jz:tfm
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Given any compact subsét of 2, there is a positive integen, such that
KﬂOm:@, mZmOa

and thusf,; is well defined and belongs 0 (2). Besides, we have

mo mo

failig < Y1 ka < > 125
m=1 m=1

and so, if
h:=inf{h, :m=1,2,...,mg},
we have that

mo

sup Bl Mol fa g < D sup ASIM o [I£2]]4 < oo

acNk m—1 €Ny
jeJ jeJ

We now apply the previous theorem to obtain a bounded syliset j € J } of D%];)'(Q) such that
. Ty =Y / D% fayda,  jE€J, peDR (),
aeNE Q

where the series converges absolutely and uniformly whearies inJ andy varies in any given bounded

subset oﬂ)é%j‘s) Q).

We next choose in D%J’;)(Q). We findm, € N for which

O, Nsupp e = 0, m > mg.

Then

<507Tj>: Z /Q‘Dacp'fa,jdx

aeNE
mo
-5 [ (oo sm)a
aENE & \m=1
mo
SDID N RO
””=1aeN(’j Q
mo

m=1

= <Z (Pgrn7Sj>
m=1

= <907Sj>'

Consequentlys; = T3, j € J, and the conclusion follows. B

Proposition 7. If M,,,n =0, 1, ..., satisfies conditiofil), then the canonical injectiogfrom D) ((2)

into DEILVQS)(Q) is a topological isomorphism.
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PrRooOF Clearly( is well defined linear and continuous. It is also plain thatréexisty > 0 andl > 0
such that

M, r < bl" My, n € Np.

We take now an arbitrary elemeptof DEILV{’;)(Q) andr € N. Let s be an integer greater that\We extend

¢ to R¥ such thatp(z) = 0, z € R* \ Q. Givena € Nt andz € R*, we have that

T1 T2 Tk a|a\+k(p(t)
« —
D%p(x) = /_Oo /_Oo . /_OO RS T TaSS TTRE T dty dty ... dty,

and hence
o gl rp(t)
|D SD(Z>| § /Q ‘8a1+1ﬁ180‘2+1ﬁ2 . aak-f-ltk
< lpllaasss™ T Mok
< el agss™ ' b1l M,,

}dtl dty...dtg

478\ "l
< lelhasbs™ (3) Mg

< bs M lpllager™! My

and so
@ € DM)(Q).

Thus( is onto. The conclusion now follows by applying a theorem oftBendieck’s, I, p. 17]. B

Theorem 3. If M,,, n = 0, 1, ... satisfies conditior{l) and {S; : j € J} is a bounded subset of
DM (Q), then there is, for each € J, afamily( f, ; : a € N§ ) of elements of;2.(Q) such that, given
a compact subset’ of 2, there ish > 0 such that

sup hlo“M\a||foz,j|K,oo < o0
aENg
jeJ

and

aENg

where the series converges absolutely and uniformly whemies inJ and varies in any given bounded
subset oD(M»)(Q).

PrROOFE Itis an immediate consequence of the previous propositmhTheoren2. W

We put noWD(LZZI”)(Q) for the subspace dﬁ(Ly”‘)(Q) given by the closure ab(*~)(Q) in that space.

D(LJ,\fn)/(Q) will be the strong dual oTD(LJ,\f"‘)(Q). The two theorems that follow next are not difficult to prove
by following a similar procedure to those in the proofs of fysition3 and Propositiord, respectively.

Those theorems constitute characterizations of cert&iaditributions of Beurling type if.

Theorem 4. For eachj in a setJ, let( f, ; : a € N&) be a family of elements @ (£2) such that there
is h > 0 with
sup A% Mq|| fa;llq < oo.

acNg
JjeJ
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Then there exists a bounded subg#t : j € J } of D(LAZ")'(Q) such that

(@ 8) =" LD“w~fa,jdx, jed. peDE(),

aENg

where the series converges absolutely and uniformly whemies inJ and varies in any given bounded
subset oD ().

Theorem 5. If {S;:j € J}is abounded subset ﬁf(LAf")(Q), there areh > 0 and, for eachj € J, a

family ( f.; : @ € N£ ) of elements of4(£2) such that

sup h1* Mo || fajllq < 00

acNE

jeJ
and

a€eNg
where the series converges absolutely and uniformly whemies inJ and varies in any given bounded
subset oiD(LZZI") (Q).

4 Structure of the ultradistributions of Beurling type

Givenh > 0, we putgo(M")’h(Q) to denote the space ovér of the complex functiong, defined and
infinitely differentiable in2 which vanish at infinity, as well as each of their derivatieésiny order, that
is, givene > 0, and € Nk, there is a compact subsktin © for which

|IDPf(z)| < e, reQ\K,
satisfying also that there 8 > 0, depending only orf, such that
D f| < Chl*IM,, reQ, acNk
We put
D f(x)

fln := sup sup ——=
17 aent v Mo Mg

and assume thax()M”)’h(Q) is endowed with the normt |;,. We set

My, M,),1/m
e @) = () &M m9)

1

ﬁDE%

and considefO(M") (€2) as the projective limit of the sequer(ﬁMn)’l/"”(Q)) of Banach space§0(M")/(Q)

will be the strong dual oféM")(Q). By C(©2) we represent the linear space oeof the complex func-
tions f defined and continuous i which vanish at infinity. We put

| floo == supl|f(z)|
zES
and assume that,(Q2) is provided with this norm.
If we replace the Banach spacé of Section2 by Cy(£2), following a argument similar to that of
the previous section, and also using results4)f fve may obtain the next two theorems, which are a
generalization of resulb) .
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Theorem 6. For eachj in a setJ, let (u, ;.o € N§) be a family of Radon measures(n If, given an
arbitrary compact subset” of (2, there ish > 0 such that

sup hmlM\al”“a,J’H(K) < 00,
aENg
jed

then there exists a bounded subgé; : j € J } of D) (Q2) such that

<(107Sj> = Z <Dagoauoc,j>7 ] € Ja p e D(IVI”)(Q)a

aeNg

where the series converges absolutely and uniformly whemies inJ and varies in any given bounded
subset oD (M) (Q)).

Theorem 7. If {S; : j € J} is a bounded subset @™~)'(Q), there is, for eachj € J, a family
(ua,;j : « € NE) of Radon measures i such that, given a compact subgétof (2, there ish > 0 with

sup hl* My ||ua ;]| (K) < oo,

aENg

jeJ
and

(0. 8)) = > (D uay),  jEJ, ¢eDMI(Q),
a€eNg

where the series converges absolutely and uniformly whemies inJ and varies in any given bounded
subset oDMn)(Q).

We put& (M=) () for the subspace af{""*)(Q2) given by the closure oP(M«)(Q). €M)’ (Q) will
denote its strong dual. The elements of this last space mapigdered as Beurling ultradistributions in
Q). We characterize those ultradistributions in the follagvivo theorems. Their proofs may be obtained
by conveniently adapting the proofs of Proposit®and Propositiod, respectively.

Theorem 8. For eachj in a setJ, let (i, ;.a € N ) be a family of complex Borel measures(irsuch
that there ish > 0 with
sup h‘a|M|a‘|ua7j|(Q) < 00.

aEN(If
jeJ

Then there exists a bounded subgst : j € J } of £(M»)(Q) such that
(.S => /QD% ey, JE€J, peEMI(Q),
aeNk

where the series converges absolutely and uniformly whemies inJ and varies in any given bounded
subset of (M=) (Q).

Theorem 9. If {S;: j € J}is abounded subset 6f~)’(Q), there ish > 0 and, for eachj € J, a
family (pa,; : @ € NE) of complex Borel measures §hwith

sup h‘alMlaHﬂa,jKQ) < 00,
acNg
jed
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and .
ws)= Y [ Dorduas  ded peei)
a€eN @
where the series converges absolutely and uniformly whemies inJ and varies in any given bounded
subset oE<J(‘)4n>(Q).
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