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Holomorphically Dependent Generalised Inverses

Seán Dineen and Milena Venkova

Abstract. In this article we investigate when the pointwise existenceof a generalised inverse for
holomorphic operator-valued mappings defined on domains ina Banach space implies the existence of a
holomorphic generalised inverse.

Inversas Generalizadas Holom órficamente Dependientes

Resumen. En este artı́culo investigamos cuándo la existencia puntual de una inversa generalizada de
una aplicación holomorfa operador-valuada definida en un dominio de un espacio de Banach implica la
existencia de una inversa generalizada holomorfa.

1 Introduction

Let f denote a holomorphic mapping from a domainΩ in a Banach space intoL(X, Y ), the space of
continuous linear mappings from the Banach spaceX into the Banach spaceY . Over many years different
authors, e.g. [1, 2, 4, 5, 7, 12], have considered when pointwise invertibility properties, of various kinds,
imply the existence of a globally smooth inverse of the same kind. For example, iff(z) has a right inverse
for eachz ∈ Ω does there existg, holomorphic onΩ with values inL(Y, X), such thatg(z) is a right inverse
for a f(z) for all z ∈ Ω? In this paper we continue our investigations of such problems. Many results are
known whenΩ is a domain in a finite dimensional space and our interest is focused on the problems that
arise whenΩ is a domain in an infinite dimensional space.

We refer to [6, 10] for background information on operators between Banach spaces, to [3, 9] for the
theory of holomorphic mappings on Banach spaces and to [6, 7, 12] for classical results on holomorphic
dependence of operator-valued functions over finite dimensional complex manifolds.

2 Linear Preliminaries

If X andY are Banach spaces overC, L(X, Y ) will denote the space of all continuous linear operators
from X to Y andGL(X, Y ) will denote the set of all invertible linear operators fromX to Y . If X andY

are subspaces of the Banach spaceZ we use the notationZ = X ⊕ Y to indicate thatX andY are closed
complemented subspaces ofZ and thatZ is the direct sum ofX andY . We letH(Ω, X) denote the set
of all X-valued holomorphic mappings defined on an open subsetΩ of a Banach space. We also use the
standard notationL(X) := L(X, X) andGL(X) := GL(X, X).
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Definition 1. Let T ∈ L(X, Y ). If S ∈ L(Y, X) andTST = T we callS a pseudo-inversefor T . If, in
addition,STS = S we callS a generalised inverse forT . If TS = 1Y we callS a right inverse forT .
The operatorT is called splitting ifker(T ) and im(T ) are complemented inX andY respectively.

The following proposition contains some important known results about generalised inverses ([2, 12]).

Proposition 1. If X andY are Banach spaces andT ∈ L(X, Y ) then the following are equivalent:

(a) T has a pseudo-inverse,

(b) T has a generalised inverse,

(c) T is a splitting operator.

Right inverses are generalised inverses and generalised inverses are pseudo-inverses. IfS is a pseudo-
inverse forT thenSTS is a generalised inverse forT .

We require the following construction of a generalised inverse. LetT ∈ L(X, Y ) and supposeX =
ker(T ) ⊕ X1 and Y = Y1 ⊕ im(T ) are direct sum decompositions. The restriction ofT to X1, TR,
is a continuous bijective linear mapping fromX1 onto im(T ) and has, by the open mapping theorem, a
continuous inverse,T−1

R . We defineS : Y → X by letting S(y1 + y2) = T−1
R (y2) for y1 ∈ Y1 and

y2 ∈ im(T ). If x1 ∈ ker(T ) andx2 ∈ X1 then

TST (x1 + x2) = TST (x2) = T (T−1
R T (x2)) = T (x2) = T (x1 + x2)

andTST = T . Moreover, ify1 ∈ Y1 andy2 ∈ im(T ), then

STS(y1 + y2) = S(TT−1
R (y2)) = S(y2) = S(y1 + y2),

andS is a generalised inverse forT .

Lemma 1. If P andQ are projections inL(X) and‖P − Q‖ < 1 then(1X − P + Q) ∈ GL(X) and
(1X − P + Q)(P (X)) = Q(X). In particular,P (X) ≃ Q(X).

PROOF. Let R := 1X − P + Q. Since(1X − P + Q)P = QP we have

R(P (X)) = (1X − P + Q)(P (X)) ⊆ Q(X). (1)

Since‖P − Q‖ < 1, R := 1X − P + Q ∈ GL(X) and

R−1 = (1X − P + Q)−1 =

∞
∑

n=0

(P − Q)n =

[

∞
∑

n=0

(P − Q)2n

]

(1X + P − Q).

InterchangingP andQ in (1) we obtain(1X −Q+P )(Q(X)) ⊆ P (X) and as(P −Q)2P = P (1X −QP )
we see that(P − Q)2P (X) ⊆ P (X). HenceR−1(Q(X)) ⊆ P (X) andQ(X) ⊆ R(P (X)). Combining
this with (1) completes the proof. �

3 Vector Bundles

In this section we recall the definition of holomorphic Banach vector bundles and generalise to Banach
spaces a result of Shubin [11] (see also [12, Theorem 3.11]).

Let π : E → Ω be a surjective holomorphic map of complex Banach manifolds. We assume that the
fibre abovez ∈ Ω, Ez := π−1(z), has been given a Banach space structure whose topology coincides with
the topology induced fromE . A collection(Uα, τα)α∈Λ is called atrivialising cover for π if (Uα)α∈Λ is
an open cover ofΩ and for eachα ∈ Λ there is a Banach spaceXα such thatτα : π−1(Uα) → Uα × Xα is
a biholomorphic mapping and conditions (i), (ii ) and (iii ) below are satisfied.
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(i) τα,z := τα|Ez
is a linear isomorphism1, fromEz ontoXα for eachz ∈ Uα.

(ii) π|π−1(Uα) = πα ◦ τα, whereπα is the canonical projection fromUα × Xα ontoUα.

Conditions (i) and (ii ) imply thatραβ := τα ◦ τ−1
β |Uαβ×Xβ

has the formραβ(z, x) = (z, gαβ(z)x),
wheregαβ(z) ∈ L(Xβ , Xα) andx ∈ Xβ wheneverα, β ∈ Λ andz ∈ Uαβ := Uα ∩ Uβ 6= ∅.

(iii) If α, β ∈ Λ andUα ∩ Uβ 6= ∅ then the mapz 7→ gαβ(z) from Uαβ intoL(Xβ , Xα) is holomorphic.

Two trivialising covers are said to beequivalentif their union is also a trivialising cover.

Definition 2. A holomorphic vector bundle is a triple(E , π, Ω), whereπ : E → Ω is a surjective holomor-
phic map of complex Banach manifolds, together with a class of equivalent trivialising covers forπ.

We callE thebundle space, π theprojectionof the bundle,Ω thebaseof the bundle,{τα : π−1(Uα) →
Uα × Xα}, (Uα, τα, Xα), (Uα, τα) or justτα a trivialization of π−1(Uα) andgαβ a transition map. Note
thatgαα(z) = 1Xα

for all z ∈ Uα, gαβgβγ = gαγ onUαβγ := Uα∩Uβ ∩Uγ 6= ∅, andgαβ(z)−1 = gβα(z)
for all z ∈ Uαβ. For convenience, we often writeE in place of(E , π, Ω).

If X is a Banach space andΩ is a complex manifold, the triple(Ω×X, π, Ω), whereπ is the canonical
projection fromΩ × X ontoΩ, together with the covering trivialisation(1Ω×X : Ω × X → Ω × X) is
called thetrivial bundle. If E is a holomorphic vector bundle and(U, τ, X) is a trivialisation ofπ−1(U)
thenEU := (π−1(U), π|π−1(U), U) is a trivial bundle with covering trivialisation(U, τ, X).

A holomorphic sectionof the holomorphic vector bundle(E , π, Ω) is a holomorphic mappingf : Ω → E
such thatπ◦f = 1Ω. We letΓ(E) denote the set of all holomorphic sections ofE . For any complex manifold
Ω and any Banach spaceX , Γ(Ω × X) ≃ H(Ω, X).

In proving the main result in this section we require the following important theorem of Lempert [8].

Theorem 1. LetZ be a Banach space with an unconditional basis,Ω ⊂ Z pseudo-convex open,E → Ω
a holomorphic Banach vector bundle, then the sheaf coholomogy groupsHq(Ω, E) vanish for allq ≥ 1.

Let (Uα)α∈Γ be an open covering ofΩ. A Cousin datafor (Uα)α∈Γ is a collection of functionsfαβ ∈
H(Uαβ, E) satisfyingfαβ + fβα = 0 on Uαβ := Uα ∩ Uβ 6= ∅, andfαβ + fβγ + fγα = 0 on Uαβγ :=
Uα ∩ Uβ ∩ Uγ wheneverUαβγ 6= ∅. Theadditive Cousin problemconsists in findingfα ∈ H(Uα, E), for
all α, such that

fα|Uαβ
− fβ|Uαβ

= fαβ

wheneverUαβ 6= ∅. Since the Cousin data form a1-cocycle, whenq = 1 Theorem1 implies the following
result.

Corollary 1. Let Z be a Banach space with an unconditional basis,Ω be a pseudo-convex open subset
of Z, and (E , π, Ω) a holomorphic Banach vector bundle. If(Uα)α∈Γ is an open cover ofΩ andfαβ ∈
H(Uαβ, E) is a Cousin data then the corresponding Cousin problem is solvable.

Example 1. If (E , π, Ω) is a holomorphic vector bundle we letL(E) =
⋃

z∈Ω L(Ez) and letθ(Tz) = z

for all Tz ∈ L(Ez). Thenθ : L(E) → Ω is surjective andθ−1({z}) = L(E)z = L(Ez). We endowL(E)z

with the Banach space structure fromL(Ez). Let { τα : π−1(Uα) → Uα × Xα }α∈Λ be a trivialising cover
for E . Forz ∈ Uα andTz ∈ L(Ez) let

∧
τα(Tz) = (z, τα,z ◦ Tz ◦ τ−1

α,z).

Then
∧
τα : θ−1(Uα) → Uα × L(Xα) is a bijective mapping and

∧
τα,z : L(E)z → L(Xα) is a continuous

linear mapping for allz ∈ Uα. If

1Here and elsewhere we identify, when necessary,{z} × Xα andXα.
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∧
ταβ :=

∧
τα ◦

∧
τβ

−1
: Uαβ × L(Xβ) −→ Uαβ × L(Xα) (2)

then, forz ∈ Uαβ andT ∈ L(Xβ), we have

∧
ταβ(z, T ) = (z, gαβ(z) ◦ T ◦ gβα(z))

where, as previously,ραβ , and the transition mappingsgαβ are defined by

ραβ(z, x) := τα ◦ τ−1
β (z, x) =: (z, gαβ(z)x)

for z ∈ Uαβ andx ∈ Xβ. This implies that
∧
ταβ is biholomorphic for allα, β ∈ Λ wheneverUαβ 6= ∅.

The bijective mappings(
∧
τα)α∈Λ can now be used with (2) to define a unique complex manifold structure

onL(E) such that
∧
τα : θ−1(Uα) → Uα × L(Xα) is biholomorphic for allα and such that(L(E), θ, Ω) is

a holomorphic vector bundle with trivialising cover(Uα,
∧
τα)α∈Λ. This bundle has transition maps

∧
gαβ ∈

H
(

Uαβ,L(L(Xβ),L(Xα))
)

where

[

∧
gαβ(z)

]

(T ) = gβα(z) ◦ T ◦ gαβ(z)

for z ∈ Uαβ andT ∈ L(Xβ).

A sub-bundleof (E , π, Ω) is a bundle(F , η, Ω) whereF is a subset ofE , η = π|F , Fz is a closed
subspace ofEz for all z ∈ Ω and the following condition holds:

There exists a trivialising cover{ τα : π−1(Uα) → Uα × Xα }α∈Λ for E , and a collection of Banach
spaces(Yα)α∈Λ, Yα ⊂ Xα, such that{ τα|η−1(Uα) : η−1(Uα) → Uα × Yα }α∈Λ is a trivialising cover
for F .

Note that a sub-bundle is defined locally, that is given a bundle (E , π, Ω) and an open cover ofΩ, (Uα)α,
and for eachα a sub-bundleFα of EUα

, then there exists a unique sub-bundleF of E such thatFUα
= Fα.

This means that we may and do identifyYα with a subspace ofXα and, moreover, that[gαβ(z)]Yβ = Yα

for the transition functionsgαβ wherez ∈ Uαβ andα, β ∈ Λ. If eachYα is a complemented subspace of
Xα the sub-bundle is called adirect sub-bundle.

Sub-bundles can also be characterised by using transition functions. Suppose we are given a trivialising
cover{ τα : π−1(Uα) → Uα × Xα }α∈Λ for E with transition functions(gαβ)α,β∈Λ, and a collection of
Banach spaces(Yα)α∈Λ, Yα ⊂ Xα, such that[gαβ(z)]Yβ ⊂ Yα for all α, β ∈ Λ and allz ∈ Uα∩Uβ . Since
gαβ(z)−1 = gβα(z) this implies

[gαβ(z)]Yβ = Yα (3)

for all z ∈ Uαβ . Let F = ∪α∈Λπ−1(Uα × Yα), η = π|F andϕα = τα|η−1(Uα) for all α ∈ Λ. Then
ϕα,z : η−1({z}) = Fz → {z} × Yα is bijective and the Banach spaceEz induces onFz a Banach space
structure. Since eachϕα is the restriction of a bijective mapping it also is bijective onto its image and
as ϕαβ := ϕα ◦ ϕ−1

β (z, y) = (z, gαβ(z)y) for all (z, y) ∈ Uαβ × Yβ we see, by (3), that (F , η, Ω)

is a holomorphic vector bundle with trivialising cover{ϕα : η−1(Uα) → Uα × Yα }α∈Λ. Sinceϕα =
τα|η−1(Uα), F is a sub-bundle ofE .

Example 2. Let (F , η, Ω) be a sub-bundle of the holomorphic vector bundle(E , π, Ω). By definition
we can find a trivialising cover forπ, { τα : π−1(Uα) → Uα × Xα }α∈Λ and a collection of Banach
spaces(Yα)α∈Λ, Yα ⊂ Xα, such that{ τα|η−1(Uα) : η−1(Uα) → Uα × Yα } is a trivialising cover for

η. Let (L(E), θ, Ω) denote the holomorphic vector bundle with trivialising cover{
∧
τα : θ−1(Uα) → Uα ×

L(Xα) }α∈Λ constructed in Example1.
For eachα ∈ Λ let
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Zα := {T ∈ L(Xα) : T (Xα) ⊂ Yα, T (Yα) = 0 }.

Forα, β ∈ Λ, z ∈ Uαβ andT ∈ Zβ we have

[
∧
gαβ(z)(T )](Xα) ⊂ gαβ(z) ◦ T (gβα(z)Xα)

⊂ gαβ(z) ◦ T (Xβ)

⊂ gαβ(z)(Yβ)

⊂ Yα

and

[
∧
gαβ(z)(T )](Yα) ⊂ gαβ(z)(T (Yβ)) = {0}.

Hence
∧
gαβ(z)(Zβ) ⊂ Zα for all z ∈ Uαβ. This implies, following our discussion above, thatL(E ⊚F) :=

∪α∈Λ
∧
τα

−1
(Uα × Zα) can be endowed with the structure of a sub-bundle ofL(E).

An endomorphismof the holomorphic vector bundle(E , π, Ω) is a holomorphic mappingf : E → E
such thatf ◦ π = π, fz := f |Ez

is a continuous linear mapping for allz ∈ Ω, and the mapping

z ∈ U −→ τz ◦ fz ◦ τ−1
z ∈ L(X) (4)

is holomorphic for any trivialising mapτ : π−1(U) → U ×X . We denote byM(E) the set of all endomor-
phisms ofE . If f2

z = fz for all z ∈ Ω we callf aprojection.
Using the notation of Examples1 and2 we see that the mapping

θ : M(E) −→ Γ(L(E)), [θ(A)](z) := A|Ez
(5)

is bijective and, moreover, ifF is a sub-bundle ofE then

A(E) ⊂ F ⇐⇒ [θ(A)(z)]Ez ⊂ Fz for all z ∈ Ω (6)

and

A(F) = {0} ⇐⇒ [θ(A)(z)]Fz = {0} for all z ∈ Ω. (7)

ClearlyA ∈ M(E) is a projection if and only if[θ(A)](z) is a (linear) projection for allz ∈ Ω. For the
trivial bundle,M(Ω × X) ≃ H(Ω,L(X)).

Proposition 2. LetΩ be a pseudo-convex open subset of a Banach space with an unconditional basis. If
F := (F , η, Ω) is a sub-bundle of the holomorphic vector bundle(E , π, Ω) thenF is a direct sub-bundle if
and only if there exists a projectionp ∈ M(E) such thatp(E) = F .

PROOF. We first suppose thatF is a direct sub-bundle ofE . Let {τα : π−1(Uα) → Uα × Xα}α∈Λ

denote a trivialising cover forE such that{τα|η−1(Uα) : η−1(Uα) → Uα × Yα} is a trivialising cover
for F . By our hypothesisYα is a complemented subspace ofXα and we letPα ∈ L(Xα) denote a
continuous projection ontoYα for eachα ∈ Λ. For eachα let Eα denote the holomorphic vector bundle
(π−1(Uα), π|π−1(Uα), Uα) with trivialising cover(Uα, τα, Xα). ThenFα := (η−1(Uα), η|η−1(Uα), Uα)
with trivialising cover(Uα, τα|η−1(Uα), Yα) is a direct sub-bundle ofEα. We definefα : Eα → Eα as
follows: if z ∈ Uα let fα|Ez

=: fα,z where

fα,z(ξ) = τ−1
α,z ◦ Pα ◦ τα,z(ξ)
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for all ξ ∈ Ez. Thenfα,z ∈ L(Ez) is a projection withfα,z(Ez) = Fz for all z ∈ Uα. Sinceτα,z◦fα◦τ−1
α,z =

Pα, fα ∈ M(Eα) andfα(Eα) = Fα.
If α, β ∈ Λ andUαβ 6= ∅ let fαβ = fα|Eαβ

− fβ |Eαβ
. Thenfαβ ∈ M(Eαβ) andfαβ(Eαβ) ⊂ Fαβ .

Sincefα(ξ) = fβ(ξ) = ξ for all z ∈ Uαβ and allξ ∈ Fz, fαβ(Fαβ) = {0}. By (5) we can identifyfαβ

with gαβ ∈ Γ(L(Eαβ)) and, by Example2 and (6) and (7), gαβ ∈ Γ(L(Eαβ ⊚ Fαβ)). Since(gαβ)α,β∈Λ

forms a 1-cocycle in the sheaf ofL(E ⊚F)-valued holomorphic germs onΩ, Corollary1 implies that there
exist, for allα ∈ Λ, gα ∈ Γ(L(Eα ⊚ Fα)) such that

gα|Uαβ
− gβ|Uαβ

= gαβ . (8)

By (5) eachgα can be identified withhα ∈ M(Eα), satisfyinghα(Eα) ⊂ Fα andhα(Fα) = 0 and, by (8),

hα|Eαβ
− hβ |Eαβ

= fα|Eαβ
− fβ |Eαβ

for all α, β ∈ Λ wheneverUαβ 6= ∅. Hence

(fα − hα)|Eαβ
= (fβ − hβ)|Eαβ

wheneverUαβ 6= ∅ and the mapping

p(ξ) := fα(ξ) − hα(ξ)

for all ξ ∈ π−1(Uα) is well defined onE and belongs toM(E). Sincefα andhα both mapEα into Fα for
all α ∈ Λ it follows thatp(E) ⊂ F and asfα(Fα) = Fα andhα(Fα) = {0} this impliesp(E) = F . If
z ∈ Uα andξ ∈ Ez thenfα,z(hα,z(ξ)) = hα,z(ξ), hα,z(fα,z(ξ)) = 0, andhα,z(hα,z(ξ)) = 0. Hence

p(p(ξ)) = p(fα,z(ξ) − hα,z(ξ))

= f2
α,z(ξ) − fα,z(hα,z(ξ)) − hα,z(fα,z(ξ)) + hα,z(hα,z(ξ))

= fα,z(ξ) − hα,z(ξ)

= p(ξ).

This completes the proof in one direction.
Since the converse is a local result we may suppose thatE is the trivial bundle,Ω × X , that p ∈

H(Ω,L(X)) andp(z) is a projection for allz ∈ Ω. We must show thatF := { (z, x) : x = p(z)x } is a
direct sub-bundle ofE . Fix w ∈ Ω, and letX0 := p(w)X , X1 := (1X − p(w))X . Forz ∈ Ω let

A(z) := p(z)p(w) + (1X − p(z))(1X − p(w)).

SinceA(w) = 1X we can choose a neighbourhood ofw, Vw, such thatA(z) is invertible onVw. Then

A(z)(X0) = p(z)p(w)X ⊂ p(z)X

and

A(z)(X1) = (1X − p(z))(1X − p(w))X

⊂ (1X − p(z))X.

SinceA(z) is invertible onVw we haveA(z)(X0 +X1) = X , henceA(z)(X0) = p(z)X andA(z)(X1) =
(1X − p(z))X . If B(z) denotes the inverse ofA(z) thenX0 = B(z)(p(z)X) for all z ∈ Vw and the
mapping

Vw × X → Vw × X : (z, x) → (z, B(z)x)

provides the required trivialization. This completes the proof. �

Note that we did not require pseudo-convexity or Corollary1 for the second half of the proof.
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4 Generalised Inverses

In this section we consider the following question: iff ∈ H(Ω,L(X, Y )) andf(z) has a generalised
inverse at all points inΩ, doesf have a holomorphic generalised inverse?

Definition 3. Let f ∈ H(Ω,L(X, Y )), whereX andY are Banach spaces andΩ is an open subset of a
Banach space. A mappingg ∈ H(Ω,L(Y, X)) is called a holomorphic generalised inverse forf if g(z) is
a generalised inverse forf(z) for all z ∈ Ω.

The following example shows that a holomorphic generalisedinverse need not always exist.

Example 3. If h(z) = z1H , whereH is a one dimensional Hilbert space, thenh ∈ H(C,L(H)). If
z 6= 0, f(z) is invertible and we have a unique generalised inverseg(z) := (f(z))−1 = z−1

1H . Since
limz→0 g(z) does not existf does not have a holomorphic generalised inverse.

Proposition 3. Let f ∈ H(Ω,L(X, Y )), whereX andY are Banach spaces andΩ is an open subset of
a Banach space. Thenf has a holomorphic generalised inverse if and only if there exist P ∈ H(Ω,L(X))
andQ ∈ H(Ω,L(Y )) such thatP (z) is a continuous projection ontoker(f(z)) andQ(z) is a continuous
projection ontoim(f(z)) for all z ∈ Ω.

PROOF. If g is a holomorphic generalised inverse forf then the mappingsP andQ, defined by letting
P (z) := g(z) ◦ f(z) andQ(z) := f(z) ◦ g(z), are the required projection-valued holomorphic mappings.

Conversely, suppose we are given the projection-valued holomorphic mappingsP andQ. For conve-
nience letP ∗(z) = 1X − P (z) and letIz denote the natural injection fromP ∗(z)X into X for all z ∈ Ω.
Let

g(z) := Iz ◦
(

f∗(z)
)−1

◦ Q(z) (9)

wheref∗(z) = f(z)|P∗(z)X . The linear result in the second section shows thatg(z) is a generalised inverse
for f(z) for all z ∈ Ω.

To show thatg is holomorphic we fixw ∈ Ω and chooseǫ > 0 such thatW := { z : ‖z−w‖ < ǫ } ⊂ Ω,
‖P (z) − P (w)‖ < 1 and‖Q(z) − Q(w)‖ < 1 for all z ∈ W . Let U(z) = 1X + P (z) − P (w) =
1X−P ∗(z)+P ∗(w) andV (z) = 1Y −Q(z)+Q(w) = 1Y +Q∗(z)−Q∗(w) for all z ∈ W . By Lemma1,
U ∈ H(W, GL(X)), V ∈ H(W, GL(Y )), U(z)(P ∗(z)X) = P ∗(w)X andV (z)(Q(z)Y ) = Q(w)Y for
all z ∈ W . We have

g(z) : = (Iw ◦ U(z)−1) ◦ (U(z) ◦
(

f∗(z)
)−1

◦ V (z)−1) ◦ (V (z) ◦ Q(z))

= (Iw ◦ U(z)−1) ◦ (V (z) ◦ f(z) ◦ U(z)−1)−1 ◦ (V (z) ◦ Q(z)).

SinceV (z)◦Q(z) = Q(w)◦Q(z) for all z ∈ W the mappingz → V (z)◦Q(z) lies inH(W,L(Y, Q(w)Y ).
By Lemma1, the mappingz ∈ W → Iw ◦ U(z)−1 belongs toH(W,L(P ∗(w)X, X). It remains to show
that the mapping

z −→ k(z) :=
(

V (z) ◦ f(z) ◦ U(z)−1
)−1

lies inH(W,L(Q(w)Y, P ∗(w)X)). By construction the mapping

z −→ k∗(z) := V (z) ◦ f(z) ◦ U(z)−1

lies in H(Ω, GL(P ∗(w)X, Q(w)Y )) and, ask(z) = (k∗(z))−1, this proves thatk is holomorphic. This
completes the proof. �

We now present the main result in this article. Note that forz ∈ Ω, ker(f(z)) is the kernel of a linear
operator whileker(f) is a holomorphic vector bundle.

Theorem 2. Let Ω be a pseudo-convex open subset of a Banach space with an unconditional basis and
let X andY be Banach spaces. Iff ∈ H(Ω,L(X, Y )) has a generalised inverse for eachz ∈ Ω, then the
following conditions are equivalent:
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(1) f has a holomorphic generalised inverse onΩ,

(2) There exist holomorphic projectionsP ∈ H(Ω,L(X)) ≃ M(Ω × X) onto ker(f) := { (z, x) :
z ∈ Ω, x ∈ X, f(z)x = 0 } and Q ∈ H(Ω,L(Y )) ≃ M(Ω × Y ) onto im(f) := { (z, y) :
z ∈ Ω, y ∈ Y , y = f(z)x for somex ∈ X },

(3) ker(f) andim(f) are direct sub-bundles of the trivial bundlesΩ × X andΩ × Y respectively,

(4) For everyw ∈ Ω there exist a neighbourhoodVw of w and closed subspacesXw ⊂ X andYw ⊂ Y

such that for allz ∈ Vw, ker(f(z)) ⊕ Xw = X andim(f(z)) ⊕ Yw = Y .

PROOF. By Proposition3, (1) and (2) are equivalent. By Proposition2, (2) and (3) are equivalent. By the
definition of sub-bundle, (3) implies (4), and it remains to show that (4) implies (3).

Since the result is local we fixw ∈ Ω and show that (3) holds on a neighbourhoodVw of w. If z ∈ Vw,
x ∈ X andy ∈ Yw let g(z)(x + y) = f(z)x + y. Theng ∈ H(Vw,L(X + Yw, Y )),

ker(g(z)) = ker(f(z)) + {0} and im(g(z)) = im(f(z)) + Yw = Y

for all z ∈ Vw. Henceg is surjective with complemented kernel for allz ∈ Vw . By the proof of Proposition1
(see also Theorem 4 in [4]), ker(g) = { (z, x, y) ∈ Vw × (X + Yw) : f(z)x = 0, y = 0 } is a direct
holomorphic sub-bundle of the trivial bundleVw × (X + Yw). Sinceker(f |Vw

) ≃ ker(g) ⊂ Vw × (X +
{0}) ≃ Vw × X this impliesker(f |Vw

) is a direct sub-bundle of the trivial bundleVw × X .
By Proposition2 there exist a holomorphic projectionp ∈ H(Vw,L(X)) such thatker(f(z)) =

p(z)(X) for all z ∈ Vw. By Lemma1 and, if necessary, by restricting ourselves to a smaller neighbourhood
of w we havep(z)(X) = p(w)(X) =: Zw for all z ∈ Vw . HenceX = Zw⊕Xw andf(z)(x+y) = f(z)(y)
for all z ∈ Vw, all x ∈ Zw = ker(f(z)), and ally ∈ Xw. If h(z) := f(z)|Xw

thenh ∈ H(Vw,L(Xw, Y )),
h(z) is injective andim(f(z)) = im(h(z)) is a complemented subspace ofY for all z ∈ Vw. By adapting
the proof of Proposition 1 in [4] we see thatim(h) = im(f |Vw

) is a complemented sub-bundle of the trivial
bundleVw × Y . Hence (4) implies (3) and this completes the proof.�
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