

On copies of c_0 in some function spaces

Juan Carlos Ferrando

Abstract. If (Ω, Σ, μ) is a probability space and X a Banach space, a theorem concerning sequences of X-valued random elements which do not converge to zero is applied to show from a common point of view that the F-normed space $L_0(\mu, X)$ of all classes of X-valued random variables, as well as the p-normed space $L_p(\mu, X)$ of all X-valued p-integrable random variables with 0 and the space $<math>P_1(\mu, X)$ of the μ -measurable X-valued Pettis integrable functions, all contain a copy of c_0 if and only if X does. We also show that if Ω is a noncompact hemicompact topological space, then the Banach space $C_0(\Omega)$ of all scalarly valued continuous functions defined on Ω vanishing at infinity, equipped with the supremum-norm, contains a norm-one complemented copy of c_0 .

Sobre copias de c₀ en algunos espacios de funciones

Resumen. Si (Ω, Σ, μ) es un espacio de probabilidad y X un espacio de Banach, aplicamos un teorema sobre sucesiones de variables aleatorias con valores en X que no convergen a cero para demostrar, desde un punto de vista común, que el espacio F-normado $L_0(\mu, X)$ de todas las clases de variables aleatorias X-valoradas, así como el espacio p-normado $L_p(\mu, X)$ de las variables aleatorias p-integrables X-valoradas, con $0 , y el espacio <math>P_1(\mu, X)$ de las funciones X-valoradas μ -medibles y Pettis integrables, todos ellos contienen una copia de c_0 si y sólo si X también la contiene. Asimismo probamos que si Ω es un espacio topológico hemicompacto no compacto, el espacio de Banach $C_0(\Omega)$ de las funciones continuas con valores escalares definidas en Ω que se anulan en el infinito, equipado con la norma supremo, contiene una copia de c_0 norma-uno complementada.

1 Preliminaries

Throughout Δ denotes the product $\{-1, 1\}^{\mathbb{N}}$, Γ the σ -algebra of subsets of Δ generated by the *n*-cylinders of Δ for each $n \in \mathbb{N}$, and ν the Borel probability $\bigotimes_{i=1}^{\infty} \nu_i$ on Γ , where $\nu_i \colon 2^{\{-1,1\}} \to [0,1]$ is defined by $\nu_i(\emptyset) = 0, \nu_i(\{-1\}) = \nu_i(\{1\}) = 1/2$ and $\nu_i(\{-1,1\}) = 1$ for each $i \in \mathbb{N}$. Coordinate mappings on Δ are denoted by ε_i , as well as its values when considered as mappings into $\{-1,1\}$. In the sequel (Ω, Σ, μ) will be a nontrivial complete probability space, X a Banach space over the field \mathbb{K} of real or complex numbers and $L_0(\mu, X)$ will stand for the F-space of all [classes of] μ -measurable functions $f \colon \Omega \to X$ equipped with the (continuous) F-norm

$$\|f\|_{0} = \int_{\Omega} \frac{\|f(\omega)\|}{1 + \|f(\omega)\|} \,\mathrm{d}\mu\left(\omega\right)$$

Presentado por / Submitted by Manuel Valdivia Ureña.

Recibido / Received: 11 de enero de 2009. Aceptado / Accepted: 14 de enero de 2009.

Palabras clave / Keywords: Banach space, copy of c_0 , vector-valued random element, F-norm, p-norm, space $L_p(\mu, X)$ with $0 \le p < 1$, space $P_1(\mu, X)$, hemicompact space, space $C_0(\Omega)$.

Mathematics Subject Classifications: 46E40, 46B09. © 2009 Real Academia de Ciencias, España.

J. C. Ferrando

of the convergence in probability. We shall represent by $L_p(\mu, X)$ with 0 the complete*p* $-normed topological vector space of all <math>\mu$ -measurable *X*-valued [classes of] *p*-Bochner integrable functions equipped with the (continuous) *p*-norm

$$\left\|f\right\|_{p} = \int_{\Omega} \left\|f(\omega)\right\|^{p} \mathrm{d}\mu\left(\omega\right).$$

We shall shorten by wuC the sentence 'weakly unconditionally Cauchy'. We stand for $P_1(\mu, X)$ the normed space of all those [classes of] μ -measurable X-valued Pettis integrable functions f defined on Ω provided with the semivariation norm

$$\|f\|_{P_1(\mu,X)} = \sup\left\{\int_{\Omega} |x^*f(\omega)| \,\mathrm{d}\mu(\omega) : x^* \in X^*, \, \|x^*\| \le 1\right\}.$$

If A is a subset of a Banach space X then [A] will represent the closed linear span of A in X. If Ω is endowed with a Hausdorff topology, the Banach space over K of all continuous functions $f: \Omega \to \mathbb{K}$ vanishing at infinity (that is, for each $\epsilon > 0$ there is a compact set $K_{f,\epsilon} \subseteq \Omega$ such that $|f(\omega)| < \epsilon$ for $\omega \in \Omega \setminus K_{f,\epsilon}$) equipped with the supremum-norm will be denoted by $C_0(\Omega)$ and the linear subspace of $C_0(\Omega)$ consisting of all those functions f of compact support (supp f) will be represented by $C_C(\Omega)$.

2 Copies of c_0 in $L_p(\mu, X)$ with $0 \le p < 1$

As is well known, a classic conjecture of Hoffmann-Jørgensen [7] on the X-inheritance of copies of c_0 in the Banach space $L_p(\mu, X)$ with $1 \le p < \infty$ was established by Kwapień in [9]. Later on Hoffmann-Jørgensen conjecture was shown also to be true for p = 0 [10, Theorem 2.11] (see [2, Theorem 9.1]) and for 0 [2, Theorem 10.4]. In this section a theorem concerning certain sequences of X-valuedrandom elements which do not converge to zero (Theorem 2 below) is used to provide an independent proofof these facts. The following result is contained in the proof of [9, Proposition].

Theorem 1 (Kwapień) Let X be a Banach space and $\{x_n\}$ a sequence in X. If

$$\nu\left(\left\{\varepsilon\in\Delta:\sup_{n\in\mathbb{N}}\left\|\sum_{i=1}^{n}\varepsilon_{i}x_{i}\right\|=\infty\right\}\right)=0,$$

then the series $\sum_{n=1}^{\infty} x_n$ has a wuC subseries $\sum_{i=1}^{\infty} x_{n_i}$.

Lemma 1 Let $\{f_n\}$ be a sequence of X-valued random variables for (Ω, Σ, μ) . If the series $\sum_{n=1}^{\infty} \zeta_n f_n$ converges in $L_0(\mu, X)$ for every $\zeta \in c_0$, then for each $A \in \Sigma$ with $\mu(A) > 0$ there is $\omega_A \in A$ such that the series $\sum_{n=1}^{\infty} f_n(\omega_A)$ has a wuC subseries.

PROOF. If we set $\varphi_n(\varepsilon, \omega) = \varepsilon_n f_n(\omega)$ for each $(\varepsilon, \omega, n) \in \Delta \times \Omega \times \mathbb{N}$ and put $S_n = \sum_{i=1}^n \varphi_i$ for each $n \in \mathbb{N}$, it suffices to show that the sequence $\{S_n\}_{n=1}^{\infty}$ is stochastically bounded, that is, that $\{S_n : n \in \mathbb{N}\}$ is a bounded set in $L_0(\nu \otimes \mu, X)$. In fact, since $\{\varphi_i\}_{i=1}^{\infty}$ is a symmetric sequence of $(\nu \otimes \mu)$ -measurable functions, if this property holds the sequence $\{S_n\}_{n=1}^{\infty}$ is $(\nu \otimes \mu)$ -almost surely bounded (see for instance [7, Theorem 2.4]). This means that the set

$$Q = \left\{ \left(\varepsilon, \omega\right) \in \Delta \times \Omega : \sup_{n \in \mathbb{N}} \left\| \sum_{i=1}^{n} \varepsilon_{i} f_{i}\left(\omega\right) \right\| = \infty \right\},\$$

verifies that $(\nu \otimes \mu)(Q) = 0$. Hence, if Q_{ω} denotes the ω -slice of Q, the fact that

$$(\nu \otimes \mu) (Q) = \int_{\Omega} \nu (Q_{\omega}) d\mu (\omega)$$

50

implies that $\nu(Q_{\omega}) = 0$ for μ -almost all $\omega \in \Omega$. Since $\mu(A) > 0$, there is an $\omega_A \in A$ with $\nu(Q_{\omega_A}) = 0$, that is

$$\nu\left(\left\{\varepsilon\in\Delta:\sup_{n\in\mathbb{N}}\left\|\sum_{i=1}^{n}\varepsilon_{i}f_{i}\left(\omega_{A}\right)\right\|=\infty\right\}\right)=0.$$

So by Theorem 1 there exists in X a wuC subseries of $\sum_{n=1}^{\infty} f_n(\omega_A)$. Let us show that the sequence $\{S_n\}_{n=1}^{\infty}$ of the partial sums of the sequence $\{\varphi_i\}_{i=1}^{\infty}$ is bounded in $L_0(\nu \otimes \mu, X)$. Since $\sum_{i=1}^{\infty} \zeta_i \varepsilon_i f_i$ converges in $L_0(\mu, X)$ for each $(\zeta, \varepsilon) \in c_0 \times \Delta$, setting

$$h_{k}^{\zeta}(\varepsilon) = \sup_{m,n \ge k} \left\| \sum_{i=1}^{m} \zeta_{i} \varepsilon_{i} f_{i} - \sum_{i=1}^{n} \zeta_{i} \varepsilon_{i} f_{i} \right\|_{0}$$

for $(\zeta, k) \in c_0 \times \mathbb{N}$, then $h_k^{\zeta}(\varepsilon) \to 0$ for every $\varepsilon \in \Delta$ with fixed $\zeta \in c_0$ as $k \to \infty$. Due to the fact that h_k^{ζ} is ν -measurable and $h_k^{\zeta} \leq 1$ for every $(\zeta, k) \in c_0 \times \mathbb{N}$, Lebesgue's dominated convergence theorem implies that $\int_{\Lambda} h_k^{\zeta}(\varepsilon) d\nu(\varepsilon) \to 0$ for each $\zeta \in c_0$. Hence given $\epsilon > 0$ there is $k_0(\zeta) \in \mathbb{N}$ such that

$$\int_{\Delta} \left\| \sum_{i=1}^{m} \zeta_i \varepsilon_i f_i - \sum_{i=1}^{n} \zeta_i \varepsilon_i f_i \right\|_0 \mathrm{d}\nu\left(\varepsilon\right) < \epsilon$$

for every $m, n \ge k_0(\zeta)$ and Fubini's theorem shows that $\{\sum_{i=1}^n \zeta_i \varphi_i\}_{n=1}^\infty$ is a Cauchy sequence in $L_0(\nu \otimes \zeta)$ (μ, X) for all $\zeta \in c_0$. Since $L_0(\nu \otimes \mu, X)$ is a complete linear space, we conclude that the series $\sum_{i=1}^{\infty} \zeta_i \varphi_i$ converges in $L_0(\nu \otimes \mu, X)$ for every $\zeta \in c_0$. Therefore an application of Banach-Steinhaus' theorem [8, 15.13.(3)] shows that the linear mapping $T: c_0 \to L_0(\nu \otimes \mu, X)$ defined by $T\zeta = \sum_{i=1}^{\infty} \zeta_i \varphi_i$ is continuous. So $T(\{\sum_{i=1}^{n} e_i : n \in \mathbb{N}\})$ is a bounded subset of $L_0(\nu \otimes \mu, X)$ and consequently the sequence $\{S_n\}_{n=1}^{\infty}$ is bounded in $L_0(\nu \otimes \mu, X)$, as stated.

Theorem 2 Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of X-valued random variables for (Ω, Σ, μ) . If the two following conditions hold

- 1. $\sum_{n=1}^{\infty} \zeta_n f_n$ converges in $L_0(\mu, X)$ for every $\zeta \in c_0$
- 2. $\{f_n\}_{n=1}^{\infty}$ does not converge almost surely to zero

then X contains a copy of c_0 .

PROOF. Let $A = \{\omega \in \Omega : f_n(\omega) \neq 0\}$. If $\mu(A) > 0$, Lemma 1 yields an $\omega_A \in A$ and a strictly increasing sequence $\{n_i\} \subseteq \mathbb{N}$ such that the series $\sum_{i=1}^{\infty} f_{n_i}(\omega_A)$ is wuC in X. So there exists $\epsilon > 0$ and a subsequence $\{x_i\}_{i=1}^{\infty}$ of $\{f_{n_i}(\omega_A)\}_{i=1}^{\infty}$ with $||x_i|| \ge \epsilon$ for all $i \in \mathbb{N}$. Since $\inf_{i \in \mathbb{N}} ||x_i|| > 0$ and $\sum_{i=1}^{\infty} x_i$ is wuC in X, the selection principle along with [1, Chapter V, Corollary 7] assures that X contains a copy of c_0 . On the other hand, if $\mu(A) = 0$ then $f_n \to 0$ almost surely, contradicting condition 2 above.

Corollary 1 $L_0(\mu, X)$ contains a copy of c_0 if and only if X does.

PROOF. If J is an isomorphism from c_0 into $L_0(\mu, X)$ and $f_n = Je_n$ for each $n \in \mathbb{N}$ then $\inf_{n \in \mathbb{N}} ||f_n||_0 > 0$. Otherwise there is a subsequence $\{f_{n_k}\}$ of $\{f_n\}$ such that $f_{n_k} \to 0$ in $J(c_0)$, considered as a subspace of $L_0(\mu, X)$. So $e_{n_k} \to 0$ in c_0 , a contradiction.

If a sequence $\{f_n\}$ of representatives of the original sequence of classes of functions verifies that $f_n \to 0$ almost surely, then $f_n \to 0$ in $L_0(\mu, X)$, contradicting the fact that $\inf_{n \in \mathbb{N}} ||f_n||_0 > 0$. Thus condition 2 of the preceding theorem holds for $\{f_n\}$. On the other hand, if $\zeta \in c_0$, since $\sum_{n=0}^{\infty} \zeta_n e_n$ converges (to ζ) in c_0 then $\sum_{n=0}^{\infty} \zeta_n f_n$ converges (to $J\zeta$) in $L_0(\mu, X)$. Consequently the sequence $\{f_n\}_{n=1}^{\infty}$ satisfies condition 1 of the preceding theorem as well. Hence Theorem 2 guarantees that X contains a copy of c_0 . For the converse note that X is isomorphic to a linear subspace of $L_0(\mu, X)$.

J. C. Ferrando

Lemma 2 Let J be an isomorphism from c_0 into $L_p(\mu, X)$ with $0 . If <math>f_n = Je_n$ for each $n \in \mathbb{N}$, where $\{e_n\}_{n=1}^{\infty}$ stands for the unit vector basis of c_0 , then the sequence $\{\|f_n(\cdot)\|^p\}_{n=1}^{\infty}$ is uniformly integrable.

PROOF. Assuming by contradiction that the sequence $\{\|f_n(\cdot)\|^p\}_{n=1}^{\infty}$ is not uniformly integrable, there are $\epsilon > 0$, a sequence $\{A_n\}_{n=1}^{\infty}$ of pairwise disjoint elements of Σ and a subsequence of $\{f_n\}$, which we denote in the same way, with $\int_{A_n} \|f_n(\omega)\|^p d\mu(\omega) > \epsilon$ for every $n \in \mathbb{N}$. Since $\|\sum_{k=1}^n \xi_k e_k\|_{\infty} \le 1$ for each $n \in \mathbb{N}$ and $\xi \in \ell_{\infty}$ with $\|\xi\|_{\infty} \le 1$, there is K > 0 such that $\|\sum_{i=1}^n \xi_i f_i\|_p \le K$ for each $n \in \mathbb{N}$ and $\xi \in \ell_{\infty}$ with $\|\xi\|_{\infty} \le 1$. Hence, choosing $m \in \mathbb{N}$ such that $(m-1) \epsilon > K$, classic Rosenthal's lemma provides a strictly increasing sequence $\{n_i\}_{i=1}^{\infty}$ of positive integers satisfying that

$$\int_{\bigcup_{j\in\mathbb{N}, j\neq i} A_{n_j}} \left\| f_{n_i}\left(\omega\right) \right\|^p \mathrm{d}\mu\left(\omega\right) < \frac{\epsilon}{m}$$

for each $i \in \mathbb{N}$. Since $(a+b)^p \le a^p + b^p$ for $a, b \ge 0$ then $|x+y|^p \ge ||x| - |y||^p \ge ||x|^p - |y|^p|$, which applies to get

$$K \ge \left\| \sum_{j=1}^{m} f_{n_j} \right\|_p \ge \sum_{i=1}^{m} \int_{A_{n_i}} \|f_{n_i}(\omega)\|^p \,\mathrm{d}\mu(\omega) - \sum_{i=1}^{m} \int_{A_{n_i}} \left\| \sum_{j=1, j \neq i}^{m} f_{n_j}(\omega) \right\|^p \,\mathrm{d}\mu(\omega) \,.$$

So the fact that $|x + y|^p \le |x|^p + |y|^p$ yields

$$K \geq \sum_{i=1}^{m} \int_{A_{n_i}} \|f_{n_i}(\omega)\|^p \,\mathrm{d}\mu(\omega) - \sum_{i=1}^{m} \sum_{\substack{j=1\\j\neq i}}^{m} \int_{A_{n_i}} \|f_{n_j}(\omega)\|^p \,\mathrm{d}\mu(\omega)$$
$$\geq \sum_{i=1}^{m} \int_{A_{n_i}} \|f_{n_i}(\omega)\|^p \,\mathrm{d}\mu(\omega) - \sum_{j=1}^{m} \int_{\bigcup_{i\in\mathbb{N}, i\neq j}A_{n_i}} \|f_{n_j}(\omega)\|^p \,\mathrm{d}\mu(\omega),$$

which implies that $K \ge (m-1)\epsilon > K$, a contradiction.

Corollary 2 The space $L_p(\mu, X)$ with $0 contains a copy of <math>c_0$ if and only if X does.

PROOF. Assume that J is an isomorphism from c_0 into $L_p(\mu, X)$ and set $f_n = Je_n$ for each $n \in \mathbb{N}$. As in the proof of Corollary 1 one may show that $\inf_{n \in \mathbb{N}} ||f_n||_p > 0$. By Lemma 2 the sequence $\{||f_n(\cdot)||^p\}_{n=1}^{\infty}$ is uniformly integrable. Hence if a sequence of representatives verifies that $f_n \to 0$ almost surely, an application of Vitali's lemma [3, Theorem 4.10.9] yields $||f_n||_p \to 0$, a contradiction. Thus $\{f_n\}_{n=1}^{\infty}$ does not converge almost surely to zero. As in addition the series $\sum_{n=1}^{\infty} \zeta_n f_n$ converges in $L_p(\mu, X)$, so in $L_0(\mu, X)$, for each $\zeta \in c_0$, Theorem 2 assures that X contains a copy of c_0 .

Remark 1 The same argument can be applied to show that $L_p(\mu, X)$, $1 \le p < \infty$, contains a copy of c_0 if and only if X does since, if $\{f_n\}_{n=1}^{\infty}$ is a normalized basic sequence in $L_p(\mu, X)$ equivalent to the unit vector basis of c_0 , it can be easily shown that the sequence $\{\|f_n(\cdot)\|^p\}_{n=1}^{\infty}$ of $L_1(\mu)$ is also uniformly integrable. So Vitali's lemma together with Theorem 2 assure that X contains a copy of c_0 .

3 Copies of c_0 in $P_1(\mu, X)$

Theorem 2 also applies to get the following well known result concerning copies of c_0 in the space of μ -measurable X-valued Pettis integrable functions.

Theorem 3 (Ferrando [4], Freniche [6]) $P_1(\mu, X)$ contains a copy of c_0 if and only if X does.

PROOF. Assume by contradiction that X contains no copy of c_0 and let $\{f_n\}_{n=1}^{\infty}$ be a normalized basic sequence in $P_1(\mu, X)$ equivalent to the unit vector basis of c_0 . Since for each $x^* \in X^*$ and $E \in \Sigma$ the mapping $f \mapsto \int_E x^* f \, d\mu$ is a bounded linear functional on $P_1(\mu, X)$ and the series $\sum_{n=1}^{\infty} f_n$ is wuC in $P_1(\mu, X)$, then the series $\sum_{n=1}^{\infty} \int_E f_n \, d\mu$ is wuC in X for all $E \in \Sigma$. If $\int_F f_n \, d\mu \to 0$ for some $F \in \Sigma$ then for sure that X contains a copy of c_0 , a contradiction. Hence $\int_E f_n \, d\mu \to 0$ for all $E \in \Sigma$. Consequently, if we assume that there is a sequence of representatives verifying that $f_n \to 0$ almost surely, then [6, Lemma 3] assures that $||f_n||_{P_1(\mu,X)} \to 0$, another contradiction. So we must conclude that no sequence of representatives $\{f_n\}$ converges almost surely to zero.

Since the canonical inclusion map T from $P_1(\mu, X)$ into $L_0(\mu, X)$ has closed graph [6, Lemma 4], the closed graph theorem for topological vector spaces [8, 15.12.(3)] guarantees that the restriction S of T to the copy $[f_n]$ of c_0 in $P_1(\mu, X)$ into $L_0(\mu, X)$ is continuous. Since $\sum_{n=1}^{\infty} \zeta_n f_n$ converges in $P_1(\mu, X)$ for every $\zeta \in c_0$, it follows that $\sum_{n=1}^{\infty} \zeta_n f_n$ converges in $L_0(\mu, X)$ for every $\zeta \in c_0$.

Since $\{f_n\}$ does not converge almost surely to zero and $\sum_{n=1}^{\infty} \zeta_n f_n$ converges in $L_0(\mu, X)$ for every $\zeta \in c_0$, Theorem 2 applies to show that X contains a copy of c_0 . This last contradiction completes the proof.

4 Complemented copies of c_0 in $C_0(\Omega)$

Throughout this section Ω will stand for a non-empty Hausdorff topological space. The following result adapts some ideas of [5] to show that if Ω is a noncompact hemicompact topological space then $C_0(\Omega)$ contains a norm-one complemented copy of c_0 . Let us recall that for compact Ω then $C_0(\Omega) = C(\Omega)$ may contain no complemented copy of c_0 , which happens for instance if Ω is extremally disconnected.

Theorem 4 If Ω is a non compact hemicompact space, then the Banach space $C_0(\Omega)$ contains a norm-one complemented copy of c_0

PROOF. Since Ω is a noncompact hemicompact space there is a strictly increasing sequence $\{K_n\}$ of compact subsets satisfying the property that every compact subset K of Ω is contained in a member of this sequence. For every $n \in \mathbb{N}$, set $\Delta_n := K_{n+1} \setminus K_n$.

Given that Δ_n is a relative open subset of the compact space K_{n+1} , choose $\omega_n \in \Delta_n$ and apply Urysohn's lemma in K_{n+1} to get $f_n \in C_C(K_{n+1})$ with $0 \leq f_n \leq 1$ such that $f_n(\omega_n) = 1$ and $\operatorname{supp} f_n \subseteq \Delta_n$. Assuming each f_n extended to the whole space Ω in a trivial way, then $\{f_n\}$ is a normalized basic sequence in $C_0(\Omega)$ equivalent to the unit vector basis $\{e_n\}$ of c_0 . In fact, if $f = \sum_{n=1}^{\infty} a_n f_n \in [f_i]$ with $a_n \to 0$, given $\epsilon > 0$ choose $m \in \mathbb{N}$ such that $|a_n| < \epsilon$ for each n > m. Then $K := \bigcup_{i=1}^{m} \operatorname{supp} f_i$ is a compact set and $|f_i(\omega)| < \epsilon$ for each $\omega \in \Omega \setminus K$, hence $f \in C_0(\Omega)$.

If $\mu := \sum_{i=1}^{\infty} \frac{1}{2^i} \delta_{\omega_i}$, since each $f \in C_0(\Omega)$ is μ -integrable, the conditional expectation value $\mathbf{E}_{\Delta_n}(f)$ of the random variable f relative to the event Δ_n , given by

$$\mathbf{E}_{\Delta_{n}}(f) = \frac{1}{\mu(\Delta_{n})} \int_{\Delta_{n}} f \,\mathrm{d}\mu,$$

is well-defined for each $n \in \mathbb{N}$. Moreover, it must be pointed out that

$$\int_{\Delta_n} f_n \,\mathrm{d}\mu = \mu\left(\Delta_n\right) = \frac{1}{2^n} \tag{1}$$

for every $n \in \mathbb{N}$. Given $f \in C_0(\Omega)$, for each $\epsilon > 0$ there exists a compact set $K_{f,\epsilon} \subseteq \Omega$ such that $|f(\omega)| < \epsilon$ for all $\omega \in \Omega \setminus K_{f,\epsilon}$. Since Ω is hemicompact, there is $p \in \mathbb{N}$ such that $K_{f,\epsilon} \subseteq K_p$. Hence $|f(\omega)| < \epsilon$ for each $\omega \in \Delta_n$ with $n \ge p$, which implies that

$$|\mathbf{E}_{\Delta_n}(f)| \le \frac{1}{\mu(\Delta_n)} \int_{\Delta_n} |f(\omega)| \, \mathrm{d}\mu(\omega) \le \sup_{\omega \in \Delta_n} |f(\omega)| \le \epsilon$$

5	0
3	Э

J. C. Ferrando

whenever $n \ge p$. This assures that $\mathbf{E}_{\Delta_n}(f) \to 0$ and, consequently, that the linear operator $P: C_0(\Omega) \to C_0(\Omega)$ given by $Pf = \sum_{n=1}^{\infty} \mathbf{E}_{\Delta_n}(f) f_n$ is well-defined as well.

Given $\omega \in \Omega$, since (i) $\bar{f}_n(\omega) = 0$ if $\omega \notin \Delta_n$, (ii) $||f_n||_{\infty} = 1$ and (iii) $|\mathbf{E}_{\Delta_n}(f)| \le ||f||_{\infty}$ for each $f \in C_0(\Omega)$, if $\omega \in \Delta_m$ then

$$|(Pf)(\omega)| = \left| \left(\sum_{n=1}^{\infty} \mathbf{E}_{\Delta_n}(f) f_n \right) (\omega) \right| \le |\mathbf{E}_{\Delta_m}(f)| \le ||f||_{\infty}$$

This shows that P is a bounded linear operator with $||P|| \leq 1$. Finally, as a consequence of (1) and of the fact that the f_n are disjointly supported it follows that $\mathbf{E}_{\Delta_i}(f_j) = \delta_{ij}$, so that

$$Pf_{i} = \sum_{n=1}^{\infty} \mathbf{E}_{\Delta_{n}} (f_{i}) \ f_{n} = f_{i}$$

for every $i \in \mathbb{N}$. So we conclude that P is a norm-one bounded linear projection operator from $C_0(\Omega)$ onto $[f_i]$.

Acknowledgement. This research has been supported by the project MTM2008-01502 of the Spanish Ministry of Science and Innovation.

References

- DIESTEL, J., (1984). Sequences and series in Banach spaces, Springer-Verlag. GTM 92 New York Berlin Heidelberg Tokyo.
- [2] DREWNOWSKI, L. AND LABUDA, I., (2002). Topological vector spaces of Bochner measurable functions, *Illinois J. Math*, 46, 287–318.
- [3] DUNFORD, N. AND SCHWARTZ, J. T., (1988). Linear Operators, I. Wiley-Interscience.
- [4] FERRANDO, J. C., (2002). On sums of Pettis integrable random elements, *Quaestiones Math.*, 25, 311–316.
- [5] FERRANDO, J. C. AND LÓPEZ PELLICER, M., (2001). Complemented copies of c_0 in $C_0(\Omega)$, Rev. R. Acad. Cien. Serie A Mat., 95, 13–17.
- [6] FRENICHE, F. J., (1998). Embedding c₀ in the space of Pettis integrable functions, *Quaestiones Math.*, 21, 261–267.
- [7] HOFFMANN-JØRGENSEN, J., (1974). Sums of independent Banach space valued random variables, *Studia Math.*, 52, 159–186.
- [8] KÖTHE, G., (1983). *Topological Vector Spaces I*, Grundlehren der mathematischen Wissenschaften, 159. Springer-Verlag. Berlin Heidelberg New York.
- [9] KWAPIEŃ, S., (1974). On Banach spaces containing c₀, Studia Math., **52**, 187–188.
- [10] LABUDA, I., (1979). Spaces of measurable functions, Comment. Math., Special Issue 2, 217–249.

Juan Carlos Ferrando Centro de Investigación Operativa, Universidad Miguel Hernández. 03202 Elche (Alicante). Spain. jc.ferrando@umh.es