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On the structure of certain ultradistributions

Manuel Valdivia

Abstract. LetQ be a nonempty open subset of thelimensional euclidean spaBé’. In this paper we

show that, ifS is an ultradistribution irf2, belonging to a class of Roumieu type stable under diffeaknt
operators, then there is a famify, a € N§, of elements ofZ:°. () such thatS is represented in the
form Zaeng D<f.. Some other results on the structure of certain ultradistions of Roumieu type are

also given.
Sobre la estructura de ciertas ultradistribuciones

Resumen. Sea) un subconjunto abierto no vacio del espacio euclideimensionalR*. En este
trabajo demostramos queSies una ultradistribucion e, perteneciente a una clase de tipo Roumieu
estable bajo operadores diferenciales, entonces exiattamilia f.,, o € N§, de elementos d&,(Q)

tal queS se representa en la fO”‘EaeNg D<f.. También se dan otros resultados sobre la estructura de

ciertas ultradistribuciones de tipo Roumieu.

1 Introduction and notation

Throughoutthis paper all linear spaces are assumed to eedefver the field of complex numbers. We
write N for the set of positive integers and By we mean the set of nonnegative integers.

If E is alocally convex spacé;’ will be its topological dual and- , -) will denote the standard duality
betweenE andE’. o(E’, E) denotes the weak topology i’ and3(E’, E) is the strong topology ik’
E" stands for the topological dual d’ [3(E’, E)]. We identify in the usual manndt with a linear
subspace oE”. We represent by(E, E’) the topology inE' given by the uniform convergence on every
compact absolutely convex subseti®f[3(E’, E)]. If A is a closed bounded absolutely convex subset
of E, we write /4 to denote the normed space given by the linear spat iof £, with A as closed unit
ball.We say that a subsé&t of E is locally compact (weakly compact) whenever there is astldsounded
absolutely convex subset of I/ such thatB is contained inF4 and it is a compact (weakly compact)
subset in this space.

Given a Banach spacg, B(X) denotes its closed unit ball add* is the Banach space conjugate’of

Given a positive integek, if o := (a1, as, ..., ax) is a multindex of ordek, i.e., an element ai%,
we put|«| for its length, that isja| = oy + g + - - + ay, anda! := aqlas! - - agl.

Given a complex functiorf, defined in the points = (x1,xs,...,2x) of an open subsed of the
k-dimensional euclidean space, which is infinitely diffaieble, we write

dlel f ()

D“ = k.
f@) o1 Oz ... Oxpr’ re0, acly
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We take a sequence of positive numbgfg, M, ..., M,, ...satisfying the following conditions:
1. My =1.

2. Logarithmic convexity:
M72L S MnfanJrla n € N.

3. Non quasi-analiticity:

Mnfl

— < Q.
MTL

n=1

We consider an open subgeif R*. We shall say that a complex functigndefined and infinitely differ-
entiable inQ is ultradifferentiableof class{ M., } if, given an arbitrary compact subskt of (2, there exist
C > 0 andh > 0 such that

| D f ()] §C’h|“‘M‘a|, r €K, acNE

We put€iM=}(Q) to denote the linear space ov@of all the ultradifferentiable complex functions of class
{M,,}. We write D{M=}(Q) to mean the linear subspaceff*} (2) formed by those functions that have
compact support.
Givenh > 0 and a compact subsét of 2, by DM=):-"(K') we denote the linear space ovmof the
complex functions, defined and infinitely differentiable if?, with support ink’, such that
[D*f ()]

|f]n := sup sup ——— < x©
aeNk zeQ hla‘MW\

We assume thad(M~)-"(K) is endowed with the norrn | ,.
We take now a fundamental system of compact subseis of

KiC KeC---CKp, C---

We have that -
DM Q) = | DMM(E).
m=1

We considerD{M»}(Q) as the inductive limit of the sequen¢®M~)-"(K,,)) of Banach spaces. The
elements of the topological duBt ™~} (Q)) of DM~} (Q) are calledultradistributionsin € of the Roumieu
type. We assume th@{ M-}’ (Q) is endowed with the strong topology.

By IC(€2) we represent the linear space o@of the complex functions defined continuous and with
compact support if. If K is a compact subset 61, we usek(K) to denote the linear subspace/of(?)
formed by those functions with support containedsinFor f in IC(K'), we put

|floo := suplf(z)].
zEQ

We assuméeC(K) is provided with the norm- |.. We shall considefC(€2) as the inductive limit of the
sequence of Banach spa¢&q K,,,)). A Radon measurein Q is an element of the topological dugl(2)
of £(€2). Given a Radon measutein 2 and a compact subséf of 2, we write ||u||(K) to indicate the
norm of the restriction of: to the Banach spadé(K).

We useL{s.(Q2) to denote the linear space overformed by the complex functions defined and
Lebesgue measurable §a which are essentially bounded in each compact subsgt oGiven a com-
pact subsef of Q and f € L{?.(2), we put|f|x - to denote the essential supremumfoin K, that
is,

|flr 00 :=supess{ |f(z)| : = € K }.
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On the structure of certain ultradistributions

In the usual way, we shall consider the element§f(2) as distributions irf2.

In[4] and [5], a theorem on the structure of ultradistributions is giwdrich we can state in the following
way:
Result a) Letu,, o € NE, be a family of Radon measuresitf such that, for eacth > 0 and each
compact subsek’ of R*, we have that

sup h‘o‘lM‘a|||uaH(K) < 00. (1)
aENg
Then the formula
S = Z D%u, (2)
a€eNg

defines an element &7t~} (R¥). Conversely, each ultradistributia$i of D{*~}'(R¥) may be written in
the form of(2) for a familyu,,, o € N§, of Radon measures R* satisfying conditior{1).

In [3], certain objections to the method of proof used by Roumdeahtain resulta) are indicated
and therefore the result is left as an open question. Thikdedatsu to obtain resulg) for ultradistribu-
tions inQ2 under the additional assumption for the converse part tieatkass{ M,, } of ultradifferentiable
functions in) be stable for differential operators, that is, there edist 0 and L > 0 such that

M7L+1 <A LnM'm n € No. (3)

In this paper, in the first place, we give proof of the Roumiamatsu result with no need of conditioB) (
i.e., we recover resule). On the other hand, the method used to achieve this resulbaviised later to
obtain the main result of this paper, which has as a particalse the following:

Result b) If M,,, n € Ny, satisfies conditio(B), then, givers in D1M=}' (Q), there is a familyf,,, a € Nk,
of elements of£%° (€2) such that, for each compact subgétof 2 andh > 0, we have that

loc

sup h‘alM\a||fa|K,oo < 00
aeNk

and

S=Y Dfa,

S\

where the series is absolutely and uniformly convergenwenyebounded subset Bt} (().

2 Basic constructions

Let X be a Banach space. We ube|| to denote its norm and also for the normXf. Givenr € N and
a € NE, we put, for each € X,

[l =

We write X, , for the linear spacé with the norm - |,. ., andX* , for the conjugate o¥,. ,. The norm
of X, will be denoted by - |.. .. Clearly, ifu belongs toX*, then

|u|r,a = T‘alM\al ”u”

We represent by, the linear space ovét formed by the familieg z,, : a € N% ) of elements ofX, which
we shall simply denote b, ), such that
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We endowY,. with the norm of| - ||,.. It follows thatY, C Y,.; and that the canonical injection frol}
into Y;.11 is continuous. We writ&” for the inductive limit of the sequence of Banach spddés.
Let (x,) be an element of and let3 be inNf, we define

xg, ifa=p,
0, ifa#p

ol =

Clearly, if (z,) isin Y,., then(z?) belongs toy,. and

12l < (@)l

For fixedr € N andg € N§, we putY;? to denote the subspaceXjf formed by those elements., ) which
satisfy thatr,, = 0 whena # 3. Then

(B2 l|lzs]]
| (xa) |l = sup =
T ey Tl My P Mg

= |x|hﬁa
and thusy,? is isometric taX,,. 5. On the other hand, if we denote by’ the subspace df whose elements
(z,) satisfy thatz, = 0 whena # 3, thenY ? is topologically isomorphic to .

We assume that” is provided with the strong topology. I.* is the Banach space given by the
conjugate ofY;., then the projective limit of the sequence of Banach spét¢s is a Fréchet space which
coincides withY”’. SettingU.. to be the polar set ofB(Y;.) in Y”, it follows thatU,., r € N, is a fundamental
system of zero neighborhoods¥f. If we consider a bounded subgétof Y, its polar setB° in Y’ is a
zero neighborhood in this space and so there s N such thatB° > U,, henceB is contained in the
closure ofsB(Y;) inY.

Proposition 1. The following properties hold:
1. Foreachr in N, B(Y;) is a closed subset &f.

2. If Bis a bounded subset af, there isr € N such thatB is contained inY;. and it is a bounded
subset of this space.

PROOF 1. We takev € X* andj € NE. Letu be the linear functional ol such that

u((za)) = (xg,v),  (2a) €Y

Givens € N and(z,,) € Y;, we have

T
fu(@a))| = (25,00 < ]l - [loll = ﬁsﬁ'wlvll < (8171 Mg lol) I a)lls

and sou belongs tay”.
We take a ne{ z,,; : j € J, >} in B(Y,) which converges tdz,) in Y. We fix 3 € Nt and take
v € X*. Letw be the element of’ such that

<(yoc)7w> = <yﬁ7U>7 (ya) ey.

Then

0 =lim((zo — Ta,j), w) = lim(rg — 255, v)
J J

andthusthe neftzs ; : j € J, > } converges weakly tog in X. Given that

lz,4l a5l
= < sup — =
B Mg~ qent 1My

|z6,5lr. = [(@a, )l <1,
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On the structure of certain ultradistributions

it follows that|z 3|, g < 1, from where we deduce that

o]l
sup |x =sup ———— < 1
aeNg| alro aENE rla‘Mla\

and hencéz,,) is an element o’ that belongs ta3(Y;.).
2. We know there i3 € N such thatB is contained in the closure of3(Y;.) in Y. Making use of part
the result follows. W

If v is an arbitrary element af”’, we put, for eachr € N,
[ull ) := sup{ [{(za), w)| : (za) € B(Yr) }.

For everyu € Y’ and every3 € NE, we identify in a natural manner the restrictionwofo Y with an
elementus of X*.

Proposition 2. Foru € Y’ andr € N, we have

sup 1M g el < Nlullg

a€eN 0

and

(@a)yu) = > (Tartia),  (za) €Y.

a€eNE
PrOOF  We fix 3 € N§. We then have that

[ullry = sup{ [{(za), w)| : (za) € B(Y:) }
> sup{ [{(z0), w)! : (x ) B(Y:)}

= sup{ [(zg, up)| : (o) € B(Yr) }
= |uglrp
= I/ Mg |ug|

from where

sup 71 Mo [[ual| < ullr)

aeN 0
Let us now takéz,,) in Y, and we see that the familyz?) : 3 € N§) is summable tdz,,) in Y for every
integers > 2r. Given an arbitrary; € N, we have that

|za) = 3 ()

[8]<q
1
B 1 N
la|>q (2r)1*1 M4 \a|>q2“ 1ol M)q
< asup Wl Ly

- 24 EN;‘ T‘alM‘

and the conclusion is obtained. It then follows thafgif,) is any element ot”, we have that, in this space,

(€a) = Y (a2)

BENE

and thus
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Proposition 3. If M is a bounded subset & andr € N, then

sup rla‘M|a‘||ua|| < 00.
aEN(If
ueM

ProoOE We have that
U:={veY': o[y <1}

is a zero neighborhood ili’, hence there is > 0 such thabM C U. If u € M, then|u||(,) < b~' and,
after the previous proposition, the result follows B

Proposition 4. If (2, : a € N£) is a family of elements of * such that, for each > 0,

sup h‘o‘lM‘a|||za|| < 0,
a€eNg

then there is a unique elemenbf Y’ for whichu, = 24, a € N{%.

PrRoOR  We fix 3 € N§, r € Nand(z,) € Y,.. Then

s
2001 < Nl -Izsll = G ag (26" Miai 261

1
lal
< gyt | @a)ll- ;;1%(%7") Miq[lza]
and consequently
N 1
> s 200 < @)l sup () Miay2all Y-
Senk a€ENf BENE

= (2 sup (2k1)* Mig 20} - (@)l

aENg
from where it follows that the complex functiandefined inY” such that
u((zq)) = Z (Tas Za), (2q) €Y,
aeNg
which is clearly linear, is also continuous. After Propiosit2, we have that

<(aca),u) = Z <xa7ua>7 (33@) cY.

aeNg

We fix 3 € NE and take an arbitrary element € X. Then, ifz? := 0, a # 3, and:cg = x3, we have

that
<$5,Uﬁ> = <($§),u> = Z <$§,Za> = <x5725>
aeNk

and soug = zg, 3 € N§. The uniqueness of follows from the density inY” of the linear span of
WYP: peNt}l ®

Proposition 5. Let E' be a locally convex space such that[3(E’, E)] is a Frechet space. Lek be
a linear subspace of’ such that each closed bounded absolutely convex subgéti@focally weakly
compact, ther¥ is closed inE” [o(E"”, E')] and, provided with the Mackey topologyF, F’), it is an
(LB)-space.
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PROOFE Letw be a linear functional o', which is bounded on every bounded subsef'ofLet A be a
closed bounded absolutely convex subsdi6fo(E”, E')]. We find a subset/ of F, closed bounded and
absolutely convex, such thdt F' is contained inFy, and it is weakly compact in this space. Consequently,
AN Fis weakly compactirt” [o(E"”, E’)] and sov—1(0) N A is weakly compactirt” [o(E", E")]. We
apply Krein-Smulyan’s theorem2[p. 246], and we have that 1 (0) is closed inE” [o(E", E")]. ThusF’

is closed inE” [oc(E”, E')] andv is continuous inF'. The result now is clear. B

Proposition 6. Let £ be a locally convex space such that[3(E’, E)] is a Frechet space. IF' is a
subspace of7 such that every closed bounded absolutely convex subgétlocally compact, thei,
with the topology induced y(E, E') is an (L B)-space.

PROOF  We apply the former proposition and obtain thgju.(F, F’)] is an(L B)-space and is closed in
E" [o(E",E")]. Let F* stand for the subspace Bf orthogonal toF. Lete) be the canonical mapping from
E’ontoE'/F+. Every closed bounded absolutely convex subsétisflocally compacting” [o(E”, E')],
from where we have that’ [3(E’, E)]/F* is a Fréchet-Montel space and thus", F’) = p(F, E'/F*).
We now consider a closed absolutely convex zero neighbarbom F. Let U° be the polar ofU in
E'/F+. 1t follows thatU° is compact inE’ [3(E’, E)]/F+, hence we may find a compact absolutely
convex subseP of E' [3(E’, E)] such that)(P) = U°, [2, p. 274]. If P° is the polar set oP in E, we
have thatP° N ' = U, and the result follows. B

Proposition 7. If X is reflexive, thery” is weakly locally compact.

PROOF  Given a positive integet, we take a sequence,, ) =1,2,...in B(Y;). For eachy of N,

the sequence, ., m = 1,2, ..., belongs taB(X, ), hence we may fmd by means of a diagonal process
a subsequendg/,.,m), m = 1, 2, oo Of (Ta,m) such that, for each. € NE, the sequence, .., m = 1,

2, ..., converges weakly i, ., to an elemeny, which will clearly lie in B(Xm). We deduce then that
(yo) € B(Y,). We take now an integer > 2r and we show thaty.,) converges weakly t¢y,) in Y.

In the proof of Propositio2, we saw that, givef,, ) in Y, andg € N, we have that

|@a) = > @i

[B1<q

1

< @)l

Thus, givere > 0, we findgy € N such thatl /2% < ¢/4. Then

|wa) = > )

18]1<q0

(Wa)llr < =

1
< 5l
4

s 240

and, if(y3 ,,,) is the element of” such thay? ,, = 0, if a # 3, andy} ,, = yg.m, it follows that

1 €
|Gy = 32 020, < 551Gl < 2
[81<q0
We now takeu in B(Y.*). We findmg € N such that
9
Z ‘((yg)_(ygm)au>‘ < 57 m 2> mg.
[81<q0

Then, for those values of,, we have that

|<(ya) - (ya,m)vu>| (Ya) — (ya,m) + Z <(y§,'m) - Z | ya ya m >|

[B1<q0 [B1<q0
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< (o) = D2 @)+ [(am) = 3 W) 0]+ 5

181<aq0 1B1<qo0

< @)= X @)+ | wam) = D Wi 3

[B1<q0 [B1<q0

<E.

We obtain from here thaB(Y;.) is a weakly compact subset Bf and the result follows. W

{M}
3 Thespace & ()
Givenh > 0, we denote bf(()Mn)’h(Q) the linear space ovelr of the complex functiong’, defined and
infinitely differentiable inQ2, which vanish at infinity and so do each of its derivativesrof arder, that is,
givens € NE ande > 0, there is a compact subsktof 2 such that

|IDPf(z)] <&, x€Q\K.
On the other handf, also satisfies that thereds > 0 such that
|Df(z)| < Chl*M,, 2€Q, aeN.

We put
|Df(z)]
|f|n := sup sup ———+
aenk ze@ Rl My

and assume théth”)’h(Q) is provided with the norm- |;,. We write

&M @)= {J &M@

m=1

and consideﬁéM”} (©2) as the inductive limit of the sequen(@éM”)””(Q)) of Banach spaces. We assume

that the topological duaﬂ(‘;‘M"‘}/ () of €§M"} (€) is endowed with the strong topology.
We putCy(Q2) for the linear space ovél of the complex functiong which are defined and continuous
in © and vanish at infinity. We write

| floo == supl|f(z)|

zeQ
and assume thai, (?) is provided with the nornfi- | .

In this section, we substitute the spaXeof the previous section b/ (£2). Then, each element af.
is a family ( f,, : a € N£ ) of elements of2y(Q2) such that

”(fa)”r 1= sup |fa|oo

(a7
aent T M|y

< 00.

We denote by, the subspace df,. formed by those familie6 D f : « € N} ) such that
fe &M@,

Let
o, M Q) — W,

be such that [V
e.(f)=(D°f),  Fe&MT(Q.
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On the structure of certain ultradistributions

Then,®,. is an onto linear isometry. We ptit’ for U{ W,. : » € N } and we considelV as a subspace of
Y. Let
o MM Q) —w

be such that "
o(f) = (D°f),  fe&@).
Clearly,® is a continuous one-to-one and onto linear map.

Theorem 1. For eachj of a certain set/, let (pu,,; : « € N§ ) a family of complex Borel measurestn
such that, for each > 0,
sup hll Mq [ta,5](52) < o0,

acNE
jeJ

Then, there is a bounded subge; : j € J}in 50{1%}'(9) such that

(.80 = /QD“@dua,j, jed, pe&i™@),

aeNg

where the series converges absolutely and uniformly whamies inJ andy belongs to any given bounded
subset oEéM"} Q).

PROOF We consider each,, ; as a linear functional o€ (2) by means of the duality

(@ fag) = /Q editay, o e Col).

Then, the norm of this linear functionaljig.;|(€2). We apply Propositiod and obtain, for every € J, an
elementu; in Y’ such that its restriction t,, coincides withi, j, a € N’g. Making use of PropositioA
we obtain that

() = 3 / fodpay,  (fa) €Y. (4)

a€eNg

We fix now a bounded subs& of Y. We findr € N such thatB is a bounded subset &7.. We take(f,)

in B. It follows that
/ for i
Q

>

aGNg’

< Z /Q|fo¢|d|:ua,j|

aGNg’

< Z |fa|oo|,ua7]'|(ﬂ)

aeNg
L [fals .
= X e s R Ml o ()
aeNg la|
1
< |l fall | sup k)1 Miglus,51(Q) | D mar
BENG - (2k)
jel aENE

We deduce from this that the series #) €onverges absolutely and uniformly wheraries inJ and( f,,)
varies inB. Besides
sup  [((fa), u;)] < oo,
jeJ
(fa)eB
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from where we get thafu; : j € J} is a bounded subset &f'. If ¢ is the map® considered from
€§M"}(Q) into Y, and’ is the transpose af, we put

Sj = t’(ﬂ(uj‘), jed

Then{S; : j € J}is a bounded subset 6ﬁM"}'(Q). On the other hand, for each € 5{){M"}(Q), we
have that

(DY), uj) = (Y(p),u;) = (9, Y(uy)) = (¥, 5;).

Consequently, for each EéM”}(Q) andj € J, making use of4), we obtain

(@, 8) = (D*¢),u) = > /QD‘*cpdua,m

aGN’U"

Finally, wheny varies in a bounded subsetbéM”}(Q), (D“¢) varies in a bounded subset Bf from
where we deduce that the series above converges absolutelyndormly whenj varies inJ andy belongs

to any given bounded subset&ﬁM"} (). N

We shall need later the following result which is found & . 42]:

Result c) Let K be a compact subset 6f. If 0 < h < h’ < oo, then the canonical injection from
DMk () into DAM)M (K) is a compact map.

For each compact subsktof €2, we put
D{Mw,}(K) — U ’D(Mn)v"'(K)
r=1

and assume thaD{M-}(K) is provided with the structure ofLB)-space as the inductive limit of the
sequencéDM»)."(K)) of Banach spaces. BR{M~}'(K') we denote the strong dual f M~} (K).

For the two next propositions, we fix a compact sulisetif 2. Givenr € N, let V,. be the subspace of
Y whose elements have the fo(®*y), with  in D)7 (K). Let

Ap: DMIT(K) — 1,

be such that
Ar(p) = (D%), ¢ € DMIT(K).

It follows thatA,. is an onto linear isometry. We plit:= U{ V,. : » € N } and we conside¥” as a subspace
of Y. We write
A:DMNK) — Vv

such that
Ap) = (D), e DMI(K).
Clearly, A is linear continuous one-to-one and onto.

Proposition 8. A is a topological isomorphism.

PROOF We take a closed bounded absolutely convex suliseft’. Applying Propositiorl we obtain

r € N such thatd is a bounded subset &f.. ThenA_!(A) = A~1(A) is a bounded absolutely convex
subset ofD(M~).7 (K), and is closed iD=} (K). We apply resul8 and obtain that\ ' (A) is compact
in D) r+1(K), from where we deduce that is compact inV,.,;. Applying now Propositioré we
have thafi” is the inductive limit of the sequenc¢®.) of Banach spaces. Consequenflyis a topological
isomorphism. W
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We consider nowD{"=}(K) as a subspace, clearly closed,f»}(Q). If A is a closed bounded
absolutely convex subsetBfi =} (K), thenA is a closed bounded absolutely convex subs&t'df~} (Q2),
hence there i € N such that is a compact subset @(*~)-(K,.), [3, p. 44], therefored is locally
compact inDM=}(K). Proposition6 applies again to have that the topology induced@y’~} () in
DIMn}(K) coincides with the original topology @ (M~} (K).

In what follows we pufl” for the mapping\ considered fronD{»}(K) into Y. Then, if‘T is the
transpose of', we have that

Ty — DM (K)
is onto.
Proposition 9. If {S; : j € J} is a bounded subset @~} (), then there is, for each € J, a
family (pa,; : « € N& ) of complex Borel measures §hsuch that, for each > 0,

sup Al My |pa,() < 0o
Q€N

j€J
and

05)= Y [ Dedns, G pepttig)

aGN’U"

PROOF. Let S7 be the restriction of; to D1} (K). We then have that S; : j € J } is a relatively

compact subset db{=}"(K). Applying [2, p. 274], we obtain a relatively compact subgét; : j € .J }

in Y’ suchthatT(T};) = S7, j € J. If (T}), is the element o€ (2)* which identifies with the restriction
of T; to Y, a € N§, making use of Riesz's representation theoreinp[ 131], we have that there is a
complex Borel measure, ; in Q2 such that

(.o} = [ edpas ¢ eCo@)
and|ueq,;|(2) is the norm of(T;),. After Propositior3 we obtain

sup  hlel Mq [pa,i(2)] < 00.

aeNk, jeJ
By using Propositior2 we get, for(f,) inY andj € J,
()T = 3 [ fadiias
aeNg @
and, in particular, ifp belongs taD{¥»}(K),
(D%0), Ty) =Y / D% dpia,;.
aGN’U" Q
On the other hand, ip belongs taD{*+}(K'), we have
(D%), Tj) = (L(p), Tj) = (p,' T(Ty)) = (¢, S}) = (¢, )
and the result follows. B

Before giving the proof of the next theorem, we need the Walhg construction. We take a bounded
subset{ S; : j € J } of DIM»}'(Q2) so that there is a compact sub&ebf €2 which contains the support of
S;, 7 € J, thatis

suppS; C H, j e
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Let K be a compact subset Ofsuch that its interiok” containsH . Applying Propositior®, we obtain, for
eachj € J, afamily (u4,; : « € N§ ) of complex Borel measures {i such that, for each > 0,

sup Al Mo [a,4(Q) < 0o
aEN(Ij
jeJ
and
(e, S =Y /QD%dua,j, jed, ¢eDMI(K).

S\
We take an elementof DM~} (Q) which has valug in a neighborhood off and with support contained
in K. We findb > 0 and a positive integer such that

|D%g(z)] < b sl M,q, reQ, acNk

We takep € £")(Q). Sincegy belongs taD{M-}(K), it follows that, for eacly € J,

(99, 8) = > /QD"‘(gcp)dua,j

aEeNk
al o
- ZL(; e gl 9P ﬁ“’) dpa,j. (5)
OzENg <«

We take an integen > s such thatp is in €(§M")’m(ﬂ). It follows that, for eachr € €2,

> e P ol 10" et

Ba

ol
<37 b sl Myl ] My
= (o — B! 18] Plm Mja—p|
2 Fia— )

<bml gl Y Z e Mig) Miaop)
2 Fia—p)

<bm! o, 2|9“M‘a|

and hence

|
3 3 g /P Dt

aeNk f<a

1 «
<blplm Y W(‘Uﬂm)‘ | Mia) l1a51(2)
a€eNg

1
§ : - 1] .
<blplm (2k)le] Sua(llkm) M\6\| pe,51(2)
aENk 6€N0
0 jeJ
from where we deduce that the serigsié absolutely convergent, thus we may write, putting= « — 3,

! o (B+7)!
2 2 m/gpﬁg'p Ppdpag =3 Y TJ/QD%'D”SMMMT (6)

a€eNk f<a vENE BENE
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Theorem 2. Let{S; : j € J} be a bounded subset B "~} (Q) such that there is a compact subggt
of Q with

supp S; C H, jed

Let K be a compact subset 6f such thatkk > H. Then, there is, for eache J, afamily(v, ; : a € N§)
of complex Borel measures §hsuch that, for eacth > 0,

sup hlel M|V, 1(2) < 00

aGNS

jeJ
supp va,; C K, a €Nk jel,
and
w.5)= 3 [ DUeduas, et peD@),
Q

aENS

where the series converges absolute and uniformly whearies inJ andy varies in any given bounded
subset oM~} ().

PROOF.  For eachj € J, we find the family( sz, ; : @ € N£) of complex Radon measures§hwith the
properties above cited. We now fixe N} and take an arbitrary elemenbf Cy(2). Then

+)! +9)!
2 (ﬂﬁ!vf!w /gDﬁg'nd“ﬁ*W <> u/Q|Dﬁ9|'|77|dluﬁ+w'|

I~/
BENG BENS i
(B+7)!
<blnleo D s Migy litga.s1()
BENE
<blnloe Y 29S0T Mgy s 51(90).
BENE
On the other hand,
> 2 Mg 15 ,51(Q) < D (29)7F Mgy gl ()
BENEK BENG
1
<> Bl (k)P Mg |1y 51(9)
BENE
< 2 sup (4ks)1* Mo |0, ().
acNg
jeJ
Consequently, there is a constaht> 0 such that
B+)!
> ( 7 ,) DPg-ndpigiy,;| < C lils. (7
BeNE ANNAL
If we set
B+7)!
Vy,5(n) = Z % DPg-ndpgiyg,  n€ Co(),
BeNE AL
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we have that., ; is a complex function which is clearly linear and, aftéy, elongs taCy (©2)*. We apply
Riesz’s representation theorerf, p. 131], and so obtain a complex Borel measuyg in €2 such that

v = [nedvy ne @)
If M denotes the support gf it is plain that

[e]
suppv,; C M C K, J€J, 7€N§.

For eachp € EéM”}(Q), we have that

B4 7)!

> ) DPg-DYp-dpgiy;= | DV duy,
B!

BENE T Ja Q

and, having in mindg),

go8) = 3 [ Dipedny, peel™o). (8)

yeENE

Let us now fixy in N} and; in .J. We choose in Cy(Q2) such thatn|, < 2 andv, (1) = |v,;](Q). We
takeh > 1. Then

AN [vn 5 1(Q) = B M 0y 5(n)

B+ )!
<hhl My, 3 %b s Mg 1o |14, (€2)

BENE

<20y (2h) P Mg lpgq,41(9)

BENE
1
<20y (2k)FH1 sup (4khs)/*! Mjaj |tta.51()
pet et
< 4b sup (4ks)!e! Mo | |(S2)-
aeNg
jeJ

It follows from above that
sup Al M) |v4,51(22) < o0,
YENE
jeJ

Theoreml now applies to obtain, for eaghe J, an element’; € €§M"}/(Q) such that

Ty =3 /Q D dvay,  pe &M (@)

IS\

where the series converges absolutely and uniformly whearies inJ andy varies in any given bounded
subset o€} "1 (€2). On the other hand, for eaghe DM} (K) and eacly € J,

(@, 85) = (g9, 85) = > /QDO‘(W) da = /QDasO-dVa,j = (¢, Tj).

aeNk aeNk
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On the structure of certain ultradistributions

Given an arbitrary element in €, if = belongs tok, then this set is a neighborhood @fsuch that, if
¢ € DIMa}(K), theny € DIMe}(K), and so(p, S;) = (¢, T;). If  does not belong td(, we find an
open neighborhootl,, of z such that/, N M = (). We takeyp in DIM-}(U,). Then, [, D% - dva,; = 0,
a € NE, thus(p, T;) = 0. Besides[J,, N H = (), thereforg(p, S;) = 0.

We have thus proved that; and7; coincide locally, from where it follows thai; and7; coincide in
DIMa}(Q). The conclusion now follows. W

4 Structure of the ultradistributions of Roumieu type

Theorem 3. For eachj in a setJ, let(uq,; : o € N§) be a family of Radon measures¢n If, given
h > 0 and a compact subséf C €2, we have that

sup hle M\al [[ta,; [I(K) < oo,

acNE

JjeJ
then there is a bounded subdes; : j € J } in DM} (Q) such that
<507 SJ> = Z <Da90a ua,j>7 p e D{Mn}(Q)
aeNg
where the series converges absolutely and uniformly whemies inJ and varies in any given bounded
subset oD {Mn} ().

PROOF For eachn € N, we identify K(K,,) with Cy(K,,). We putuy’ ; for the restriction ofu,; to

[e%

K(K,,). If Har j is the complex Borel measure i, such that

«

<f,ugfj> = /o fdu:xn,_jv fe Co(Knm),
K

we have that
(Km) = |/~L$J‘|(Km)-

(2]
Therefore, giverh > 0, it follows that

o
sup hlel Mq [pta,j|(Km) < o0,
aENE e

from where we obtain, applying Theoreinthat there is a bounded subgef’™ : j € J } of EéM"‘}/ (Kom)
such that

m « m Mn 2
(@.5m =% / Dop-duly, o EMI(K,)
aeNy / Kom

where the series converges absolutely and uniformly whearies inJ andy varies in any given bounded
subset oE’éM”} (Kpm).
Given an arbitrary element of DM~} (Q2), we findm € N such that
supp ¢ C Ko,

we put
<507 SJ> = <90a S;n>

Itis easy to see thatS; : j € J} is a bounded subset @~} (Q) satisfying the requirements of the
statement. W
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Theorem 4. If {S; : j € J} is a bounded subset @t~} (2), then there is, for each e .J, a family
(ua,; : @ € N§ ) of Radon measures i1 such that, giverh > 0 and a compact subsét of 2, we have
that

sup hle Mla\ [[ta,5[[(K) < o0

aGNg’

jeJ
and

(0. 85) =Y (D%0uay), j€J, ¢eDMIQ)

aGN’U”'

where the series converges absolutely and uniformly whemies inJ and varies in any given bounded
subset oD} ().

PrROOF Let{O,, : m € N} be alocally finite open cover ¢t such thaD,,, is relatively compact inf2,

m € N, Let{gm :m € N} be a partition of unity of clas§M,, } subordinated to such covering. It follows
that{ g,,S; : j € J } is a bounded subset &f{*~}'((2) whose elements have their supports contained in
a compact subset @,,,. Applying Theoren®, we obtain, for each € J, a family (v™, : o € NE) of
complex Borel measuresmsuch that, for each > 0,

J

sup hlel Mo v () < o0

aEN
jed
SUPPV;T,]' C Om; .7 S J, o € Ng,
and
(¢, gmS Z / D% - dvy ¢ € DM} (Q)
aeNk

where the series converges absolutely and uniformly whearies inJ andy varies in any given bounded
subset ofD1M»}(Q).
Given an arbitrary elemerftof £(£2), there is a finite number of subindexsuch that

O, Nsupp f # 0.

Consequently, we may define, for eacke Nt andj € J,

U, (f Z/fdy

meN

We then have thati,, ; is a linear functional irkC(€2). Given any compact subsat of 2, there is a positive
integermg such that N O,, = 0, m > mg. Hence, iff has its support contained i, it follows that, for
eachj € J,

mg mo

a5 ( /Ifldllfwl < SO I9) - 1l

m=1 m=1

from where we deduce that, ; is a Radon measure {n. Besides

mo

|u04]H |Voz | jGJa
2J

m=1

and, if i is an arbitrary positive number,

sup T Mg | 4| (K Z > hl Mg 1) < oo
GN
O;EJ m= 103-661?1;
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On the structure of certain ultradistributions

We take nowp in DM} (Q) with support ink’. Then

(0, 85) = <so i gm?S‘> = <<p f: gm, S >

m=1

mo
= Z 0, gmS Z Z /Daw dV
m=1

m=1 aENk

>3 / D, = Y (D% ).

aeNk m=1 aeNk

It is now easy to show that the last series converges absdteniformly whery varies inJ and whenp
varies in any given bounded subset®f*~}(Q). ®

5 The space D({%L}(Q)

We putLP(2) and £P(Q2), 1 < p < oo, to denote the classical Lebesgue spaces & f ¢ L?(1Q),

1 < p < o0, we write
1
1l = 1l = </Q|f|dx) ,

1Flloe = I flloc = supess{ | f(x)| : x € 2}.

By Dr»(R¥), 1 < p < oo, we represent the classical L. Schwartz spacep]199]. We put3z.(Q2) for
the linear space ovet of the complex functiond, defined and infinitely differentiable if?, such that
D f belongs tol?(Q), a € NE. We assume tha;»(92) is endowed with the metrizable locally convex
topology such that a sequengg,) in B.»(2) converges to the origin if and only (f D* f,,.||,,) converges
to zero for everyx € NE. We then have thaf,» (2) is a Fréchet space. We have tiffat. (R*) coincides
with Dp» (Rk)

Givenr € Nandl < p < oo, we useB(M n), ""(©2) to denote the linear space ovérf the functionsf
in Br»(€2) which satisfy:

andif f € f € L>(Q), then

1D fllp
[ llp,r == sup
p,T s 7““"' M|a\

We assume thds; , (M) () is provided with the nornj - || ... Given a Cauchy sequenceﬁiff”)””(Q), it
is immediate tha;tfm) is also a Cauchy sequencein» (1), thus it converges in this space to a functjon

For a givere > 0, there is a positive integen, such that
||fm7fs|‘p,r<5; m,SZmo~
Then, for those values of. ands, and for eachy € N¥, we have

HDafm — DafSHp

and so, formm > my,

1D = D5l _
rlel M
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(NI)r( )

from where we deduce thgte B and

Hjhl"f”pm <eg, m > my.

ConsequentI)B(M" "(Q2) is a Banach space. We put

Bifh} LJ B (My),r

and assume thatf%””}( ) is the inductive limit of the sequendés; (M), "(2)) of Banach spaces. We

assume that the topological du%iy nt (Q) of BEPM }( Q) is endowed with the strong topology.
In this section, we substitute the spa¥eof Section2 by the spacd.”(Q2), 1 < p < cc. Then, each
element ofY,. is a family ( £, : « € N} ) of elements of.”(2) with

H(f;>Hr:: sup _JLEEHQ_

< 0.
aEN§74a‘Aﬂ@|

If f belongs toB{M }( Q), we putD f for the element of.”(2) to which D f belongsp € NE.
By Z, we denote the subspacesf formed by those familie6 D* f : o € NE ) such that

FeBEMT ().
Let
X,: BT Q) — 7,

be such that . o

X.(f)=(Df),  feBLMTQ.
Then, X, is a linear onto isometry. By we mearJ{ Z, : » € N } considered as a subspacerafLet

x: B Q) — 7

be such that . "

X(f)=(Df),  feBL" Q).
Clearly, X is linear bijective and continuous.

We putW for the mapX considered fromﬁiy"}(Q) into Y. By ‘W we denote the map froii’ into

Bﬂf"}/ (Q) given by the transpose oF.

Throughout what follows in this section, we fix< p < oo and writeq for the conjugate value qf,
e, t+L1=1.

p q

Theorem 5. For eachj in a setJ, let (g, ;: « € N§) be a family of elements a?($2) such that, for
eachh > 0,
sup A% Mo, [|gasllq < oo

acNk
JjeJ

Then there is a bounded subges;: j € J } in B{M”} (Q) so that
(0, 85) = /Dw gojdz,  jeJ peBLMN (@),
a€eNg

where the series converges absolutely and uniformly whemies inJ and varies in any given bounded
subset OBEPM"} Q).

34



On the structure of certain ultradistributions

ProOOF  We identify in the usual manner,,; with a continuous linear functional ab¥ (©2), whose norm
iS ||ga,51l4- We apply Propositiod to obtain, for eaclj € J, an element:; in Y’ such that its restriction
to Y,, coincides withy,, ;, « € NE. Applying now Propositior2 we have that

Z /fa ga]dm faefom (foz)ey (9)
aGN"

Let us now fix a bounded subsBtof Y. We findr € N such thatB is a bounded subset of.. We take
(fa) in B. It follows that

/fa ga]dx

<> /|fa 9o, dz

aENk aeNg
< S Wallp - 90l
aGN’O"
B 1 |lfallp lal
= Z (2k)|a‘m(2kr) M\al Hga,J”q
aGN’O"
N 1
<Gl | sup @k Mg llgalla | 3
BENy aENE
JGJ ’

We deduce from here that the seri®f ¢onverges absolutely and uniformly whg¢waries in.J and(fa)
varies inB. Besides,

sup  [(fa)ouy)| < oo,

JjeJ
(fa)EB

from where it follows thaf «; : j € J } is a bounded subset ®f. We now write
Sj = tW(Uj), j e J.

Then{S; : j € J} is a bounded subset dﬂéff"}/( Q). On the other hand, for eagh € B{M }( Q), we
have that

((D*@),uz) = (W (), u;) = (, " W(u;)) = (,5;).

Consequently, for each B{M"}( Q) and eacly € J, we obtain, making use o8], that

(@, S5) = ((D¥¢),u;) = > /D ¢ ga,j dz.

ozGNA

Finally, wheny varies in a bounded subset BHI"}(Q), (D) varies in a bounded subset Bt from
where we deduce that the above series converges absolatelyngormly whenj varies inJ andyp varies
in any given bounded subsethM”} (). n

Given a compact subsét of Q andr € N, we putD(M)) "(K) for the subspace aB\.")" ()

whose elements have their supportin If (f,,) is a sequence |rD(M )’( K) which converges tg
in BLM”) (Q), there is a subsequen¢g,,,) of (f,,) which converges tg° almost everywhere. Since

fmi(x) =0,z € Q\ K,1i € N, it follows that f belongs taD;, (Mo),r "(K) and thus this space is complete.
We write

[e )

M, M,,),r
D (k) = | D) ()

r=1
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and we assume thal?gyn}(K) is endowed with the structure of (LB) space, as the indudtimé of

the sequencéDéfp”g)”'(K)) of Banach spaces. We Wri@&\f’;}/(K) for the strong topological dual of

Mn
DI (K).

(My,),r

()" () is a compact subset @& M) ()Y,

Proposition 10. The closed unit balB,. of D (L)

PROOF.  Letyu be the Lebesgue measureifi. We assume the elementof DE%T)')”'(K) extended t@R*
settingf () = 0, € R* \ K. Givena € N§ andf € B,, we have that

1 T2 T a|a\+kf(t)
Daf(l‘) = /_OO /_Oo e /_Oo aa1+1t16a2+1t2 - ,ao‘k"'ltk dtl dtQ .. .dtk

and hence, ifl; :=«a; + 1,7 =1, 2,...,k, we have that

D* f(z)] < /K DP £(1)] dt < u(E) VD],
< (B9 fllprr? Mgy < p(K)Y 1P Mg,

and so the set of functiof{sD® f : f € B, } is uniformly bounded irR*. Consequently, for each € NE,
the set{ D7 f : f € B, } is equicontinuous, therefore, applying Ascoli’s theorerd a diagonal process,
given an arbitrary sequen¢¢,,) in B,., there is a complex functiof, defined and infinitely differentiable
in R*, and a subsequen¢g,,,) of (f.,) such that, for each € N&, (D f,,,.) converges uniformly & f

in R®. Since, for eacly € N,

1D finillp ,

— s <1, eN,

rlel My~ Z

it follows that N
1Dl

<1,
rlol M\Oé| -

(Mp),r+1

and thusf is in B,. We see next thatf,,,) converges tof in D1s)

positive integer, such that
r \% €
r+1 4’

We determine a positive integgy such that

(K). Givene > 0, we find a

13 . .
W(K)P|D® fr,(z) — D* f(2)] < 5 zeRF, i>dy, ol < so.
Then, if: > ip, we have

|1D frm, = D*fllp
[ fms = Fllpr+1 = sup l
" P ey (r 1)l Mg

B - D Y P -Gy 3
Tlalgse (DI Mg japss, (P D)l My

D f,, — DSl

) r
< sup sup ju(K)'/7|D° fin, () = D f(a)] + sup (r+1)

la|<so z€R* [a|>s0 (r)|04 Mla\
<t (2)" ap 12y 11

2 T'+1 la|>s0 (’]")‘al M‘Od

e g
< St Sl + 1) <
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On the structure of certain ultradistributions

It then follows that( f,,,,) convergestq’ in DEZLVQ”)')""“(K) and the result follows. W

For the next two propositions, we are going to fix a compacsstld of (2. Givenr € N, let P, be the

subspace of, whose elements have the fo(“ ), with ¢ € Dgﬁf’))”'(K). Let

(1\/171,)77'

Gr: D(Lp) (K) — P,

be such that
Glo) = (DY), €D (K).
We have that, is a linear onto isometry. We pit := U{ P, : r € N} and we consider it as a subspace
of Y. We then write
¢: D (K) — P
such that
o) = (D),  peDn}(K).
Clearly,( is linear bijective and continuous.
Proposition 11. ( is a topological isomorphism.

PROOF We take an absolutely convex closed and bounded subsétP. Applying Propositioril, we
obtainr € N such thatA is a bounded subset @f.. Then(,!(A) = (~!(A) is an absolutely convex

bounded subset ODE%")')”'(K) which is closed i} (k). Making use of the former proposition,

(L)
we obtain that,!(A) is compact iﬁDéﬁg)""“(K), from where we have that is a compact subset of

P,.1. We apply Propositiol to have thatP is the inductive limit of the sequend®’.) of Banach spaces.
Consequently; is a topological isomorphism. B
We now put

[e )

Mn Mn sT
Dt (@) = | Dy (K,

r=1

and assume thdbi{é\f’;}(ﬂ) is the inductive limit of the sequent{@ElLVi”)')""(Kr)) of Banach spaces. We

write D&\fg}/(Q) for the strong topological dual OD({%;'}(Q). It follows, from Propositionl0, that

D&\fg}/(Q) is Fréchet-Schwartz space.

We now consideD({%;'}(K) as a subspace m({%g} (). If Aiis an absolutely convex closed bounded
My}

subset ofD{}7} (K), then A is a bounded subset @/ }';;

such thatk C K, and A is a relatively compact subset @féﬁ”)')”'(Kr). CIearIy,DEZLVfﬁ)')""(K) is a closed

subspace oDé%;”"“(KT) andA is closed in the Banach spaﬁ%ﬁ"s)’"‘(f{), from where we conclude that

A is compact inDé%;;)""(K). We apply Propositiors and so we obtain that the topology induced by

D&\f’;}(ﬂ) in DE{%”)‘}(K) coincides with the original topology of this space.

In the following, we puty for the mapping, considered fron‘i)&{%’;}(K) into Y. Then, ifty is the
transpose ofy, we have that

(©) and thus there is a positive integer

M, Y}
Y — Dl (K)
is an onto map.

Proposition 12. If {S; : j € J} is a bounded subset @T&Vﬁ’)‘}/(ﬂ), then there is, for each € J, a

family (ga; : @ € NE ) of elements o£4(92) such that, for eacth > 0,
sup Al Mq[|gallq < oo

acNE
JjeJ
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and
(p,S;) = Z /QD“go “ ga,j A, jed, pe DE{%)}(K)

aGN’U"

PROOF.  LetS* be the restriction of; to D&\f’;}(K). Itfollows that{ S5 : j € J } is arelatively compact

subset ofD&\f’;}'(K). Applying [2, p. 274], we obtain a relatively compact sub$ét; : j € J} of Y’

such thatn(7;) = S;, j € J. If (Tj), is the element of.7(Q2) which identifies with the restriction df;
to Y, a € N§, we obtain an element, ; in £¢(2) such that

@) = [ @-onyde. Ged pesel(o).
Givenh > 0, we taker € N, r > h. Making use of Propositio8 we obtain that

sup Bl M) llga,sllq < oo
a€eNg, jeJ

Having in mind Propositio®, we have, for eachf,) in Y andj € J,

<(foc)aTj>: Z /Qfa'goz,jdma faefom aENI&

IS\

and, in particular, ifp € D&\f’;}(K), then

(D), Tj) = Y /D%-ga,jdx
aeNg @

and besides B
((D%), T;) = (n(e), Tj) = (@' n(T)) = (@, S}) = (@, 5}),
from where the result follows. B

If g € £P1(RF) andl € £P2(R¥), with 1 < p; < 00,1 < py < o0 andpi1 + ,,% > 1, then there exists
almost everywhere the convolutign: I € £¢(R*¥), being? := pll + plQ — 1. Also having that
g Uls < lgllp: - Npe- (10)
This property will be used in the next proposition.

Proposition 13. The linear spac@®{~}(Q) is dense i@éﬁ’;}(Q).

PROOF We may assume thaf; # 0 andK, C K.y, s € N.
Givend > 0, we putB(J) for the closed ball ifR* with center in the origin and radius We take

fe D&\f)’}(Q). We findr € N such thatf € Dé%j’))’r(KT). We choose a sequentg;) in £{Mn}(RF)
satisfying

(i) ¢i(z) >0, 2 € Q.
(i) [ovi(z)de =1
(iii) ¢ € DMIT(B(;)), 61 > g > -+ > 6 > ..,

lim§; = 0 andK, + B(8;) C Ky ..
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We considerf extended tR* by settingf(z) = 0, » € R*¥ \ Q. We putf; := f x1;, i € N. We shall

see next thatf;) is a sequence i®M»)"+1( K, ;) which converges tg in Dgﬁ’;)’”l(KHl). For each

o € Nf, we have
Dfia) = [ F@D @y, w R

from where we get thaf; belongs toD(M")”“(KTH). We now take: > 0, We find a positive integes,

such that .
r 9
() Mo <5

Givena € NE, we have that, for each € R”,

D) = D*f@)| < [ (0" 1) =) = DS @)]s(w)
< sup{ [(D°)(& ) - D*f(@)] -y € BG)}

We findiy € N for which

€

|D fi(x) — D f(x)] < k)

i>ig, xeRF, o] <so.
Then .
D% fi = D*fllp < 3 iz
We now apply 10) for py = p,p2 = 1,9 = D*f andl = v;. Then
1D fillp = (D f) * illp < 1D fllp - 19bsllx = | D f1|-
Consequently, fot > i, it follows that

e o DG = R
prtl =
g aENE (r+ 1)l Miq)

ID2(f = fi)llo ID2(f = fi)llp
\jllgo (r + 1)l M, " |§&pso (r+ 1)lel My,

o Do D £l
b oy ()" 121"
jalzso \T+ 1 ()l Mg

o\ 2[|D*fllp
-+ (?) Supv W < €. .
r aGN’O‘ r [

If = fil

IN
DO ™

IN

5
2

The last proposition tells us that the element@éﬁ")‘}l (©2) may be considered as ultradistributions. In
theorems’ and8, we shall characterize those ultradistributions.

We proceed now in a similar way to the construction previoubtteoren®. We take a bounded subset
{S;:j€J}in D&\f’;} (€2) in such a way that there is a compact suligeif (2 with

suppS; C H, jed

Let K be a compact subset 8fwith H C IO( We apply Propositiod2to obtain, for eachi € J, a family
(faj @ €N§)in £9(Q2) such that, for each > 0,

sup h‘alMla\ N faillg < o0
a€eNE, jeJ
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and

(p,8;) /Do‘go fajdz, jeld ¢e D({Qﬁ’;}(K).
aeNg

We take an element of D{M~}(Q) which takes value one in a neighborhoodifand whose support is
contained inkK'. We findb > 0 and a positive integes such that

|Dg(x)] < bsl*IM,,), reQ, aeNE

We takey in pr”"}( Q). It means no difficulty to see thatp belongs tcﬂ)‘{%’)‘}( ) and thus we have, for
eachj € J,

(9¢,5;) D*(g¢)  fa,jda
aENk/ ’
-> / (; T Do D) oy (a1
aeNk o

We take now a positive integer > s such thatp is in 8% (). We then have

> S /|Dﬂg| D] |l

BLa

- Z ﬁl bs‘ﬂlMW\HDa BSDHP ||fa,j||q
BLa

<3 g =g Mialelmm! " Mol sl
B<«

= Z B bm‘alM\al||90||p,7rLHfa,J|
B<«

= 2|a‘bm 7j| q

< b l@llp,m sup  (4km)" Mgl 5,514

(2K)led SENE, jeT

from where we deduce that the seri@d)(is absolutely convergent, hence, putting= « — 3, we may
write

|
22 G By Bla—p /Dﬂg D P fayda= 3 ﬁﬂ?iyv!)./QDBQ'DWSO-fﬁﬂ,jd»T- (12)

aeNk f<a ~+ENE BENE

Theorem 6. Let{S;:j € J} be abounded subsetﬂf({é‘f;'}/(ﬂ) such that there is a compact subgét
of Q with

suppS; C H, j e

Let K be a compact subset Ofsuch thatd C K. Then there is, for eache J, afamily( g, ; : o € NE)
of elements of£4(2) such that, for each > 0, we have

sup h* Mo [|ga.illq < o0,
acNg
jed
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Smmg%jcﬁl jeJ, aeNg,
and
= / D% gojdu,  jeJ, peDnN Q)
aeNg
where the series converges absolutely and uniformly whemies inJ and varies in any given bounded
subset ow{%)}(ﬂ).

PROOF.  For eachj € .J, we obtain the family f, ; : « € N§ ) of elements of?(2) with the properties
cited above. We fix; € Nk and takep € p € L9(f2). Then

B+7) B+
Z (@7') DPg-p- fg;da S TR | DOl - |p| - |fp1,5] dz
genk T Je BENE
(B+7)!
<> WbS‘ﬁlMlﬁ\Hp”prﬁJr%j”q
BENE o
<blplly D, 27 51| f45114
BENE
1
<blpll, > k)P (4k5) Mg | Fa,4lq
BENE
1 «
<bliply > Ry S (4ks)1*I M o || fo 5l
BENE aeNg, jeJ
=20 [|pllp sup (4ks)1*' M)l fa;llg;
acNk
jed
from where we deduce that there(is> 0 such that
B+7)
SB[ sy el < Clloll (13)
B Ja

BENE

If we put, for eaclp € p € LP(Q),

!
vy,5(p) == Z (8 1) /QDBQ'P' fo4~.5 d,

I~
BENE Ayt

we have that,, ; is a complex function, clearly linear, such that, afte8)( belongs taL%(2). Then, there
iS g,; € L£2(2) for which

vy,5(P) = /Qp “gyjdr,  p€peLl(Q).
If M is the support ofj, it is plain that

suppg,,; C M C K, jedJ, ~eNE

It follows that, for eachy € BEI,,VI"}(Q),

B+
Z( I Dﬂ DV faqyide = Dgo g~,;dx
BENE oy
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and, having in mindX2),

9o, 55 = 3 / Dlg-g d,  oeBAHQ). (14)

yENE

We fix v in N§ andj in J. We choose in LP(2) such that| ||, < 2 andv. ;(5) = |/g.5ll- We take
h > 1. Then,ifp € p,

WM gy 5llq = B M 0y 5(5)

Jr
ShMM\’VI Z L 7 /Dﬁg P fp4vy,de
BeNE

B+
< WMl b S < - s Mg f544,51q
BENE

<20 ) (k)T M g | fa1.4la
BENE

<26y W sup (4k51)!*!Mia |
pENG

]EJ

from where we deduce that

sup AWM, llg4.ll4 < 0.
YENE
jeJ

We apply Theorend to obtain, for eaclhj € J, an element}; in Bff”}l (©) such that

= > /D 0 gayda,  peBLMHQ),

a€eNE

where the series converges absolutely and uniformly whearies inJ andy varies in any given bounded

subset oB{M"}( ). On the other hand, for eaghe D{M’)‘}( K)andeachy € J,

(0.9) =(ge. )= /D"‘ 9¢) + fa,jda

aeNk

= Z/D ¢ Gadz = (p,Ty).

aeNk

Finally, it can be shown in the same way that it was done in theff Theoren® thatS; and7}; coincide
in D({I‘fg}(Q) for everyj € J, so the result follows. W

We put£? (Q) for the linear space ovet of the complex functiong defined inQ2 such that, for each
compact subsei’ of 2, fx belongs tol?(K).

Theorem 7. For eachj in asetJ, let( f,; : « € N&) be a family of elements af/

loc( ) such that, for
eachh > 0 and each compact subsktof 2, we have that

sup h‘alM‘a|||fa,j\KHq < 0.
acNk
jeJ
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Then, there is a bounded subgef; : j € J } ongVf,’)‘} () such that

(0,5;) = /D% Jagdz, jed. geD(),
a€eNE

where the series converges absolutely and uniformly whemies inJ and varies in any given bounded
M,
subset oiD{Lp) } (Q).
PROOF For eachn € N, we put
mo=f ., aeNk jeu

a,j[ K

It follows that, for eacth > 0,
sup A M |1 £2751]q < oo.

acNk
jeJ

We apply now Theorerf to obtain a bounded subsgt?” : j € J } of B{M"} (Km) such that
(e.57)= 3 [, Do pmpan. Ged pe BRI
aEN"

where the series converges absolutely and uniformly whearies inJ andy varies in any given bounded

subset oﬁS’{M"} (Km)
Given an arbitrary elemegtin D&\f’;}(Q), we findm € N such that
supp ¢ C K,
and we put

(0, 85) = (@ 5}")-

Itis easy to verify thas; is well defined; € .J, andtha{ S; : j € J } is a bounded subset &1} (1),
which satisfies the statement of our theoreni

Theorem 8. If {S;:j € J}is abounded subset &M (0 (Q), then there is, for each € .J, a family

(LP)
(fay:a€NE)in L1 (Q) such that, for eacth > 0 and each compact subsktof 2, we have that

sup hle |M|Q‘Hfa]|KHq < 00
aEN
jEJ

and
(. S;) /D o fasdz, e, oeDINQ),
aeNk

where the series converges absolutely and uniformly whemies inJ and varies in any given bounded

subset oﬁ){%’)‘}(ﬂ).

PrROOF Let{O,, : m € N} be alocally finite open cover ¢t such tha,,, is relatively compact inf,
m € N. Let{ g,, : m € N} be a partition of unity of clas§)M,, } subordinated to that open cover. We then

have thaf ¢,,S; : j € J }is abounded subset@‘{M”} 2) whose elements have their supports contained
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in a compact subset @,,,. We apply Theoreng to obtain, for eacly € J, a family (f7'; : a € NE ) of
elements of9(2) such that, for each > 0,

Squ h“"le £ lg < oo,

a,j
a€Ng
jeJ
supp f7'; C O, jelJ, acNk

and
7 . My,
<()0;g7nSj>: Z /QD(XSOfoZdev JGJa (pGDgLP)}(Q)a

a€eNy
where the series converges absolutely and uniformly whearies inJ andy varies in any given bounded
subset oﬂ)&‘f’;}(ﬂ). We put, for eaclr € Q, o € N£ andj € J,

faj(@) = > ().

m=1

If K is a compact subset 6f, there is a positive integen, such that
KﬂOm:@, mZmOa

and hencef,, ; is well defined and belongs . .(Q2). Besides, we have

mo mo

[ fesixlla < ZHfZ,LﬂKHq < ZHf(;n]Hq

m=1 m=1

and thus, giverh > 0, it follows that

sup h‘alM\a|||fa,j\K”q < oo.
aeNg, jeJ

Applying now Theoren?, we obtain a bounded subseT); : j € J } of D&\f’;}'(Q) such that

e . My,
Ty = 3 [ D fasde. jed peDli@),
aeNk

where the series converges absolutely and uniformly whearies inJ andy varies in any given bounded

subset ofD&\f’;} (Q).
We now choose € D&\fg}(Q). We findmg € N such that
O, Nsupp e = 0, m > mo.
Then

CYOEDY /QDasﬁ'fa,jdx: > Z/QDQS"' o 4z

aeNk a€Nk m=1
mo mo mo

:Z Z/Dacp- gfjdf:Z<<Pa9msj>:<z<ﬁ'9m7$j>
m=1 QEN[’; Q m=1 m=1

= <507 Sj>

Consequentlys; =T}, j € J, and the result now follows. Hl

From this and up to the end of this section we shall assumehbatequencé/,, n € N, satisfies
condition @), that is, it is stable for differential operators.
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Proposition 14. The canonical injection fror®{*~}(Q) into D&\f’)"}(ﬂ) is a topological isomorphism.

PrRoOOFE Clearly,
¢: DM () — DI (@)
such that

=1 feDMiQ)

is well defined, linear and continuous.
It is immediate that there ate> 0 and! > 0 for which

MnJrk <bl" M, n € Np.

We now take an arbitrary elemepte D&\f’;}(ﬂ). We extendp to R¥ by puttinge(z) = 0,z € R* \ Q.

We findr € N such thatp is in D&\f;}’r(Rk). Givena € Nt andz € R*, we have

N T1 o T2 Tk alo‘chp(t)
D QD(I) :[m[m[m a‘)‘1+1t1 8a2+1t2...80‘k‘+1tk dtldtg dtk

and thus
ol g(t)
D%p(x </
[D%e(a)] < K, |t oyt ot
< gl - 71 H* Mg
< gl er! T b ilelag,,

dt

from where we deduce that, éfis an integer greater thai,

DOL
wp sup 1272

k
1.r7T b
al M ;
aeNk z€K, sled ]

< el

and so
¢ € DMK,y ¢ DM (Q).

It follows that( is onto. Applying now Grothendieck’s theorem, p. 17], the result follows. B

Theorem 9. If {S; : j € J} is a bounded subset @1~} (2), then there is, for each € .J, a family
(fa,; + « € N§) of elements o2 (2) such that, for eacth > 0 and each compact subsat of 2, we
have that

sup hla‘M|a\|fa,j|K,oo < o0
aeNk, jeJ

and
(. S)=> /D“wfa,j dz, jelJ, ¢eD}Q),
Q

aENg

where the series converges absolutely and uniformly whemies inJ and varies in any given bounded
subset oD{M=} ().

PrROOF Itis an immediate consequence of the former propositiehTdreorens8. W
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6 The space D{M }(Q)

We shall use in this section the same notation as in the prswne. In particulad, < p < oo andgq is the
conjugate element of.

For eachr € N, we putD{"*)"(Q) for the Banach space given by the closuresgf_, D" (K,,)
in B")7(Q). We put

Dgyﬂ} G M,L)

and we assume th?a‘tgp””} () is provided with the structure ¢f B)-space as the inductive limit of the se-
quence(D (Mn,), "(Q)) of Banach spaces. We pﬁﬁy} () for the strong topological dual GPEIPVI”}(Q).
It is immediate that the canonical injection fra®{*=}(Q) into D{M"}(Q) is continuous, therefore we

may consider the elementsﬁlfpw”}l (Q) as ultradistributions. We shall characterize later thésadistri-
butions for the casg > 1. )
We write Q,- for the subspace of, formed by those familie§ D*f : o € NE) such thatf €

DI Q). Let
7 DEMT(Q) — Q.
be such that .
n(f)=(Df),  feDM)Ir(Q).

Thenr, is an onto linear isometry. We pat to denoteJ{ @, : » € N } considering it as a subspaceof
Let
T Diy"}(ﬂ) —Q

be such that )
r(f) = (D°f),  feDi(Q.

Clearly, 7 is linear bijective and continuous. We puifor the mapr considered frorTD}i”"}(Q) intoY.
By !\ we mean as usual the transpose map.of

Theorem 10. For eachj of a setJ, let (g, ; : a € N§) be a family of elements @(Q2) such that, for
eachh > 0,
sup h‘alM\aIHQaJHq < 0.

acNg
JjeJ

Then there is a bounded subgef; : j € J } ofD{M"} (€2) such that

(@, 85) = /D @ ga,jde, jed, peDi(q),

aeNk

where the series converges absolutely and uniformly whemies inJ and varies in any given bounded
subset oﬁ)fp”"}(ﬂ).

PROOF Itis analogous to the proofofTheoreanustreplacmgS’{M }( )byDﬁL‘}(Q). [

If 1 < p, we apply Propositio to obtain that),. is reflexive,r € N. After Propositiorb, ) with the
Mackey topology is afiL B)-space. It follows from this that

]y — DY (q)

is an onto map.
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Theorem 11. If p > 1 and{S; : j € J} is a bounded subset GTEIZ,VI"‘}/(Q), then there is, for each

j € J,afamily(ga,; : « € Nf ) of elements o£?(Q2) such that, for eacth > 0,

sup hl1® My ||ga,jllq < 00
aEN(Ij
jeJ
and
(0.5)= % [ Doy, icd peDl@)

a€eNg

where the series converges absolutely and uniformly whemies inJ andp varies in any given bounded
subset ODEZXI"}(Q).

PROOF We apply P, p. 274] and so obtain a relatively compact infinite sulséf : j € J} of Y’
such that \(T;) = S;. If (T}). is the element o£7(12) which identifies with the restriction &f; to Y*,
« € NE, we obtain an element, ; in £9(£2) such that

(2 T)a) = [ @rgasde. Gel. pepero).
Givenh > 0, we taker in N such that > h. From Propositior8, we obtain that

sup h‘o‘lM‘a|||ga7qu < 00.
aENg
jed
Having in mind Propositiog, it follows that, for each f,) in Y andj € J,

<(fa)aTj>: Z /Qfa'ga,jdxa faefom OLENS,

aGN’U‘

and, in particular, ifp is in DE{%’)‘}(Q), then

(D), Ty) = /Da%ga,jdx
aGN’U" Q

and besides }
(D), T;) = (Ap), Tj) = (," MT;)) = (¢, 5)-
The result now follows without difficulty.
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