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On the structure of certain ultradistributions

Manuel Valdivia

Abstract. Let Ω be a nonempty open subset of thek-dimensional euclidean spaceR
k. In this paper we

show that, ifS is an ultradistribution inΩ, belonging to a class of Roumieu type stable under differential
operators, then there is a familyfα, α ∈ N

k

0 , of elements ofL∞

loc(Ω) such thatS is represented in the
form

P

α∈Nk
0

Dαfα. Some other results on the structure of certain ultradistributions of Roumieu type are
also given.

Sobre la estructura de ciertas ultradistribuciones

Resumen. SeaΩ un subconjunto abierto no vacı́o del espacio euclı́deok-dimensionalRk. En este
trabajo demostramos que siS es una ultradistribución enΩ, perteneciente a una clase de tipo Roumieu
estable bajo operadores diferenciales, entonces existe una familiafα, α ∈ N

k

0 , de elementos deL∞

loc(Ω)
tal queS se representa en la forma

P

α∈Nk
0

Dαfα. También se dan otros resultados sobre la estructura de
ciertas ultradistribuciones de tipo Roumieu.

1 Introduction and notation

Throughout this paper all linear spaces are assumed to be defined over the fieldC of complex numbers. We
write N for the set of positive integers and byN0 we mean the set of nonnegative integers.

If E is a locally convex space,E′ will be its topological dual and〈· , ·〉 will denote the standard duality
betweenE andE′. σ(E′, E) denotes the weak topology inE′ andβ(E′, E) is the strong topology inE′.
E′′ stands for the topological dual ofE′ [β(E′, E)]. We identify in the usual mannerE with a linear
subspace ofE′′. We represent byρ(E,E′) the topology inE given by the uniform convergence on every
compact absolutely convex subset ofE′ [β(E′, E)]. If A is a closed bounded absolutely convex subset
of E, we writeEA to denote the normed space given by the linear span ofA in E, with A as closed unit
ball.We say that a subsetB of E is locally compact (weakly compact) whenever there is a closed bounded
absolutely convex subsetA of E such thatB is contained inEA and it is a compact (weakly compact)
subset in this space.

Given a Banach spaceX ,B(X) denotes its closed unit ball andX∗ is the Banach space conjugate ofX .
Given a positive integerk, if α := (α1, α2, . . . , αk) is a multiindex of orderk, i.e., an element ofNk

0 ,
we put|α| for its length, that is,|α| = α1 + α2 + · · · + αk, andα! := α1!α2! · · ·αk!.

Given a complex functionf , defined in the pointsx = (x1, x2, . . . , xk) of an open subsetO of the
k-dimensional euclidean space, which is infinitely differentiable, we write

Dαf(x) :=
∂|α|f(x)

∂xα1

1 ∂xα2

2 . . . ∂xαk

k

, x ∈ O, α ∈ N
k
0 .
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We take a sequence of positive numbersM0,M1, . . . ,Mn, . . . satisfying the following conditions:

1. M0 = 1.

2. Logarithmic convexity:
M2

n ≤ Mn−1Mn+1, n ∈ N.

3. Non quasi-analiticity:
∞
∑

n=1

Mn−1

Mn
<∞.

We consider an open subsetΩ of Rk. We shall say that a complex functionf defined and infinitely differ-
entiable inΩ is ultradifferentiableof class{Mn} if, given an arbitrary compact subsetK of Ω, there exist
C > 0 andh > 0 such that

|Dαf(x)| ≤ C h|α|M|α|, x ∈ K, α ∈ N
k
0 .

We putE{Mn}(Ω) to denote the linear space overC of all the ultradifferentiable complex functions of class
{Mn}. We writeD{Mn}(Ω) to mean the linear subspace ofE{Mn}(Ω) formed by those functions that have
compact support.

Givenh > 0 and a compact subsetK of Ω, by D(Mn),h(K) we denote the linear space overC of the
complex functionsf , defined and infinitely differentiable inΩ, with support inK, such that

|f |h := sup
α∈Nk

0

sup
x∈Ω

|Dαf(x)|

h|α|M|α|

<∞.

We assume thatD(Mn),h(K) is endowed with the norm| · |h.
We take now a fundamental system of compact subsets ofΩ:

K1 ⊂ K2 ⊂ · · · ⊂ Km ⊂ · · ·

We have that

D{Mn}(Ω) =

∞
⋃

m=1

D(Mn),m(Km).

We considerD{Mn}(Ω) as the inductive limit of the sequence(D(Mn),m(Km)) of Banach spaces. The
elements of the topological dualD{Mn}′

(Ω) of D{Mn}(Ω) are calledultradistributionsin Ω of the Roumieu
type. We assume thatD{Mn}′

(Ω) is endowed with the strong topology.
By K(Ω) we represent the linear space overC of the complex functions defined continuous and with

compact support inΩ. If K is a compact subset ofΩ, we useK(K) to denote the linear subspace ofK(Ω)
formed by those functions with support contained inK. Forf in K(K), we put

|f |∞ := sup
x∈Ω

|f(x)|.

We assumeK(K) is provided with the norm| · |∞. We shall considerK(Ω) as the inductive limit of the
sequence of Banach spaces(K(Km)). A Radon measureu in Ω is an element of the topological dualK′(Ω)
of K(Ω). Given a Radon measureu in Ω and a compact subsetK of Ω, we write‖u‖(K) to indicate the
norm of the restriction ofu to the Banach spaceK(K).

We useL∞
loc(Ω) to denote the linear space overC formed by the complex functions defined and

Lebesgue measurable inΩ which are essentially bounded in each compact subset ofΩ. Given a com-
pact subsetK of Ω andf ∈ L∞

loc(Ω), we put|f |K,∞ to denote the essential supremum off in K, that
is,

|f |K,∞ := supess{ |f(x)| : x ∈ K }.
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In the usual way, we shall consider the elements ofL∞
loc(Ω) as distributions inΩ.

In [4] and [5], a theorem on the structure of ultradistributions is givenwhich we can state in the following
way:

Result a) Let uα, α ∈ Nk
0 , be a family of Radon measures inRk such that, for eachh > 0 and each

compact subsetK of Rk, we have that

sup
α∈Nk

0

h|α|M|α|‖uα‖(K) <∞. (1)

Then the formula
S :=

∑

α∈Nk
0

Dαuα (2)

defines an element ofD{Mn}′

(Rk). Conversely, each ultradistributionS ofD{Mn}′

(Rk) may be written in
the form of(2) for a familyuα, α ∈ Nk

0 , of Radon measures inRk satisfying condition(1).

In [3], certain objections to the method of proof used by Roumieu to obtain result a) are indicated
and therefore the result is left as an open question. This ledKomatsu to obtain resulta) for ultradistribu-
tions inΩ under the additional assumption for the converse part that the class{Mn} of ultradifferentiable
functions inΩ be stable for differential operators, that is, there existA > 0 andL > 0 such that

Mn+1 ≤ A LnMn, n ∈ N0. (3)

In this paper, in the first place, we give proof of the Roumieu-Komatsu result with no need of condition (3),
i.e., we recover resulta) . On the other hand, the method used to achieve this result will be used later to
obtain the main result of this paper, which has as a particular case the following:

Result b) If Mn,n ∈ N0, satisfies condition(3), then, givenS in D{Mn}′

(Ω), there is a familyfα,α ∈ Nk
0 ,

of elements ofL∞
loc(Ω) such that, for each compact subsetK of Ω andh > 0, we have that

sup
α∈Nk

0

h|α|M|α||fα|K,∞ <∞

and
S =

∑

α∈Nk
0

Dαfα,

where the series is absolutely and uniformly convergent on every bounded subset ofD{Mn}(Ω).

2 Basic constructions

LetX be a Banach space. We use‖ · ‖ to denote its norm and also for the norm ofX∗. Givenr ∈ N and
α ∈ N

k
0 , we put, for eachx ∈ X ,

|x|r,α :=
‖x‖

r|α|M|α|

.

We writeXr,α for the linear spaceX with the norm| · |r,α, andX∗
r,α for the conjugate ofXr,α. The norm

ofX∗
r,α will be denoted by| · |r,α. Clearly, ifu belongs toX∗, then

|u|r,α = r|α|M|α|‖u‖.

We represent byYr the linear space overC formed by the families(xα : α ∈ Nk
0 ) of elements ofX , which

we shall simply denote by(xα), such that

‖(xα)‖r := sup
α∈Nk

0

‖xα‖

r|α|M|α|

<∞.
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We endowYr with the norm of‖ · ‖r. It follows thatYr ⊂ Yr+1 and that the canonical injection fromYr

into Yr+1 is continuous. We writeY for the inductive limit of the sequence of Banach spaces(Yr).
Let (xα) be an element ofY and letβ be inNk

0 , we define

xβ
α :=

{

xβ , if α = β,

0, if α 6= β

Clearly, if (xα) is in Yr, then(xβ
α) belongs toYr and

‖(xβ
α)‖r ≤ ‖(xα)‖r.

For fixedr ∈ N andβ ∈ N
k
0 , we putY β

r to denote the subspace ofYr formed by those elements(xα) which
satisfy thatxα = 0 whenα 6= β. Then

‖(xα)‖r = sup
α∈Nk

0

‖xα‖

r|α|M|α|

=
‖xβ‖

r|β|M|β|

= |x|r,β ,

and thusY β
r is isometric toXr,β. On the other hand, if we denote byY β the subspace ofY whose elements

(xα) satisfy thatxα = 0 whenα 6= β, thenY β is topologically isomorphic toX .
We assume thatY ′ is provided with the strong topology. IfY ∗

r is the Banach space given by the
conjugate ofYr, then the projective limit of the sequence of Banach spaces(Y ∗

r ) is a Fréchet space which
coincides withY ′. SettingUr to be the polar set ofrB(Yr) in Y ′, it follows thatUr, r ∈ N, is a fundamental
system of zero neighborhoods inY ′. If we consider a bounded subsetB of Y , its polar setB◦ in Y ′ is a
zero neighborhood in this space and so there iss ∈ N such thatB◦ ⊃ Us, henceB is contained in the
closure ofsB(Ys) in Y .

Proposition 1. The following properties hold:

1. For eachr in N,B(Yr) is a closed subset ofY .

2. If B is a bounded subset ofY , there isr ∈ N such thatB is contained inYr and it is a bounded
subset of this space.

PROOF. 1. We takev ∈ X∗ andβ ∈ N
k
0 . Letu be the linear functional onY such that

u((xα)) = 〈xβ , v〉, (xα) ∈ Y.

Givens ∈ N and(xα) ∈ Ys, we have

|u((xα))| = |〈xβ , v〉| ≤ ‖xβ‖ · ‖v‖ =
‖xβ‖

s|β|M|β|

s|β|M|β|‖v‖ ≤ (s|β|M|β|‖v‖)‖(xα)‖s

and sou belongs toY ′.
We take a net{ xα,j : j ∈ J, ≥} in B(Yr) which converges to(xα) in Y . We fix β ∈ Nk

0 and take
v ∈ X∗. Letw be the element ofY ′ such that

〈(yα), w〉 = 〈yβ , v〉, (yα) ∈ Y.

Then
0 = lim

j
〈(xα − xα,j), w〉 = lim

j
〈xβ − xβ,j , v〉

and thus the net{ xβ,j : j ∈ J, ≥} converges weakly toxβ in X . Given that

|xβ,j |r,β =
‖xβ,j‖

r|β|M|β|

≤ sup
α∈Nk

0

‖xα,j‖

r|α|M|α|

= ‖(xα,j)‖r ≤ 1,
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it follows that|xβ |r,β ≤ 1, from where we deduce that

sup
α∈Nk

0

|xα|r,α = sup
α∈Nk

0

‖xα‖

r|α|M|α|

≤ 1

and hence(xα) is an element ofYr that belongs toB(Yr).
2. We know there isr ∈ N such thatB is contained in the closure ofrB(Yr) in Y . Making use of part1
the result follows. �

If u is an arbitrary element ofY ′, we put, for eachr ∈ N,

‖u‖(r) := sup{ |〈(xα), u〉| : (xα) ∈ B(Yr) }.

For everyu ∈ Y ′ and everyβ ∈ Nk
0 , we identify in a natural manner the restriction ofu to Y β with an

elementuβ of X∗.

Proposition 2. For u ∈ Y ′ andr ∈ N, we have

sup
α∈Nk

0

r|α|M|α|‖uα‖ ≤ ‖u‖(r)

and
〈(xα), u〉 =

∑

α∈Nk
0

〈xα, uα〉, (xα) ∈ Y.

PROOF. We fixβ ∈ Nk
0 . We then have that

‖u‖(r) = sup{ |〈(xα), u〉| : (xα) ∈ B(Yr) }

≥ sup{ |〈(xβ
α), u〉| : (xα) ∈ B(Yr) }

= sup{ |〈xβ , uβ〉| : (xα) ∈ B(Yr) }

= |uβ|r,β

= r|β|M|β|‖uβ‖

from where
sup

α∈Nk
0

r|α|M|α|‖uα‖ ≤ ‖u‖(r).

Let us now take(xα) in Yr and we see that the family
(

(xβ
α) : β ∈ Nk

0

)

is summable to(xα) in Ys for every
integers ≥ 2r. Given an arbitraryq ∈ N, we have that

∥

∥

∥(xα) −
∑

|β|≤q

(xβ
α)

∥

∥

∥

s
= sup

|α|>q

‖xα‖

s|α|M|α|

≤ sup
|α|>q

‖xα‖

(2r)|α|M|α|

= sup
|α|>q

1

2|α|

‖xα‖

r|α|M|α|

≤
1

2q
sup

α∈Nk
0

‖xα‖

r|α|M|α|

=
1

2q
‖(xα)‖r,

and the conclusion is obtained. It then follows that, if(xα) is any element ofY , we have that, in this space,

(xα) =
∑

β∈Nk
0

(xβ
α)

and thus
〈(xα), u〉 =

∑

α∈Nk
0

〈(xβ
α), u〉 =

∑

β∈Nk
0

〈xβ , uβ〉. �
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Proposition 3. If M is a bounded subset ofY ′ andr ∈ N, then

sup
α∈N

k
0

u∈M

r|α|M|α|‖uα‖ <∞.

PROOF. We have that
U := { v ∈ Y ′ : ‖v‖(r) ≤ 1 }

is a zero neighborhood inY ′, hence there isb > 0 such thatbM ⊂ U . If u ∈ M , then‖u‖(r) ≤ b−1 and,
after the previous proposition, the result follows.�

Proposition 4. If ( zα : α ∈ Nk
0 ) is a family of elements ofX∗ such that, for eachh > 0,

sup
α∈Nk

0

h|α|M|α|‖zα‖ <∞,

then there is a unique elementu of Y ′ for whichuα = zα, α ∈ N
k
0 .

PROOF. We fixβ ∈ N
k
0 , r ∈ N and(xα) ∈ Yr. Then

|〈xβ , zβ〉| ≤ ‖xβ‖ · ‖zβ‖ =
‖xβ‖

(2kr)|β|M|β|

(2kr)|β|M|β|‖zβ‖

≤
1

(2k)|β|
‖(xα)‖r sup

α∈Nk
0

(2kr)|α|M|α|‖zα‖

and consequently

∑

β∈Nk
0

|〈xβ , zβ〉| ≤ ‖(xα)‖r sup
α∈Nk

0

(2kr)|α|M|α|‖zα‖
∑

β∈Nk
0

1

(2k)|β|

=
(

2 sup
α∈Nk

0

(2kr)|α|M|α|‖zα‖
)

· ‖(xα)‖r,

from where it follows that the complex functionu defined inY such that

u
(

(xα)
)

:=
∑

α∈Nk
0

〈xα, zα〉, (xα) ∈ Y,

which is clearly linear, is also continuous. After Proposition 2, we have that

〈(xα), u〉 =
∑

α∈Nk
0

〈xα, uα〉, (xα) ∈ Y.

We fix β ∈ Nk
0 and take an arbitrary elementxβ ∈ X . Then, ifxβ

α := 0, α 6= β, andxβ
β := xβ , we have

that
〈xβ , uβ〉 = 〈(xβ

α), u〉 =
∑

α∈Nk
0

〈xβ
α, zα〉 = 〈xβ , zβ〉

and souβ = zβ, β ∈ Nk
0 . The uniqueness ofu follows from the density inY of the linear span of

∪{Y β : β ∈ Nk
0 }. �

Proposition 5. Let E be a locally convex space such thatE′ [β(E′, E)] is a Fréchet space. LetF be
a linear subspace ofE such that each closed bounded absolutely convex subset ofF is locally weakly
compact, thenF is closed inE′′ [σ(E′′, E′)] and, provided with the Mackey topologyµ(F, F ′), it is an
(LB)-space.
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PROOF. Let v be a linear functional onF , which is bounded on every bounded subset ofF . LetA be a
closed bounded absolutely convex subset ofE′′ [σ(E′′, E′)]. We find a subsetM of F , closed bounded and
absolutely convex, such thatA∩F is contained inFM and it is weakly compact in this space. Consequently,
A ∩ F is weakly compact inE′′ [σ(E′′, E′)] and sov−1(0) ∩A is weakly compact inE′′ [σ(E′′, E′)]. We
apply Krein-Smulyan’s theorem, [2, p. 246], and we have thatv−1(0) is closed inE′′ [σ(E′′, E′)]. ThusF
is closed inE′′ [σ(E′′, E′)] andv is continuous inF . The result now is clear. �

Proposition 6. Let E be a locally convex space such thatE′ [β(E′, E)] is a Fréchet space. IfF is a
subspace ofE such that every closed bounded absolutely convex subset ofF is locally compact, thenF ,
with the topology induced byρ(E,E′) is an(LB)-space.

PROOF. We apply the former proposition and obtain thatF [µ(F, F ′)] is an(LB)-space andF is closed in
E′′ [σ(E′′, E′)]. LetF⊥ stand for the subspace ofE′ orthogonal toF . Letψ be the canonical mapping from
E′ ontoE′/F⊥. Every closed bounded absolutely convex subset ofF is locally compact inE′′ [σ(E′′, E′)],
from where we have thatE′ [β(E′, E)]/F⊥ is a Fréchet-Montel space and thusµ(F, F ′) = ρ(F,E′/F⊥).
We now consider a closed absolutely convex zero neighborhood U in F . Let U◦ be the polar ofU in
E′/F⊥. It follows thatU◦ is compact inE′ [β(E′, E)]/F⊥, hence we may find a compact absolutely
convex subsetP of E′ [β(E′, E)] such thatψ(P ) = U◦, [2, p. 274]. IfP ◦ is the polar set ofP in E, we
have thatP ◦ ∩ F = U , and the result follows. �

Proposition 7. If X is reflexive, thenY is weakly locally compact.

PROOF. Given a positive integerr, we take a sequence(xα,m),m = 1, 2, . . . inB(Yr). For eachα of Nk
0 ,

the sequencexα,m,m = 1, 2, . . ., belongs toB(Xr,α), hence we may find by means of a diagonal process
a subsequence(yα,m), m = 1, 2, . . ., of (xα,m) such that, for eachα ∈ Nk

0 , the sequenceyα,m, m = 1,
2, . . . , converges weakly inXr,α to an elementyα which will clearly lie inB(Xr,α). We deduce then that
(yα) ∈ B(Yr). We take now an integers ≥ 2r and we show that(yα,m) converges weakly to(yα) in Ys.
In the proof of Proposition2, we saw that, given(xα) in Yr andq ∈ N, we have that

∥

∥

∥(xα) −
∑

|β|≤q

(xβ
α)

∥

∥

∥

s
≤

1

2q
‖(xα)‖r.

Thus, givenε > 0, we findq0 ∈ N such that1/2q0 < ε/4. Then

∥

∥

∥(yα) −
∑

|β|≤q0

(yβ
α)

∥

∥

∥

s
≤

1

2q0

‖(yα)‖r <
ε

4

and, if(yβ
α,m) is the element ofY such thatyβ

α,m = 0, if α 6= β, andyβ
β,m = yβ,m, it follows that

∥

∥

∥(yα,m) −
∑

|β|≤q0

(yβ
α,m)

∥

∥

∥

s
≤

1

2q0

‖(yα,m)‖r <
ε

4
.

We now takeu in B(Y ∗
s ). We findm0 ∈ N such that

∑

|β|≤q0

∣

∣〈(yβ
α) − (yβ

α,m), u〉
∣

∣ <
ε

2
, m ≥ m0.

Then, for those values ofm, we have that

∣

∣〈(yα) − (yα,m), u〉
∣

∣

∣

∣

∣

∣

∣

〈(yα) − (yα,m) +
∑

|β|≤q0

〈(yβ
α,m) − (yβ

α), u〉

∣

∣

∣

∣

∣

+
∑

|β|≤q0

∣

∣〈(yβ
α) − (yβ

α,m), u〉
∣

∣
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≤
∣

∣

∣〈(yα) −
∑

|β|≤q0

(yβ
α), u〉

∣

∣

∣ +
∣

∣

∣〈(yα,m) −
∑

|β|≤q0

(yβ
α,m), u〉

∣

∣

∣ +
ε

2

≤
∥

∥

∥(yα) −
∑

|β|≤q0

(yβ
α)

∥

∥

∥

s
+

∥

∥

∥(yα,m) −
∑

|β|≤q0

(yβ
α,m)

∥

∥

∥

s
+
ε

2

< ε.

We obtain from here thatB(Yr) is a weakly compact subset ofYs and the result follows. �

3 The space E
{Mn}
0 (Ω)

Givenh > 0, we denote byE(Mn),h
0 (Ω) the linear space overC of the complex functionsf , defined and

infinitely differentiable inΩ, which vanish at infinity and so do each of its derivatives of any order, that is,
givenβ ∈ Nk

0 andε > 0, there is a compact subsetK of Ω such that

|Dβf(x)| < ε, x ∈ Ω \K.

On the other hand,f also satisfies that there isC > 0 such that

|Dαf(x)| ≤ C h|α|M|α|, x ∈ Ω, α ∈ N
k
0 .

We put

|f |h := sup
α∈Nk

0

sup
x∈Ω

|Dαf(x)|

h|α|M|α|

and assume thatE(Mn),h
0 (Ω) is provided with the norm| · |h. We write

E
{Mn}
0 (Ω) :=

∞
⋃

m=1

E
(Mn),m
0 (Ω)

and considerE{Mn}
0 (Ω) as the inductive limit of the sequence(E

(Mn),m
0 (Ω)) of Banach spaces. We assume

that the topological dualE{Mn}′

0 (Ω) of E{Mn}
0 (Ω) is endowed with the strong topology.

We putC0(Ω) for the linear space overC of the complex functionsf which are defined and continuous
in Ω and vanish at infinity. We write

|f |∞ := sup
x∈Ω

|f(x)|

and assume thatC0(Ω) is provided with the norm| · |∞.
In this section, we substitute the spaceX of the previous section byC0(Ω). Then, each element ofYr

is a family( fα : α ∈ Nk
0 ) of elements ofC0(Ω) such that

‖(fα)‖r := sup
α∈Nk

0

|fα|∞
r|α|M|α|

<∞.

We denote byWr the subspace ofYr formed by those families(Dαf : α ∈ Nk
0 ) such that

f ∈ E
(Mn),r
0 (Ω).

Let
Φr : E

(Mn),r
0 (Ω) −→Wr

be such that
Φr(f) = (Dαf), f ∈ E

(Mn),r
0 (Ω).
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Then,Φr is an onto linear isometry. We putW for ∪{Wr : r ∈ N } and we considerW as a subspace of
Y . Let

Φ: E
{Mn}
0 (Ω) −→W

be such that
Φ(f) = (Dαf), f ∈ E

{Mn}
0 (Ω).

Clearly,Φ is a continuous one-to-one and onto linear map.

Theorem 1. For eachj of a certain setJ , let (µα,j : α ∈ N
k
0 ) a family of complex Borel measures inΩ

such that, for eachh > 0,
sup

α∈N
k
0

j∈J

h|α| M|α| |µα,j |(Ω) <∞.

Then, there is a bounded subset{Sj : j ∈ J } in E
{Mn}′

0 (Ω) such that

〈ϕ, Sj〉 =
∑

α∈Nk
0

∫

Ω

Dαϕdµα,j , j ∈ J, ϕ ∈ E
{Mn}
0 (Ω),

where the series converges absolutely and uniformly whenj varies inJ andϕ belongs to any given bounded
subset ofE{Mn}

0 (Ω).

PROOF. We consider eachµα,j as a linear functional onC0(Ω) by means of the duality

〈ϕ, µα,j〉 =

∫

Ω

ϕdµα,j , ϕ ∈ C0(Ω).

Then, the norm of this linear functional is|µα,j |(Ω). We apply Proposition4 and obtain, for everyj ∈ J , an
elementuj in Y ′ such that its restriction toYα coincides withµα,j , α ∈ Nk

0 . Making use of Proposition2
we obtain that

〈(fα), uj〉 =
∑

α∈Nk
0

∫

Ω

fα dµα,j , (fα) ∈ Y. (4)

We fix now a bounded subsetB of Y . We findr ∈ N such thatB is a bounded subset ofYr. We take(fα)
in B. It follows that

∑

α∈N
k
0

∣

∣

∣

∣

∣

∫

Ω

fα dµα,j

∣

∣

∣

∣

∣

≤
∑

α∈N
k
0

∫

Ω

|fα| d|µα,j |

≤
∑

α∈Nk
0

|fα|∞|µα,j |(Ω)

=
∑

α∈Nk
0

1

(2k)|α|

|fα|∞
r|α|M|α|

(2kr)|α||M|α||µα,j |(Ω)

≤ ‖fα‖r






sup
β∈N

k
0

j∈J

(2kr)|β|M|β||µβ,j|(Ω)







∑

α∈Nk
0

1

(2k)|α|
.

We deduce from this that the series in (4) converges absolutely and uniformly whenj varies inJ and(fα)
varies inB. Besides

sup
j∈J

(fα)∈B

∣

∣〈(fα), uj〉
∣

∣ <∞,

25



M. Valdivia

from where we get that{ uj : j ∈ J } is a bounded subset ofY ′. If ψ is the mapΦ considered from

E
{Mn}
0 (Ω) into Y , andtψ is the transpose ofψ, we put

Sj := tψ(uj), j ∈ J.

Then{Sj : j ∈ J } is a bounded subset ofE{Mn}′

0 (Ω). On the other hand, for eachϕ ∈ E
{Mn}
0 (Ω), we

have that
〈(Dαϕ), uj〉 = 〈ψ(ϕ), uj〉 = 〈ϕ,t ψ(uj)〉 = 〈ϕ, Sj〉.

Consequently, for eachϕ ∈ E
{Mn}
0 (Ω) andj ∈ J , making use of (4), we obtain

〈ϕ, Sj〉 = 〈(Dαϕ), uj〉 =
∑

α∈Nk
0

∫

Ω

Dαϕdµα,j .

Finally, whenϕ varies in a bounded subset ofE
{Mn}
0 (Ω), (Dαϕ) varies in a bounded subset ofY , from

where we deduce that the series above converges absolutely and uniformly whenj varies inJ andϕ belongs
to any given bounded subset ofE

{Mn}
0 (Ω). �

We shall need later the following result which is found in [3, p. 42]:

Result c) Let K be a compact subset ofΩ . If 0 < h < h′ < ∞, then the canonical injection from
D(Mn),h(K) intoD(Mn),h′

(K) is a compact map.

For each compact subsetK of Ω, we put

D{Mn}(K) :=

∞
⋃

r=1

D(Mn),r(K)

and assume thatD{Mn}(K) is provided with the structure of(LB)-space as the inductive limit of the
sequence(D(Mn),r(K)) of Banach spaces. ByD{Mn}′

(K) we denote the strong dual ofD{Mn}(K).
For the two next propositions, we fix a compact subsetK of Ω. Givenr ∈ N, letVr be the subspace of

Y whose elements have the form(Dαϕ), with ϕ in D(Mn),r(K). Let

Λr : D(Mn),r(K) −→ Vr

be such that
Λr(ϕ) = (Dαϕ), ϕ ∈ D(Mn),r(K).

It follows thatΛr is an onto linear isometry. We putV := ∪{Vr : r ∈ N } and we considerV as a subspace
of Y . We write

Λ: D{Mn}(K) −→ V

such that
Λ(ϕ) = (Dαϕ), ϕ ∈ D{Mn}(K).

Clearly,Λ is linear continuous one-to-one and onto.

Proposition 8. Λ is a topological isomorphism.

PROOF. We take a closed bounded absolutely convex subsetA of V . Applying Proposition1 we obtain
r ∈ N such thatA is a bounded subset ofVr. ThenΛ−1

r (A) = Λ−1(A) is a bounded absolutely convex
subset ofD(Mn),r(K), and is closed inD{Mn}(K). We apply result3 and obtain thatΛ−1

r (A) is compact
in D(Mn),r+1(K), from where we deduce thatA is compact inVr+1. Applying now Proposition6 we
have thatV is the inductive limit of the sequence(Vr) of Banach spaces. Consequently,Λ is a topological
isomorphism. �
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We consider nowD{Mn}(K) as a subspace, clearly closed, ofD{Mn}(Ω). If A is a closed bounded
absolutely convex subset ofD{Mn}(K), thenA is a closed bounded absolutely convex subset ofD{Mn}(Ω),
hence there ism ∈ N such thatA is a compact subset ofD(Mn),m(Km), [3, p. 44], thereforeA is locally
compact inD{Mn}(K). Proposition6 applies again to have that the topology induced byD{Mn}(Ω) in
D{Mn}(K) coincides with the original topology ofD{Mn}(K).

In what follows we putΓ for the mappingΛ considered fromD{Mn}(K) into Y . Then, if tΓ is the
transpose ofΓ, we have that

tΓ: Y ′ −→ D{Mn}′

(K)

is onto.

Proposition 9. If {Sj : j ∈ J } is a bounded subset ofD{Mn}′

(Ω), then there is, for eachj ∈ J , a
family (µα,j : α ∈ Nk

0 ) of complex Borel measures inΩ such that, for eachh > 0,

sup
α∈N

k
0

j∈J

h|α| M|α| |µα,j |(Ω) <∞

and

〈ϕ, Sj〉 =
∑

α∈Nk
0

∫

Ω

Dαϕdµα,j , j ∈ J, ϕ ∈ D{Mn}(K).

PROOF. Let S∗
j be the restriction ofSj to D{Mn}(K). We then have that{S∗

j : j ∈ J } is a relatively

compact subset ofD{Mn}′

(K). Applying [2, p. 274], we obtain a relatively compact subset{Tj : j ∈ J }
in Y ′ such thattΓ(Tj) = S∗

j , j ∈ J . If (Tj)α is the element ofC0(Ω)∗ which identifies with the restriction
of Tj to Y α, α ∈ Nk

0 , making use of Riesz’s representation theorem, [6, p. 131], we have that there is a
complex Borel measureµα,j in Ω such that

〈ϕ, (Tj)α〉 =

∫

Ω

ϕdµα,j , ϕ ∈ C0(Ω),

and|µα,j |(Ω) is the norm of(Tj)α. After Proposition3 we obtain

sup
α∈Nk

0
, j∈J

h|α| M|α| |µα,j(Ω)| <∞.

By using Proposition2 we get, for(fα) in Y andj ∈ J ,

〈(fα), Tj〉 =
∑

α∈Nk
0

∫

Ω

fα dµα,j

and, in particular, ifϕ belongs toD{Mn}(K),

〈(Dαϕ), Tj〉 =
∑

α∈Nk
0

∫

Ω

Dαϕdµα,j .

On the other hand, ifϕ belongs toD{Mn}(K), we have

〈(Dαϕ), Tj〉 = 〈Γ(ϕ), Tj〉 = 〈ϕ,t Γ(Tj)〉 = 〈ϕ, S∗
j 〉 = 〈ϕ, Sj〉

and the result follows. �

Before giving the proof of the next theorem, we need the following construction. We take a bounded
subset{Sj : j ∈ J } of D{Mn}′

(Ω) so that there is a compact subsetH of Ω which contains the support of
Sj, j ∈ J , that is

suppSj ⊂ H, j ∈ J.
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LetK be a compact subset ofΩ such that its interior
◦

K containsH . Applying Proposition9, we obtain, for
eachj ∈ J , a family(µα,j : α ∈ Nk

0 ) of complex Borel measures inΩ such that, for eachh > 0,

sup
α∈N

k
0

j∈J

h|α| M|α| |µα,j |(Ω) <∞

and

〈ϕ, Sj〉 =
∑

α∈Nk
0

∫

Ω

Dαϕdµα,j , j ∈ J, ϕ ∈ D{Mn}(K).

We take an elementg of D{Mn}(Ω) which has value1 in a neighborhood ofH and with support contained

in
◦

K. We findb > 0 and a positive integers such that

|Dαg(x)| ≤ b s|α| M|α|, x ∈ Ω, α ∈ N
k
0 .

We takeϕ ∈ E
{Mn}
0 (Ω). Sincegϕ belongs toD{Mn}(K), it follows that, for eachj ∈ J ,

〈gϕ, Sj〉 =
∑

α∈Nk
0

∫

Ω

Dα(gϕ) dµα,j

=
∑

α∈Nk
0

∫

Ω

(

∑

β≤α

α!

β!(α− β)!
Dβg ·Dα−βϕ

)

dµα,j . (5)

We take an integerm > s such thatϕ is in E
(Mn),m
0 (Ω). It follows that, for eachx ∈ Ω,

∑

β≤α

α!

β!(α − β)!
|Dβg(x)| · |Dα−βϕ(x)|

≤
∑

β≤α

α!

β!(α− β)!
b s|β| M|β| m

|α−β| |ϕ|m M|α−β|

≤ b m|α| |ϕ|m
∑

β≤α

α!

β!(α− β)!
M|β| M|α−β|

≤ b m|α| |ϕ|m 2|α|M|α|

and hence

∑

α∈Nk
0

∑

β≤α

α!

β!(α − β)!

∫

Ω

|Dβg ·Dα−βϕ| d|µα,j |

≤ b |ϕ|m
∑

α∈Nk
0

1

(2k)|α|
(4km)|α| M|α| |µα,j |(Ω)

≤ b |ϕ|m
∑

α∈Nk
0

1

(2k)|α|
sup
δ∈N

k
0

j∈J

(4km)|δ| M|δ|| µδ,j |(Ω)

from where we deduce that the series (5) is absolutely convergent, thus we may write, puttingγ := α− β,

∑

α∈Nk
0

∑

β≤α

α!

β!(α − β)!

∫

Ω

Dβg ·Dα−βϕdµα,j =
∑

γ∈Nk
0

∑

β∈Nk
0

(β + γ)!

β!γ!

∫

Ω

Dβg ·Dγϕdµβ+γ,j. (6)
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Theorem 2. Let{Sj : j ∈ J } be a bounded subset ofD{Mn}′

(Ω) such that there is a compact subsetH
of Ω with

suppSj ⊂ H, j ∈ J.

LetK be a compact subset ofΩ such that
◦

K ⊃ H . Then, there is, for eachj ∈ J , a family( να,j : α ∈ Nk
0 )

of complex Borel measures inΩ such that, for eachh > 0,

sup
α∈N

k
0

j∈J

h|α| M|α||να,j |(Ω) <∞

supp να,j ⊂
◦

K, α ∈ N
k
0 , j ∈ J,

and

〈ϕ, Sj〉 =
∑

α∈Nk
0

∫

Ω

Dαϕdνα,j , j ∈ J, ϕ ∈ D{Mn}(Ω),

where the series converges absolute and uniformly whenj varies inJ andϕ varies in any given bounded
subset ofD{Mn}(Ω).

PROOF. For eachj ∈ J , we find the family(µα,j : α ∈ Nk
0 ) of complex Radon measures inΩ with the

properties above cited. We now fixγ ∈ Nk
0 and take an arbitrary elementη of C0(Ω). Then

∣

∣

∣

∣

∣

∣

∑

β∈Nk
0

(β + γ)!

β!γ!

∫

Ω

Dβg · η dµβ+γ,j

∣

∣

∣

∣

∣

∣

≤
∑

β∈Nk
0

(β + γ)!

β!γ!

∫

Ω

|Dβg| · |η| d|µβ+γ,j|

≤ b |η|∞
∑

β∈Nk
0

(β + γ)!

β!γ!
s|β| M|β| |µβ+γ,j|(Ω)

≤ b|η|∞
∑

β∈Nk
0

2|β+γ| s|β| M|β| |µβ+γ,j|(Ω).

On the other hand,
∑

β∈Nk
0

2|β+γ| s|β| M|β| |µβ+γ,j|(Ω) ≤
∑

β∈Nk
0

(2s)|β+γ| M|β+γ| |µβ+γ,j|(Ω)

≤
∑

β∈Nk
0

1

(2k)|β|
· (4ks)|β+γ| M|β+γ| |µβ+γ,j|(Ω)

≤ 2 sup
α∈N

k
0

j∈J

(4ks)|α| M|α| |µα,j |(Ω).

Consequently, there is a constantC > 0 such that

∣

∣

∣

∣

∣

∣

∑

β∈Nk
0

(β + γ)!

β!γ!

∫

Ω

Dβg · η dµβ+γ,j

∣

∣

∣

∣

∣

∣

≤ C |η|∞. (7)

If we set

vγ,j(η) :=
∑

β∈Nk
0

(β + γ)!

β!γ!

∫

Ω

Dβg · η dµβ+γ,j, η ∈ C0(Ω),
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we have thatvγ,j is a complex function which is clearly linear and, after (7), belongs toC0(Ω)∗. We apply
Riesz’s representation theorem, [6, p. 131], and so obtain a complex Borel measureνγ,j in Ω such that

vγ,j(η) =

∫

Ω

η · dνγ,j, η ∈ C0(Ω).

If M denotes the support ofg, it is plain that

supp νγ,j ⊂M ⊂
◦

K, j ∈ J, γ ∈ N
k
0 .

For eachϕ ∈ E
{Mn}
0 (Ω), we have that

∑

β∈Nk
0

(β + γ)!

β!γ!

∫

Ω

Dβg ·Dγϕ · dµβ+γ,j =

∫

Ω

Dγϕ · dνγ,j

and, having in mind (6),

〈gϕ, Sj〉 =
∑

γ∈Nk
0

∫

Ω

Dγϕ · dνγ,j, ϕ ∈ E
{Mn}
0 (Ω). (8)

Let us now fixγ in Nk
0 andj in J . We chooseη in C0(Ω) such that|η|∞ < 2 andvγ,j(η) = |νγ,j|(Ω). We

takeh > 1. Then

h|γ| M|γ| |νγ,j|(Ω) = h|γ| M|γ| vγ,j(η)

≤ h|γ| M|γ|

∑

β∈Nk
0

(β + γ)!

β!γ!
b s|β| M|β| |η|∞ |µβ+γ,j|(Ω)

≤ 2b
∑

β∈Nk
0

(2hs)|β+γ| M|β+γ| |µβ+γ,j|(Ω)

≤ 2b
∑

β∈Nk
0

1

(2k)|β+γ|
sup

α∈N
k
0

j∈J

(4khs)|α| M|α| |µα,j|(Ω)

≤ 4b sup
α∈N

k
0

j∈J

(4ks)|α| M|α| |µα,j |(Ω).

It follows from above that
sup
γ∈N

k
0

j∈J

h|γ| M|γ| |νγ,j|(Ω) <∞.

Theorem1 now applies to obtain, for eachj ∈ J , an elementTj ∈ E
{Mn}′

0 (Ω) such that

〈ϕ, Tj〉 =
∑

α∈Nk
0

∫

Ω

Dαϕ · dνα,j, ϕ ∈ E
{Mn}
0 (Ω)

where the series converges absolutely and uniformly whenj varies inJ andϕ varies in any given bounded
subset ofE{Mn}

0 (Ω). On the other hand, for eachϕ ∈ D{Mn}(K) and eachj ∈ J ,

〈ϕ, Sj〉 = 〈gϕ, Sj〉 =
∑

α∈Nk
0

∫

Ω

Dα(gϕ) dµα,j =
∑

α∈Nk
0

∫

Ω

Dαϕ · dνα,j = 〈ϕ, Tj〉.
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Given an arbitrary elementx in Ω, if x belongs to
◦

K, then this set is a neighborhood ofx such that, if

ϕ ∈ D{Mn}(
◦

K), thenϕ ∈ D{Mn}(K), and so〈ϕ, Sj〉 = 〈ϕ, Tj〉. If x does not belong to
◦

K, we find an
open neighborhoodUx of x such thatUx ∩M = ∅. We takeϕ in D{Mn}(Ux). Then,

∫

Ω
Dαϕ · dνα,j = 0,

α ∈ Nk
0 , thus〈ϕ, Tj〉 = 0. Besides,Ux ∩H = ∅, therefore〈ϕ, Sj〉 = 0.

We have thus proved thatSj andTj coincide locally, from where it follows thatSj andTj coincide in
D{Mn}(Ω). The conclusion now follows. �

4 Structure of the ultradistributions of Roumieu type

Theorem 3. For eachj in a setJ , let (uα,j : α ∈ Nk
0 ) be a family of Radon measures inΩ. If, given

h > 0 and a compact subsetK ⊂ Ω, we have that

sup
α∈N

k
0

j∈J

h|α| M|α| ‖uα,j‖(K) <∞,

then there is a bounded subset{Sj : j ∈ J } in D{Mn}′

(Ω) such that

〈ϕ, Sj〉 =
∑

α∈Nk
0

〈Dαϕ, uα,j〉, ϕ ∈ D{Mn}(Ω)

where the series converges absolutely and uniformly whenj varies inJ andϕ varies in any given bounded
subset ofD{Mn}(Ω).

PROOF. For eachm ∈ N, we identifyK(Km) with C0(
◦

Km). We putum
α,j for the restriction ofuα,j to

K(Km). If µm
α,j is the complex Borel measure in

◦

Km such that

〈f, um
α,j〉 =

∫

◦

Km

f dµm
α,j , f ∈ C0(

◦

Km),

we have that

‖uα,j‖(Km) = |µm
α,j |(

◦

Km).

Therefore, givenh > 0, it follows that

sup
α∈Nk

0
, j∈J

h|α| M|α| |µα,j |(
◦

Km) <∞,

from where we obtain, applying Theorem1, that there is a bounded subset{Sm
j : j ∈ J } of E{Mn}′

0 (
◦

Km)
such that

〈ϕ, Sm
j 〉 =

∑

α∈Nk
0

∫

◦

Km

Dαϕ · dµm
α,j , ϕ ∈ E

{Mn}
0 (

◦

Km)

where the series converges absolutely and uniformly whenj varies inJ andϕ varies in any given bounded

subset ofE{Mn}
0 (

◦

Km).
Given an arbitrary elementϕ of D{Mn}(Ω), we findm ∈ N such that

suppϕ ⊂
◦

Km,

we put
〈ϕ, Sj〉 := 〈ϕ, Sm

j 〉.

It is easy to see that{Sj : j ∈ J } is a bounded subset ofD{Mn}′

(Ω) satisfying the requirements of the
statement. �
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Theorem 4. If {Sj : j ∈ J } is a bounded subset ofD{Mn}′

(Ω), then there is, for eachj ∈ J , a family
(uα,j : α ∈ Nk

0 ) of Radon measures inΩ such that, givenh > 0 and a compact subsetK of Ω, we have
that

sup
α∈N

k
0

j∈J

h|α| M|α| ‖uα,j‖(K) <∞

and
〈ϕ, Sj〉 =

∑

α∈Nk
0

〈Dαϕ, uα,j〉, j ∈ J, ϕ ∈ D{Mn}(Ω),

where the series converges absolutely and uniformly whenj varies inJ andϕ varies in any given bounded
subset ofD{Mn}(Ω).

PROOF. Let {Om : m ∈ N } be a locally finite open cover ofΩ such thatOm is relatively compact inΩ,
m ∈ N. Let { gm : m ∈ N } be a partition of unity of class{Mn} subordinated to such covering. It follows
that{ gmSj : j ∈ J } is a bounded subset ofD{Mn}′

(Ω) whose elements have their supports contained in
a compact subset ofOm. Applying Theorem2, we obtain, for eachj ∈ J , a family ( νm

α,j : α ∈ Nk
0 ) of

complex Borel measures inΩ such that, for eachh > 0,

sup
α∈N

k
0

j∈J

h|α| M|α| |ν
m
α,j |(Ω) <∞

supp νm
α,j ⊂ Om, j ∈ J, α ∈ N

k
0 ,

and

〈ϕ, gmSj〉 =
∑

α∈Nk
0

∫

Ω

Dαϕ · dνm
α,j, ϕ ∈ D{Mn}(Ω)

where the series converges absolutely and uniformly whenj varies inJ andϕ varies in any given bounded
subset ofD{Mn}(Ω).

Given an arbitrary elementf of K(Ω), there is a finite number of subindexm such that

Om ∩ supp f 6= ∅.

Consequently, we may define, for eachα ∈ Nk
0 andj ∈ J ,

uα,j(f) :=
∑

m∈N

∫

Ω

f · dνm
α,j .

We then have thatuα,j is a linear functional inK(Ω). Given any compact subsetK of Ω, there is a positive
integerm0 such thatK ∩Om = ∅,m > m0. Hence, iff has its support contained inK, it follows that, for
eachj ∈ J ,

|uα,j(f)| ≤
m0
∑

m=1

∫

Ω

|f | d|νm
α,j | ≤

m0
∑

m=1

|νm
α,j|(Ω) · |f |∞,

from where we deduce thatuα,j is a Radon measure inΩ. Besides

‖uα,j‖(K) ≤
m0
∑

m=1

|νm
α,j |(Ω), j ∈ J,

and, ifh is an arbitrary positive number,

sup
α∈N

k
0

j∈J

h|α| M|α|‖uα,j‖(K) ≤
m0
∑

m=1

∑

α∈N
k
0

j∈J

h|α| M|α| |ν
m
α,j|(Ω) <∞.
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We take nowϕ in D{Mn}(Ω) with support inK. Then

〈ϕ, Sj〉 =
〈

ϕ

∞
∑

m=1

gm, Sj

〉

=
〈

ϕ

m0
∑

m=1

gm, Sj

〉

=

m0
∑

m=1

〈ϕ, gmSj〉 =

m0
∑

m=1

∑

α∈N
k
0

∫

Ω

Dαϕ · dνm
α,j

=
∑

α∈Nk
0

m0
∑

m=1

∫

Ω

Dαϕ · dνm
α,j =

∑

α∈Nk
0

〈Dαϕ, uα,j〉.

It is now easy to show that the last series converges absoluteand uniformly whenj varies inJ and whenϕ
varies in any given bounded subset ofD{Mn}(Ω). �

5 The space D
{Mn}
(Lp)

(Ω)

We putLp(Ω) andLp(Ω), 1 ≤ p ≤ ∞, to denote the classical Lebesgue spaces. Iff ∈ f̃ ∈ Lp(Ω),
1 ≤ p <∞, we write

‖f‖p = ‖f̃‖p =

( ∫

Ω

|f | dx

)
1

p

,

and iff ∈ f̃ ∈ L∞(Ω), then

‖f‖∞ = ‖f̃‖∞ = supess{ |f(x)| : x ∈ Ω }.

By DLp(Rk), 1 ≤ p < ∞, we represent the classical L. Schwartz space, [7, p. 199]. We putBLp(Ω) for
the linear space overC of the complex functionsf , defined and infinitely differentiable inΩ, such that
Dαf belongs toLp(Ω), α ∈ Nk

0 . We assume thatBLp(Ω) is endowed with the metrizable locally convex
topology such that a sequence(fm) in BLp(Ω) converges to the origin if and only if(‖Dαfm‖p) converges
to zero for everyα ∈ Nk

0 . We then have thatBLp(Ω) is a Fréchet space. We have thatBLp(Rk) coincides
with DLp(Rk).

Givenr ∈ N and1 ≤ p < ∞, we useB(Mn),r
Lp (Ω) to denote the linear space overC of the functionsf

in BLp(Ω) which satisfy:

‖f‖p,r := sup
α∈Nk

0

‖Dαf‖p

r|α| M|α|

<∞.

We assume thatB(Mn),r
Lp (Ω) is provided with the norm‖ · ‖p,r. Given a Cauchy sequence inB(Mn),r

Lp (Ω), it
is immediate that(fm) is also a Cauchy sequence inBLp(Ω), thus it converges in this space to a functionf .
For a givenε > 0, there is a positive integerm0 such that

‖fm − fs‖p,r < ε, m, s ≥ m0.

Then, for those values ofm ands, and for eachα ∈ Nk
0 , we have

‖Dαfm −Dαfs‖p

r|α| M|α|

< ε

and so, form ≥ m0,
‖Dαfm −Dαf‖p

r|α| M|α|

≤ ε,
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from where we deduce thatf ∈ B
(Mn),r
Lp (Ω) and

‖fm − f‖p,r ≤ ε, m > m0.

Consequently,B(Mn),r
Lp (Ω) is a Banach space. We put

B
{Mn}
Lp (Ω) :=

∞
⋃

r=1

B
(Mn),r
Lp (Ω)

and assume thatB{Mn}
Lp (Ω) is the inductive limit of the sequence

(

B
(Mn),r
Lp (Ω)

)

of Banach spaces. We

assume that the topological dualB
{Mn}′

Lp (Ω) of B{Mn}
Lp (Ω) is endowed with the strong topology.

In this section, we substitute the spaceX of Section2 by the spaceLp(Ω), 1 ≤ p < ∞. Then, each
element ofYr is a family( f̃α : α ∈ Nk

0 ) of elements ofLp(Ω) with

‖(f̃α)‖r = sup
α∈Nk

0

‖f̃α‖p

r|α| M|α|

<∞.

If f belongs toB{Mn}
Lp (Ω), we putD̃αf for the element ofLp(Ω) to whichDαf belongs,α ∈ Nk

0 .
By Zr we denote the subspace ofYr formed by those families( D̃αf : α ∈ Nk

0 ) such that

f ∈ B
(Mn),r
Lp (Ω).

Let
Xr : B

(Mn),r
Lp (Ω) −→ Zr

be such that
Xr(f) = (D̃αf), f ∈ B

(Mn),r
Lp (Ω).

Then,Xr is a linear onto isometry. ByZ we mean∪{Zr : r ∈ N } considered as a subspace ofY . Let

X : B
{Mn}
Lp (Ω) −→ Z

be such that
X (f) = (D̃αf), f ∈ B

{Mn}
Lp (Ω).

Clearly,X is linear bijective and continuous.
We putW for the mapX considered fromB{Mn}

Lp (Ω) into Y . By tW we denote the map fromY ′ into

B
{Mn}′

Lp (Ω) given by the transpose ofW .
Throughout what follows in this section, we fix1 ≤ p < ∞ and writeq for the conjugate value ofp,

i.e., 1
p + 1

q = 1.

Theorem 5. For eachj in a setJ , let ( gα,j : α ∈ Nk
0 ) be a family of elements ofLq(Ω) such that, for

eachh > 0,
sup

α∈N
k
0

j∈J

h|α| M|α| ‖gα,j‖q <∞.

Then there is a bounded subset{Sj : j ∈ J } in B
{Mn}′

Lp (Ω) so that

〈ϕ, Sj〉 =
∑

α∈Nk
0

∫

Ω

Dαϕ · gα,j dx, j ∈ J, ϕ ∈ B
{Mn}
Lp (Ω),

where the series converges absolutely and uniformly whenj varies inJ andϕ varies in any given bounded
subset ofB{Mn}

Lp (Ω).
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PROOF. We identify in the usual mannergα,j with a continuous linear functional onLp(Ω), whose norm
is ‖gα,j‖q. We apply Proposition4 to obtain, for eachj ∈ J , an elementuj in Y ′ such that its restriction
to Yα coincides withgα,j, α ∈ Nk

0 . Applying now Proposition2 we have that

〈

(f̃α), uj

〉

=
∑

α∈Nk
0

∫

Ω

fα · gα,j dx, fα ∈ f̃α, (f̃α) ∈ Y. (9)

Let us now fix a bounded subsetB of Y . We findr ∈ N such thatB is a bounded subset ofYr. We take
(f̃α) in B. It follows that

∑

α∈Nk
0

∣

∣

∣

∣

∫

Ω

fα · gα,j dx

∣

∣

∣

∣

≤
∑

α∈Nk
0

∫

Ω

|fα| · |gα,j | dx

≤
∑

α∈Nk
0

‖fα‖p · ‖gα,j‖q

=
∑

α∈Nk
0

1

(2k)|α|

‖fα‖p

r|α| M|α|

(2kr)|α| M|α| ‖gα,j‖q

≤ ‖(f̃α)‖r






sup

β∈N
k
0

j∈J

(2kr)|β| M|β| ‖gβ,j‖q







∑

α∈Nk
0

1

(2k)|α|
.

We deduce from here that the series (9) converges absolutely and uniformly whenj varies inJ and(f̃α)
varies inB. Besides,

sup
j∈J

(f̃α)∈B

∣

∣

∣〈(f̃α), uj〉
∣

∣

∣ <∞,

from where it follows that{ uj : j ∈ J } is a bounded subset ofY ′. We now write

Sj := tW (uj), j ∈ J.

Then{Sj : j ∈ J } is a bounded subset ofB{Mn}′

Lp (Ω). On the other hand, for eachϕ ∈ B
{Mn}
Lp (Ω), we

have that
〈

(D̃αϕ), uj

〉

=
〈

W (ϕ), uj

〉

=
〈

ϕ, tW (uj)
〉

=
〈

ϕ, Sj

〉

.

Consequently, for eachϕ ∈ B
{Mn}
Lp (Ω) and eachj ∈ J , we obtain, making use of (9), that

〈ϕ, Sj〉 =
〈

(D̃αϕ), uj

〉

=
∑

α∈N
k
0

∫

Ω

Dαϕ · gα,j dx.

Finally, whenϕ varies in a bounded subset ofB
{Mn}
Lp (Ω), (D̃αϕ) varies in a bounded subset ofY , from

where we deduce that the above series converges absolutely and uniformly whenj varies inJ andϕ varies
in any given bounded subset ofB

{Mn}
Lp (Ω). �

Given a compact subsetK of Ω and r ∈ N, we putD(Mn),r
(Lp) (K) for the subspace ofB(Mn),r

Lp (Ω)

whose elements have their support inK. If (fm) is a sequence inD(Mn),r
Lp (K) which converges tof

in B
(Mn),r
Lp (Ω), there is a subsequence(fmi

) of (fm) which converges tof almost everywhere. Since

fmi
(x) = 0, x ∈ Ω \K, i ∈ N, it follows thatf belongs toD(Mn),r

Lp (K) and thus this space is complete.
We write

D
{Mn}
(Lp) (K) :=

∞
⋃

r=1

D
(Mn),r
(Lp) (K)
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and we assume thatD{Mn}
Lp (K) is endowed with the structure of (LB) space, as the inductivelimit of

the sequence(D(Mn),r
(Lp) (K)) of Banach spaces. We writeD{Mn}′

(Lp) (K) for the strong topological dual of

D
{Mn}
(Lp) (K).

Proposition 10. The closed unit ballBr ofD(Mn),r
(Lp) (K) is a compact subset ofD(Mn),r+1

(Lp) (K).

PROOF. Letµ be the Lebesgue measure inRk. We assume the elementsf of D(Mn),r
(Lp) (K) extended toRk

settingf(x) = 0, x ∈ R
k \K. Givenα ∈ N

k
0 andf ∈ Br, we have that

Dαf(x) =

∫ x1

−∞

∫ x2

−∞

. . .

∫ xk

−∞

∂|α|+kf(t)

∂α1+1t1∂α2+1t2 . . . ∂αk+1tk
dt1 dt2 . . . dtk

and hence, ifβj := αj + 1, j = 1, 2, . . . ,k, we have that

|Dαf(x)| ≤

∫

K

|Dβf(t)| dt ≤ µ(K)1/q‖Dβf‖p

≤ µ(K)1/q‖f‖p,rr
|β| M|β| ≤ µ(K)1/q r|β| M|β|,

and so the set of functions{Dαf : f ∈ Br } is uniformly bounded inRk. Consequently, for eachγ ∈ Nk
0 ,

the set{Dγf : f ∈ Br } is equicontinuous, therefore, applying Ascoli’s theorem and a diagonal process,
given an arbitrary sequence(fm) in Br, there is a complex functionf , defined and infinitely differentiable
in R

k, and a subsequence(fmi
) of (fm) such that, for eachα ∈ N

k
0 , (Dαfmi

) converges uniformly aDαf
in Rk. Since, for eachα ∈ Nk

0 ,
‖Dαfmi

‖p

r|α| M|α|

≤ 1, i ∈ N,

it follows that
‖Dαf‖p

r|α| M|α|

≤ 1,

and thusf is in Br. We see next that(fmi
) converges tof in D

(Mn),r+1
(Lp) (K). Givenε > 0, we find a

positive integers0 such that
(

r

r + 1

)s0

<
ε

4
.

We determine a positive integeri0 such that

µ(K)1/p
∣

∣Dαfmi
(x) −Dαf(x)

∣

∣ <
ε

2
, x ∈ R

k, i ≥ i0, |α| ≤ s0.

Then, if i ≥ i0, we have

‖fmi
− f‖p,r+1 = sup

α∈Nk
0

‖Dαfmi
−Dαf‖p

(r + 1)|α| M|α|

≤ sup
|α|≤s0

‖Dαfmi
−Dαf‖p

(r + 1)|α| M|α|

+ sup
|α|>s0

‖Dαfmi
−Dαf‖p

(r + 1)|α| M|α|

≤ sup
|α|≤s0

sup
x∈Rk

µ(K)1/p|Dαfmi
(x) −Dαf(x)| + sup

|α|>s0

(

r

r + 1

)|α|
‖Dαfmi

−Dαf‖p

(r)|α| M|α|

≤
ε

2
+

(

r

r + 1

)s0

sup
|α|>s0

‖Dαfmi
‖p + ‖Dαf‖p

(r)|α| M|α|

≤
ε

2
+
ε

4
(‖fmi

‖p,r + ‖f‖p,r) ≤ ε.
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It then follows that(fmi
) converges tof in D

(Mn),r+1
(Lp) (K) and the result follows. �

For the next two propositions, we are going to fix a compact subsetK of Ω. Givenr ∈ N, letPr be the
subspace ofYr whose elements have the form(D̃αϕ), with ϕ ∈ D

(Mn),r
(Lp) (K). Let

ζr : D
(Mn),r
(Lp) (K) −→ Pr

be such that
ζr(ϕ) = (D̃αϕ), ϕ ∈ D

(Mn),r
(Lp) (K).

We have thatζr is a linear onto isometry. We putP := ∪{Pr : r ∈ N } and we consider it as a subspace
of Y . We then write

ζ : D
{Mn}
(Lp) (K) −→ P

such that
ζ(ϕ) = (D̃αϕ), ϕ ∈ D

{Mn}
(Lp) (K).

Clearly,ζ is linear bijective and continuous.

Proposition 11. ζ is a topological isomorphism.

PROOF. We take an absolutely convex closed and bounded subsetA of P . Applying Proposition1, we
obtainr ∈ N such thatA is a bounded subset ofPr. Thenζ−1

r (A) = ζ−1(A) is an absolutely convex

bounded subset ofD(Mn),r
(Lp) (K) which is closed inD{Mn}

(Lp) (K). Making use of the former proposition,

we obtain thatζ−1
r (A) is compact inD(Mn),r+1

(Lp) (K), from where we have thatA is a compact subset of
Pr+1. We apply Proposition6 to have thatP is the inductive limit of the sequence(Pr) of Banach spaces.
Consequently,ζ is a topological isomorphism. �

We now put

D
{Mn}
(Lp) (Ω) :=

∞
⋃

r=1

D
(Mn),r
(Lp) (Kr)

and assume thatD{Mn}
(Lp) (Ω) is the inductive limit of the sequence(D(Mn),r

(Lp) (Kr)) of Banach spaces. We

write D
{Mn}′

(Lp) (Ω) for the strong topological dual ofD{Mn}
(Lp) (Ω). It follows, from Proposition10, that

D
{Mn}′

(Lp) (Ω) is Fréchet-Schwartz space.

We now considerD{Mn}
(Lp) (K) as a subspace ofD{Mn}

(Lp) (Ω). If A is an absolutely convex closed bounded

subset ofD{Mn}
(Lp) (K), thenA is a bounded subset ofD{Mn}

(Lp) (Ω) and thus there is a positive integerm

such thatK ⊂ Kr andA is a relatively compact subset ofD(Mn),r
(Lp) (Kr). Clearly,D(Mn),r

(Lp) (K) is a closed

subspace ofD(Mn),r
(Lp) (Kr) andA is closed in the Banach spaceD(Mn),r

(Lp) (K), from where we conclude that

A is compact inD(Mn),r
(Lp) (K). We apply Proposition6 and so we obtain that the topology induced by

D
{Mn}
(Lp) (Ω) in D

{Mn}
(Lp) (K) coincides with the original topology of this space.

In the following, we putη for the mappingζ considered fromD{Mn}
(Lp) (K) into Y . Then, if tη is the

transpose ofη, we have that
tη : Y ′ −→ D

{Mn}′

(Lp) (K)

is an onto map.

Proposition 12. If {Sj : j ∈ J } is a bounded subset ofD{Mn}′

(Lp) (Ω), then there is, for eachj ∈ J , a

family ( gα,j : α ∈ Nk
0 ) of elements ofLq(Ω) such that, for eachh > 0,

sup
α∈N

k
0

j∈J

h|α| M|α|‖gα,j‖q <∞
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and

〈ϕ, Sj〉 =
∑

α∈Nk
0

∫

Ω

Dαϕ · gα,j dx, j ∈ J, ϕ ∈ D
{Mn}
(Lp) (K).

PROOF. LetS∗
j be the restriction ofSj toD

{Mn}
(Lp) (K). It follows that{S∗

j : j ∈ J } is a relatively compact

subset ofD{Mn}′

(Lp) (K). Applying [2, p. 274], we obtain a relatively compact subset{Tj : j ∈ J } of Y ′

such thattη(Tj) = S∗
j , j ∈ J . If (Tj)α is the element ofLq(Ω) which identifies with the restriction ofTj

to Y α, α ∈ Nk
0 , we obtain an elementgα,j in Lq(Ω) such that

〈ϕ̃, (Tj)α〉 =

∫

Ω

ϕ · gα,j dx, j ∈ J, ϕ ∈ ϕ̃ ∈ Lp(Ω).

Givenh > 0, we taker ∈ N, r > h. Making use of Proposition3 we obtain that

sup
α∈Nk

0
, j∈J

h|α| M|α|‖gα,j‖q <∞.

Having in mind Proposition2, we have, for each(f̃α) in Y andj ∈ J ,

〈

(f̃α), Tj

〉

=
∑

α∈Nk
0

∫

Ω

fα · gα,j dx, fα ∈ f̃α, α ∈ N
k
0 ,

and, in particular, ifϕ ∈ D
{Mn}
(Lp) (K), then

〈

(D̃αϕ), Tj

〉

=
∑

α∈Nk
0

∫

Ω

Dαϕ · gα,j dx

and besides
〈

(D̃αϕ), Tj

〉

=
〈

η(ϕ), Tj

〉

=
〈

ϕ,t η(Tj)
〉

=
〈

ϕ, S∗
j

〉

=
〈

ϕ, Sj

〉

,

from where the result follows. �

If g ∈ Lp1(Rk) andl ∈ Lp2(Rk), with 1 ≤ p1 ≤ ∞, 1 ≤ p2 ≤ ∞ and 1
p1

+ 1
p2

≥ 1, then there exists

almost everywhere the convolutiong ∗ l ∈ Ls(Rk), being1
s := 1

p1

+ 1
p2

− 1. Also having that

‖g ∗ l‖s ≤ ‖g‖p1
· ‖l‖p2

. (10)

This property will be used in the next proposition.

Proposition 13. The linear spaceD{Mn}(Ω) is dense inD{Mn}
(Lp) (Ω).

PROOF. We may assume that
◦

K1 6= ∅ andKs ⊂
◦

Ks+1, s ∈ N.
Given δ > 0, we putB(δ) for the closed ball inRk with center in the origin and radiusδ. We take

f ∈ D
{Mn}
(Lp) (Ω). We findr ∈ N such thatf ∈ D

(Mn),r
(Lp) (Kr). We choose a sequence(ψi) in E{Mn}(Rk)

satisfying

(i) ψi(x) ≥ 0, x ∈ Ω.

(ii)
∫

Ω ψi(x) dx = 1.

(iii) ψi ∈ D(Mn),r(B(δi)), δ1 > δ2 > · · · > δi > . . . ,

lim
i
δi = 0 andKr +B(δi) ⊂

◦

Kr+1.
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We considerf extended toRk by settingf(x) = 0, x ∈ Rk \ Ω. We putfi := f ∗ ψi, i ∈ N. We shall

see next that(fi) is a sequence inD(Mn),r+1(Kr+1) which converges tof in D
(Mn),r+1
(Lp) (Kr+1). For each

α ∈ Nk
0 , we have

Dαfi(x) =

∫

Rk

f(y)(Dαψi)(x− y) dy, x ∈ R
k,

from where we get thatfi belongs toD(Mn),r+1(Kr+1). We now takeε > 0, We find a positive integers0
such that

(

r

r + 1

)s0

‖f‖p,r <
ε

4
.

Givenα ∈ Nk
0 , we have that, for eachx ∈ Rk,

∣

∣Dαfi(x) −Dαf(x)
∣

∣ ≤

∫

Rk

∣

∣(Dαf)(x− y) −Dαf(x)
∣

∣ψi(y) dy

≤ sup{ |(Dαf)(x− y) −Dαf(x)| : y ∈ B(δi) }.

We findi0 ∈ N for which

|Dαfi(x) −Dαf(x)| <
ε

2µ(Kr+1)
, i ≥ i0, x ∈ R

k, |α| ≤ s0.

Then
‖Dαfi −Dαf‖p ≤

ε

2
, i ≥ i0.

We now apply (10) for p1 = p, p2 = 1, g = Dαf andl = ψi. Then

‖Dαfi‖p = ‖(Dαf) ∗ ψi‖p ≤ ‖Dαf‖p · ‖ψi‖1 = ‖Dαf‖p.

Consequently, fori ≥ i0, it follows that

‖f − fi‖p,r+1 = sup
α∈Nk

0

‖Dα(f − fi)‖p

(r + 1)|α| M|α|

≤ sup
|α|≤s0

‖Dα(f − fi)‖p

(r + 1)|α|M|α|

+ sup
|α|≥s0

‖Dα(f − fi)‖p

(r + 1)|α| M|α|

≤
ε

2
+ sup

|α|≥s0

(

r

r + 1

)|α|
‖Dαf‖p + ‖Dαfi‖p

(r)|α| M|α|

≤
ε

2
+

(

r

r + 1

)s0

sup
α∈Nk

0

2‖Dαf‖p

r|α| M|α|

< ε. �

The last proposition tells us that the elements ofD
{Mn}′

(Lp) (Ω) may be considered as ultradistributions. In
theorems7 and8, we shall characterize those ultradistributions.

We proceed now in a similar way to the construction previous to Theorem2. We take a bounded subset

{Sj : j ∈ J } in D
{Mn}′

(Lp) (Ω) in such a way that there is a compact subsetH of Ω with

suppSj ⊂ H, j ∈ J.

LetK be a compact subset ofΩ with H ⊂
◦

K. We apply Proposition12 to obtain, for eachj ∈ J , a family
( fα,j : α ∈ Nk

0 ) in Lq(Ω) such that, for eachh > 0,

sup
α∈Nk

0
, j∈J

h|α|M|α| · ‖fα,j‖q <∞
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and
〈

ϕ, Sj

〉

=
∑

α∈Nk
0

∫

Ω

Dαϕ · fα,j dx, j ∈ J, ϕ ∈ D
{Mn}
(Lp) (K).

We take an elementg of D{Mn}(Ω) which takes value one in a neighborhood ofH and whose support is

contained in
◦

K. We findb > 0 and a positive integers such that
∣

∣Dαg(x)
∣

∣ ≤ b s|α|M|α|, x ∈ Ω, α ∈ N
k
0 .

We takeϕ in B
{Mn}
Lp (Ω). It means no difficulty to see thatgϕ belongs toD{Mn}

(Lp) (K) and thus we have, for
eachj ∈ J ,

〈

gϕ, Sj

〉

=
∑

α∈Nk
0

∫

Ω

Dα(gϕ) · fα,j dx

=
∑

α∈Nk
0

∫

Ω

(

∑

β≤α

α!

β!(α− β)!
Dβg ·Dα−βϕ

)

· fα,j dx. (11)

We take now a positive integerm > s such thatϕ is in B
(Mn),m
Lp (Ω). We then have

∑

β≤α

α!

β!(α − β)!

∫

Ω

|Dβg| · |Dα−βϕ| · |fα,j| dx

≤
∑

β≤α

α!

β!(α− β)!
b s|β|M|β|‖D

α−βϕ‖p · ‖fα,j‖q

≤
∑

β≤α

α!

β!(α− β)!
b s|β|M|β|‖ϕ‖p,mm

|α−β|M|α−β|‖fα,j‖q

≤
∑

β≤α

α!

β!(α− β)!
b m|α|M|α|‖ϕ‖p,m‖fα,j‖q

= 2|α|b m|α|M|α|‖ϕ‖p,m‖fα,j‖q

≤ b ‖ϕ‖p,m
1

(2k)|α|
sup

δ∈Nk
0
, j∈J

(4km)|δ|M|δ|‖fδ,j‖q

from where we deduce that the series (11) is absolutely convergent, hence, puttingγ := α − β, we may
write

∑

α∈Nk
0

∑

β≤α

α!

β!(α − β)!

∫

Ω

Dβg ·Dα−βϕ · fα,j dx =
∑

γ∈Nk
0

∑

β∈Nk
0

(β + γ)!

β! γ!

∫

Ω

Dβg ·Dγϕ · fβ+γ,j dx. (12)

Theorem 6. Let{Sj : j ∈ J } be a bounded subset ofD{Mn}′

(Lp) (Ω) such that there is a compact subsetH

of Ω with
suppSj ⊂ H, j ∈ J.

LetK be a compact subset ofΩ such thatH ⊂
◦

K. Then there is, for eachj ∈ J , a family( gα,j : α ∈ Nk
0 )

of elements ofLq(Ω) such that, for eachh > 0, we have

sup
α∈N

k
0

j∈J

h|α|M|α|‖gα,j‖q <∞,

40



On the structure of certain ultradistributions

supp gα,j ⊂
◦

K, j ∈ J, α ∈ N
k
0 ,

and

〈ϕ, Sj〉 =
∑

α∈Nk
0

∫

Ω

Dαϕ · gα,j dx, j ∈ J, ϕ ∈ D
{Mn}
(Lp) (Ω),

where the series converges absolutely and uniformly whenj varies inJ andϕ varies in any given bounded
subset ofD{Mn}

(Lp) (Ω).

PROOF. For eachj ∈ J , we obtain the family( fα,j : α ∈ Nk
0 ) of elements ofLq(Ω) with the properties

cited above. We fixγ ∈ N
k
0 and takeρ ∈ ρ̃ ∈ Lq(Ω). Then

∣

∣

∣

∣

∣

∣

∑

β∈Nk
0

(β + γ)!

β!γ!

∫

Ω

Dβg · ρ · fβ,j dx

∣

∣

∣

∣

∣

∣

≤
∑

β∈Nk
0

(β + γ)!

β!γ!

∫

Ω

|Dβg| · |ρ| · |fβ+γ,j| dx

≤
∑

β∈Nk
0

(β + γ)!

β!γ!
b s|β|M|β|‖ρ‖p‖fβ+γ,j‖q

≤ b‖ρ‖p

∑

β∈Nk
0

2|β+γ|s|β|M|β|‖fβ+γ,j‖q

≤ b ‖ρ‖p

∑

β∈Nk
0

1

(2k)|β|
(4ks)|β+γ|M|β+γ|‖fβ+γ,j‖q

≤ b ‖ρ‖p

∑

β∈Nk
0

1

(2k)|β|
sup

α∈Nk
0
, j∈J

(4ks)|α|M|α|‖fα,j‖q

= 2 b ‖ρ‖p sup
α∈N

k
0

j∈J

(4ks)|α|M|α|‖fα,j‖q,

from where we deduce that there isC > 0 such that
∣

∣

∣

∣

∣

∣

∑

β∈Nk
0

(β + γ)!

β!γ!

∫

Ω

Dβg · ρ · fβ+γ,j dx

∣

∣

∣

∣

∣

∣

≤ C‖ρ‖p. (13)

If we put, for eachρ ∈ ρ̃ ∈ Lp(Ω),

vγ,j(ρ̃) :=
∑

β∈Nk
0

(β + γ)!

β!γ!

∫

Ω

Dβg · ρ · fβ+γ,j dx,

we have thatvγ,j is a complex function, clearly linear, such that, after (13), belongs toLq(Ω). Then, there
is gγ,j ∈ Lq(Ω) for which

vγ,j(ρ̃) =

∫

Ω

ρ · gγ,j dx, ρ ∈ ρ̃ ∈ Lp(Ω).

If M is the support ofg, it is plain that

supp gγ,j ⊂M ⊂
◦

K, j ∈ J, γ ∈ N
k
0 .

It follows that, for eachϕ ∈ B
{Mn}
Lp (Ω),

∑

β∈Nk
0

(β + γ)!

β! γ!

∫

Ω

Dβg ·Dγϕ · fβ+γ,j dx =

∫

Ω

Dγϕ · gγ,j dx
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and, having in mind (11),

〈gϕ, Sj〉 =
∑

γ∈Nk
0

∫

Ω

Dγϕ · gγ,j dx, ϕ ∈ B
{Mn}
Lp (Ω). (14)

We fix γ in Nk
0 andj in J . We choosẽρ in Lp(Ω) such that‖ρ̃‖p < 2 andvγ,j(ρ̃) = ‖gγ,j‖q. We take

h > 1. Then, ifρ ∈ ρ̃,

h|γ|M|γ|‖gγ,j‖q = h|γ|M|γ|vγ,j(ρ̃)

≤ h|γ|M|γ|

∣

∣

∣

∣

∣

∣

∑

β∈Nk
0

(β + γ)!

β! γ!

∫

Ω

Dβg · ρ · fβ+γ,j dx

∣

∣

∣

∣

∣

∣

≤ h|γ|M|γ|‖ρ̃‖p b
∑

β∈Nk
0

(β + γ)!

β! γ!
s|β|M|β|‖fβ+γ,j‖q

≤ 2 b
∑

β∈Nk
0

2|β+γ|(sh)|β+γ|M|β+γ|‖fβ+γ,j‖q

≤ 2 b
∑

β∈Nk
0

1

(2k)|β|
sup

α∈N
k
0

j∈J

(4ksh)|α|M|α|‖fα,j‖q

from where we deduce that
sup
γ∈N

k
0

j∈J

h|γ|M|γ|‖gγ,j‖q <∞.

We apply Theorem5 to obtain, for eachj ∈ J , an elementTj in B
{Mn}′

Lp (Ω) such that

〈ϕ, Tj〉 =
∑

α∈Nk
0

∫

Ω

Dαϕ · gα,j dx, ϕ ∈ B
{Mn}
Lp (Ω),

where the series converges absolutely and uniformly whenj varies inJ andϕ varies in any given bounded
subset ofB{Mn}

Lp (Ω). On the other hand, for eachϕ ∈ D
{Mn}
(Lp) (K) and eachj ∈ J ,

〈ϕ, Sj〉 = 〈g ϕ, Sj〉 =
∑

α∈Nk
0

∫

Ω

Dα(gϕ) · fα,j dx

=
∑

α∈Nk
0

∫

Ω

Dαϕ · gα,j dx = 〈ϕ, Tj〉.

Finally, it can be shown in the same way that it was done in the proof of Theorem2 thatSj andTj coincide

in D
{Mn}
(Lp) (Ω) for everyj ∈ J , so the result follows. �

We putLp
loc(Ω) for the linear space overC of the complex functionsf defined inΩ such that, for each

compact subsetK of Ω, f|K belongs toLq(K).

Theorem 7. For eachj in a setJ , let ( fα,j : α ∈ Nk
0 ) be a family of elements ofLq

loc(Ω) such that, for
eachh > 0 and each compact subsetK of Ω, we have that

sup
α∈N

k
0

j∈J

h|α|M|α|‖fα,j|K‖q <∞.
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Then, there is a bounded subset{Sj : j ∈ J } ofD{Mn}′

(Lp) (Ω) such that

〈

ϕ, Sj

〉

=
∑

α∈Nk
0

∫

Ω

Dαϕ · fα,j dx, j ∈ J, ϕ ∈ D
{Mn}
(Lp) (Ω),

where the series converges absolutely and uniformly whenj varies inJ andϕ varies in any given bounded
subset ofD{Mn}

(Lp) (Ω).

PROOF. For eachm ∈ N, we put

fm
α,j := f

α,j|
◦

Km

, α ∈ N
k
0 , j ∈ J.

It follows that, for eachh > 0,
sup

α∈N
k
0

j∈J

h|α|M|α|‖f
m
α,j‖q <∞.

We apply now Theorem5 to obtain a bounded subset{Sm
j : j ∈ J } of B{Mn}′

Lp (
◦

Km) such that

〈

ϕ, Sm
j

〉

=
∑

α∈Nk
0

∫

◦

Km

Dαϕ · fm
α,j dx, j ∈ J, ϕ ∈ B

{Mn}
Lp (

◦

Km),

where the series converges absolutely and uniformly whenj varies inJ andϕ varies in any given bounded

subset ofB{Mn}
Lp (

◦

Km).

Given an arbitrary elementϕ in D
{Mn}
(Lp) (Ω), we findm ∈ N such that

suppϕ ⊂
◦

Km

and we put
〈

ϕ, Sj

〉

:=
〈

ϕ, Sm
j

〉

.

It is easy to verify thatSj is well defined,j ∈ J , and that{Sj : j ∈ J } is a bounded subset ofD{Mn}′

(Ω),
which satisfies the statement of our theorem.�

Theorem 8. If {Sj : j ∈ J } is a bounded subset ofD{Mn}′

(Lp) (Ω), then there is, for eachj ∈ J , a family

( fα,j : α ∈ Nk
0 ) in Lq

loc(Ω) such that, for eachh > 0 and each compact subsetK of Ω, we have that

sup
α∈N

k
0

j∈J

h|α|M|α|‖fα,j|K‖q <∞

and

〈ϕ, Sj〉 =
∑

α∈Nk
0

∫

Ω

Dαϕ · fα,j dx, j ∈ J, ϕ ∈ D
{Mn}
(Lp) (Ω),

where the series converges absolutely and uniformly whenj varies inJ andϕ varies in any given bounded
subset ofD{Mn}

(Lp) (Ω).

PROOF. Let {Om : m ∈ N } be a locally finite open cover ofΩ such thatOm is relatively compact inΩ,
m ∈ N. Let { gm : m ∈ N } be a partition of unity of class{Mn} subordinated to that open cover. We then

have that{ gmSj : j ∈ J } is a bounded subset ofD{Mn}′

(Lp) (Ω) whose elements have their supports contained
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in a compact subset ofOm. We apply Theorem6 to obtain, for eachj ∈ J , a family ( fm
α,j : α ∈ Nk

0 ) of
elements ofLq(Ω) such that, for eachh > 0,

sup
α∈N

k
0

j∈J

h|α|M|α|‖f
m
α,j‖q <∞,

supp fm
α,j ⊂ Om, j ∈ J, α ∈ N

k
0 ,

and
〈

ϕ, gmSj

〉

=
∑

α∈N0

k

∫

Ω

Dαϕ · fm
α,j dx, j ∈ J, ϕ ∈ D

{Mn}
(Lp) (Ω),

where the series converges absolutely and uniformly whenj varies inJ andϕ varies in any given bounded
subset ofD{Mn}

(Lp) (Ω). We put, for eachx ∈ Ω, α ∈ Nk
0 andj ∈ J ,

fα,j(x) :=

∞
∑

m=1

fm
α,j(x).

If K is a compact subset ofΩ, there is a positive integerm0 such that

K ∩Om = ∅, m ≥ m0,

and hencefα,j is well defined and belongs toLq
loc(Ω). Besides, we have

‖fα,j|K‖q ≤
m0
∑

m=1

‖fm
α,j|K‖q ≤

m0
∑

m=1

‖fm
α,j‖q

and thus, givenh > 0, it follows that

sup
α∈Nk

0
, j∈J

h|α|M|α|‖fα,j|K‖q <∞.

Applying now Theorem7, we obtain a bounded subset{Tj : j ∈ J } of D{Mn}′

(Lp) (Ω) such that

〈

ϕ, Tj

〉

=
∑

α∈Nk
0

∫

Ω

Dαϕ · fα,j dx, j ∈ J, ϕ ∈ D
{Mn}
(Lp) (Ω),

where the series converges absolutely and uniformly whenj varies inJ andϕ varies in any given bounded
subset ofD{Mn}

(Lp) (Ω).

We now chooseϕ ∈ D
{Mn}
(Lp) (Ω). We findm0 ∈ N such that

Om ∩ suppϕ = ∅, m > m0.

Then

〈

ϕ, Tj

〉

=
∑

α∈Nk
0

∫

Ω

Dαϕ · fα,j dx =
∑

α∈Nk
0

m0
∑

m=1

∫

Ω

Dαϕ · fm
α,j dx

=

m0
∑

m=1

∑

α∈N
k
0

∫

Ω

Dαϕ · fm
α,j dx =

m0
∑

m=1

〈ϕ, gmSj〉 =
〈

m0
∑

m=1

ϕ · gm, Sj

〉

= 〈ϕ, Sj〉.

Consequently,Sj = Tj, j ∈ J , and the result now follows. �

From this and up to the end of this section we shall assume thatthe sequenceMn, n ∈ N, satisfies
condition (3), that is, it is stable for differential operators.
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Proposition 14. The canonical injection fromD{Mn}(Ω) intoD
{Mn}
(L1) (Ω) is a topological isomorphism.

PROOF. Clearly,

ζ : D{Mn}(Ω) −→ D
{Mn}
(L1) (Ω)

such that
ζ(f) = f, f ∈ D{Mn}(Ω)

is well defined, linear and continuous.
It is immediate that there areb > 0 andl > 0 for which

Mn+k ≤ b ln Mn, n ∈ N0.

We now take an arbitrary elementϕ ∈ D
{Mn}
(L1) (Ω). We extendϕ to Rk by puttingϕ(x) = 0, x ∈ Rk \ Ω.

We findr ∈ N such thatϕ is in D
{Mn},r
(L1) (Rk). Givenα ∈ Nk

0 andx ∈ Rk, we have

Dαϕ(x) =

∫ x1

−∞

∫ x2

−∞

. . .

∫ xk

−∞

∂|α|+kϕ(t)

∂α1+1t1 ∂α2+1t2 . . . ∂αk+1tk
dt1 dt2 . . . dtk

and thus

∣

∣Dαϕ(x)
∣

∣ ≤

∫

Kr

∣

∣

∣

∣

∂|α|+kϕ(t)

∂tα1+1
1 ∂tα2+1

2 . . . ∂tαk+1
k

∣

∣

∣

∣

dt

≤ ‖ϕ‖1,r · r
|α|+kM|α|+k

≤ ‖ϕ‖1,rr
|α|+k b l|α|M|α|,

from where we deduce that, ifs is an integer greater thanrl,

sup
α∈Nk

0

sup
x∈Kr

|Dαϕ(x)|

s|α|M|α|

≤ ‖ϕ‖1,r r
k b

and so
ϕ ∈ D(Mn),s(Kr) ⊂ D{Mn}(Ω).

It follows thatζ is onto. Applying now Grothendieck’s theorem, [1, p. 17], the result follows. �

Theorem 9. If {Sj : j ∈ J } is a bounded subset ofD{Mn}′

(Ω), then there is, for eachj ∈ J , a family
( fα,j : α ∈ Nk

0 ) of elements ofL∞
loc(Ω) such that, for eachh > 0 and each compact subsetK of Ω, we

have that
sup

α∈Nk
0
, j∈J

h|α|M|α||fα,j |K,∞ <∞

and

〈ϕ, Sj〉 =
∑

α∈Nk
0

∫

Ω

Dαϕ · fα,j dx, j ∈ J, ϕ ∈ D{Mn}(Ω),

where the series converges absolutely and uniformly whenj varies inJ andϕ varies in any given bounded
subset ofD{Mn}(Ω).

PROOF. It is an immediate consequence of the former proposition and Theorem8. �
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6 The space D
{Mn}
Lp (Ω)

We shall use in this section the same notation as in the previous one. In particular,1 ≤ p <∞ andq is the
conjugate element ofp.

For eachr ∈ N, we putD(Mn),r
Lp (Ω) for the Banach space given by the closure of∪∞

m=1D
(Mn),r
Lp (Km)

in B
(Mn),r
Lp (Ω). We put

D
{Mn}
Lp (Ω) :=

∞
⋃

r=1

D
(Mn),r
Lp (Ω)

and we assume thatD{Mn}
Lp (Ω) is provided with the structure of(LB)-space as the inductive limit of the se-

quence
(

D
(Mn),r
Lp (Ω)

)

of Banach spaces. We putD{Mn}′

Lp (Ω) for the strong topological dual ofD{Mn}
Lp (Ω).

It is immediate that the canonical injection fromD{Mn}(Ω) into D
{Mn}
Lp (Ω) is continuous, therefore we

may consider the elements ofD
{Mn}′

Lp (Ω) as ultradistributions. We shall characterize later these ultradistri-
butions for the casep > 1.

We writeQr for the subspace ofZr formed by those families( D̃αf : α ∈ Nk
0 ) such thatf ∈

D
{Mn}
Lp (Ω). Let

τr : D
(Mn),r
Lp (Ω) −→ Qr

be such that
τr(f) = (D̃αf), f ∈ D(Mn),r(Ω).

Thenτr is an onto linear isometry. We putQ to denote∪{Qr : r ∈ N } considering it as a subspace ofY .
Let

τ : D
{Mn}
Lp (Ω) −→ Q

be such that
τ(f) = (D̃αf), f ∈ D

{Mn}
Lp (Ω).

Clearly,τ is linear bijective and continuous. We putλ for the mapτ considered fromD{Mn}
Lp (Ω) into Y .

By tλ we mean as usual the transpose map ofλ.

Theorem 10. For eachj of a setJ , let ( gα,j : α ∈ Nk
0 ) be a family of elements ofLq(Ω) such that, for

eachh > 0,
sup

α∈N
k
0

j∈J

h|α|M|α|‖gα,j‖q <∞.

Then there is a bounded subset{Sj : j ∈ J } ofD{Mn}′

Lp (Ω) such that

〈

ϕ, Sj

〉

=
∑

α∈Nk
0

∫

Ω

Dαϕ · gα,j dx, j ∈ J, ϕ ∈ D
{Mn}
Lp (Ω),

where the series converges absolutely and uniformly whenj varies inJ andϕ varies in any given bounded
subset ofD{Mn}

Lp (Ω).

PROOF. It is analogous to the proof of Theorem5, just replacingB{Mn}
Lp (Ω) byD{Mn}

Lp (Ω). �

If 1 < p, we apply Proposition7 to obtain thatQr is reflexive,r ∈ N. After Proposition5, Q with the
Mackey topology is an(LB)-space. It follows from this that

tλ : Y ′ −→ D
{Mn}′

Lp (Ω)

is an onto map.
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Theorem 11. If p > 1 and {Sj : j ∈ J } is a bounded subset ofD{Mn}′

Lp (Ω), then there is, for each
j ∈ J , a family

(

gα,j : α ∈ Nk
0

)

of elements ofLq(Ω) such that, for eachh > 0,

sup
α∈N

k
0

j∈J

h|α|M|α|‖gα,j‖q <∞

and
〈

ϕ, Sj

〉

=
∑

α∈Nk
0

∫

Ω

Dαϕ · gα,j dx, j ∈ J, ϕ ∈ D
{Mn}
Lp (Ω).

where the series converges absolutely and uniformly whenj varies inJ andϕ varies in any given bounded
subset ofD{Mn}

Lp (Ω).

PROOF. We apply [2, p. 274] and so obtain a relatively compact infinite subset{Tj : j ∈ J } of Y ′

such thattλ(Tj) = Sj . If (Tj)α is the element ofLq(Ω) which identifies with the restriction ofTj to Y α,
α ∈ Nk

0 , we obtain an elementgα,j in Lq(Ω) such that

〈

ϕ̃, (Tj)α

〉

=

∫

Ω

ϕ · gα,j dx, j ∈ J, ϕ ∈ ϕ̃ ∈ Lp(Ω).

Givenh > 0, we taker in N such thatr > h. From Proposition3, we obtain that

sup
α∈N

k
0

j∈J

h|α|M|α|‖gα,j‖q <∞.

Having in mind Proposition2, it follows that, for each(f̃α) in Y andj ∈ J ,

〈

(f̃α), Tj

〉

=
∑

α∈Nk
0

∫

Ω

fα · gα,j dx, fα ∈ f̃α, α ∈ N
k
0 ,

and, in particular, ifϕ is in D
{Mn}
(Lp) (Ω), then

〈

(D̃αϕ), Tj

〉

=
∑

α∈Nk
0

∫

Ω

Dαϕ · gα,j dx

and besides
〈

(D̃αϕ), Tj

〉

=
〈

λ(ϕ), Tj

〉

=
〈

ϕ,t λ(Tj)
〉

=
〈

ϕ, Sj

〉

.

The result now follows without difficulty. �
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[7] SCHWARTZ, L., (1966).Théorie des distributions, Hermann, Paris.

Manuel Valdivia
Departamento de Análisis Matemático,
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