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Holomorphically Dependent Generalised Inverses

Sean Dineen and Milena Venkova

Abstract. In this article we investigate when the pointwise existeot@ generalised inverse for
holomorphic operator-valued mappings defined on domaiasBanach space implies the existence of a
holomorphic generalised inverse.

Inversas Generalizadas Holom 6rficamente Dependientes

Resumen. En este articulo investigamos cuando la existencia jlidiei una inversa generalizada de
una aplicacion holomorfa operador-valuada definida enaminio de un espacio de Banach implica la
existencia de una inversa generalizada holomorfa.

1 Introduction

Let f denote a holomorphic mapping from a domé&lnn a Banach space int6(X,Y’), the space of
continuous linear mappings from the Banach sp&dato the Banach spacdé. Over many years different
authors, e.g.1, 2, 4, 5, 7, 12], have considered when pointwise invertibility propestief various kinds,
imply the existence of a globally smooth inverse of the samd.k~or example, iff (z) has a right inverse
for eachz € Q2 does there exigt, holomorphic orf2 with values in (Y, X), such thay(z) is a right inverse
fora f(z) for all z € Q? In this paper we continue our investigations of such probleMany results are
known when( is a domain in a finite dimensional space and our interestagsed on the problems that
arise whern is a domain in an infinite dimensional space.

We refer to B, 10] for background information on operators between Banadteag to 3, 9] for the
theory of holomorphic mappings on Banach spaces and, 16, [L7] for classical results on holomorphic
dependence of operator-valued functions over finite dim@ascomplex manifolds.

2 Linear Preliminaries

If X andY are Banach spaces ov€r £(X,Y) will denote the space of all continuous linear operators
from X to Y andGL(X,Y") will denote the set of all invertible linear operators frofto Y. If X andY

are subspaces of the Banach spZoge use the notatior = X @ Y to indicate thatX andY are closed
complemented subspaces&fand thatZ is the direct sum ofX andY. We letH (2, X') denote the set
of all X-valued holomorphic mappings defined on an open subssta Banach space. We also use the
standard notatiod(X) := £(X, X) andGL(X) := GL(X, X).
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Definition 1. LetT € £L(X,Y). If S € L(Y,X) andT ST = T we call.S a pseudo-inverséor T'. If, in
addition, ST'S = S we call S a generalised inverse fof. If T'S = 1y we call S a right inverse forT".
The operatof is called splitting ifker(7") and im(7") are complemented iX andY respectively.

The following proposition contains some important knowsuies about generalised inverses, ([2)).
Proposition 1. If X andY are Banach spaces afid € £(X,Y) then the following are equivalent:
(a) T has a pseudo-inverse,
(b) T has a generalised inverse,
(c) T is a splitting operator.

Right inverses are generalised inverses and generalisegtsas are pseudo-inverses. Slfis a pseudo-
inverse forl thenST'S is a generalised inverse fdr.

We require the following construction of a generalised isee LetT € £(X,Y) and suppos& =
ker(T) & X; andY = Y, @ im(T) are direct sum decompositions. The restrictionfofo X, T,
is a continuous bijective linear mapping frofy ontoim(7") and has, by the open mapping theorem, a
continuous inversel;'. We defineS: Y — X by letting S(y; + y2) = Ty ' (y2) for y; € Y; and
y2 € im(T). If 21 € ker(T) andzy € X; then
TST (w1 + x2) = TST(22) = T(T'T(22)) = T(22) = T(x1 + x2)
andT' ST = T. Moreover, ify; € Y7 andys € im(7), then

STS(y1 +y2) = S(TTg ' (y2)) = S(y2) = S(y1 + v2),
andS is a generalised inverse f.

Lemma 1. If P andQ are projections inC(X) and || P — Q|| < 1then(1x — P + Q) € GL(X) and
(1x — P+ Q)(P(X)) = Q(X). In particular, P(X) ~ Q(X).

PROOF LetR:=1x — P+ Q. Since(lx — P+ Q)P = QP we have
R(P(X)) = (1x — P+ Q)(P(X)) C Q(X). 1)
Since|P - Q| <1,R:=1x — P+ Q € GL(X) and

R'=(1x-P+Q'=) (P-Q)"=
n=0
Interchanging® and@ in (1) we obtain(1x — Q+P)(Q(X)) P(X)anda§P—-Q)?’P = P(1x—QP)
we see thatP — Q)?P(X) C P(X). HenceR~}(Q(X)) C P(X) andQ(X) C R(P(X)). Combining
this with (1) completes the proof. B

>

n=0

(P - Q)Q"] (Ix +P-Q).

3 Vector Bundles

In this section we recall the definition of holomorphic Bamaector bundles and generalise to Banach
spaces a result of Shubin]] (see also ]2, Theorem 3.11]).

Let7: & —  be a surjective holomorphic map of complex Banach manifolle assume that the
fibre above: € Q, &, := 7~ 1(z), has been given a Banach space structure whose topologyid®srwith
the topology induced frord. A collection (U, 7.)aca is called atrivialising coverfor 7 if (U, )aca iS
an open cover of? and for eachy € A there is a Banach spacé, such thatr,: 7= 1(U,) — U, X X, iS
a biholomorphic mapping and condition} (ii) and (i) below are satisfied.
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() 7o, = Tale. isalinear isomorphisk from £, onto X, for eachz € U,,.
(i) 7|z-1(v,) = Ta © Ta, Wheren,, is the canonical projection froii, x X, ontoU,,.

Conditions {) and (i) imply thatp,g := 74 © TEI|UQﬁXXﬁ has the fornp.s(z, z) = (2, gag(2)x),
whereg,s(z) € L(X3, Xo) andz € Xz whenever, 3 € A andz € Uy := U, NUp # 0.

(i) If o, 8 € AandU, NUg # () then the map — g,5(z) from U,g into £(X g, X,,) is holomorphic.
Two trivialising covers are said to eguivalenif their union is also a trivialising cover.

Definition 2. A holomorphic vector bundle is a tripl&, 7, 2), wherer: £ — Q is a surjective holomor-
phic map of complex Banach manifolds, together with a cléssjoivalent trivialising covers for.

We call€ thebundle spacer the projectionof the bundlef? thebaseof the bundle{r,: 7= (U,) —
Us X Xo}ty (Uay Ta, Xa), (Ua, Ta) OF justr, atrivialization of 71 (U,) andg,s atransition map Note
thatgaoz(z) =1y, forall z € U,, 9aB9By = Gay ONUapy := U NUNU, # 0, andgaﬁ(z)_l = gﬁa(z)
for all = € U,p. For convenience, we often writgin place of(&, 7, §2).

If X is a Banach space aifitlis a complex manifold, the tripl&€ x X, 7, ), wherer is the canonical
projection fromQ) x X onto (2, together with the covering trivialisatiofloxx: 2 x X — Q x X)is
called thetrivial bundle. If £ is a holomorphic vector bundle ari@, 7, X) is a trivialisation ofr=*(U)
then&y := (7~ 1(U), 7| 117, U) is a trivial bundle with covering trivialisatiofi/, 7, X ).

A holomorphic sectioof the holomorphic vector bund(€, 7, 2) is a holomorphic mapping: Q — £
suchthatro f = 1. We letI'(£) denote the set of all holomorphic section€ofor any complex manifold
) and any Banach spacé, I'(Q2 x X) ~ H(Q, X).

In proving the main result in this section we require thedaihg important theorem of Lempei][

Theorem 1. LetZ be a Banach space with an unconditional baSis; Z pseudo-convex opeéi,— 2
a holomorphic Banach vector bundle, then the sheaf cohalgrgmupsH¢(£2, £) vanish for allg > 1.

Let (Uy)aer be an open covering 6. A Cousin datafor (U, )acr IS a collection of functiong, s €
H(Uap, E) satisfyingfos + faa = 00nUss := Us NUz # 0, and fos + fay + fra = 00nUypy =
U, NUg N U, whenevel/, 3, # 0. Theadditive Cousin problemonsists in findingf, € H(U.,, &), for
all «, such that

foz'Uag - fﬁ'Uag = faﬁ

whenevel/,.3 # (). Since the Cousin data formlacocycle, whery = 1 Theoreml implies the following
result.

Corollary 1. Let Z be a Banach space with an unconditional basishe a pseudo-convex open subset
of Z, and (&, 7, ?) a holomorphic Banach vector bundle. (7, ).er is an open cover of2 and f.3 €
H(Uap, €) is a Cousin data then the corresponding Cousin problem isadibé.

Example 1. If (£,,€) is a holomorphic vector bundle we I€(&) = (J, . £(£.) and letd(T,) = =
forall T, € £(£.). Thend: L(E) — Qs surjective and ! ({z}) = L(£). = L(£.). We endowL(E).
with the Banach space structure frat€, ). Let { 7,: 71 (U,) — Us x X4 }aca be a trivialising cover
for €. Forz € U, andT, € L(€.) let

A -1

Ta(Tz) = (277'0(72 oT, o TOLJ)'
Then?a: 0=1(U,) — U, x L(X,) is a bijective mapping anaa,zz L(E)., — L(X,) is a continuous
linear mapping for alk € U,,. If

IHere and elsewhere we identify, when necess@ry, x X, and Xo.
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A A oA TE

Tag :=Ta0Tg :Uss x L(Xg) — Uap x L(X4) (2)

then, forz € U,g andT' € £L(X3), we have

Tap(2,T) = (2,9ap(2) 0 T © gga(2))
where, as previously,, s, and the transition mappingss are defined by

Pap(z, ) =Ty 0 Tﬁ_l(z,x) =: (2, 9a8(2)2)

for z € Uyp andxz € Xg. This implies that?ag is biholomorphic for allo, 3 € A whenevetU,3 # 0.
The bijective mapping{s?a)aeA can now be used with?} to define a unique complex manifold structure
on L(€) such thatr,, : 0=1(U,) — U, x L(X,) is biholomorphic for alle and such that£(€), 6, Q) is

a holomorphic vector bundle with trivialising cov@v,,, %)ae,\. This bundle has transition maﬁgw S
H(Uag, L(L(Xp), L(Xa))) Where

[905(2)] (T) = g5a() 0 T 0 gas(2)
for z € Uy andT € L(Xp).

A sub-bundleof (€, 7, Q) is a bundle(F,n, Q) whereF is a subset of, n = «|z, F. is a closed
subspace of, for all z € Q and the following condition holds:

There exists a trivialising covel 7, : 77 1(Us) — Us X Xa Jaea for £, and a collection of Banach
spacesYa)aen, Yo C Xa, such that{ 7,[,-1(v,): N (Us) — Us X Yy }aea is a trivialising cover
for F.

Note that a sub-bundle is defined locally, that is given a Buf® =, ©2) and an open cover 61, (U, )q,
and for eachw a sub-bundleF,, of &, then there exists a unique sub-bundlef £ such thatFy;,, = F,.

This means that we may and do idenfify with a subspace o, and, moreover, thég.s(z)]Ys = Y,
for the transition functiong,g wherez € U, anda, 5 € A. If eachY,, is a complemented subspace of
X,, the sub-bundle is calleddirect sub-bundle

Sub-bundles can also be characterised by using transitiariibns. Suppose we are given a trivialising
cover{7,: m 1 (Uy) — Uqs x X4 }aca for € with transition functiongg.s)a.sea, and a collection of
Banach spaced,,)aca, Yo C X, suchthafg.s(2)]Ys C Y, foralla, 3 € Aandallz € U, NUgs. Since
9ap(2) 7 = gpa(z) this implies

[9ap(2)]Ys = Yo Q)

forall 2 € Uyp. LetF = Ugean YUy x Ya), n = 7|F andyp, = Taly-1(v,) forall a € A. Then
Va2 1 H{z}) = F. — {z} x Y, is bijective and the Banach spa€ginduces onF, a Banach space
structure. Since each,, is the restriction of a bijective mapping it also is bijeetionto its image and
aSYus = Pa O cpgl(z,y) = (2,9a8(2)y) for all (z,y) € Uyp x Y3 we see, by J), that (F,n, )
is a holomorphic vector bundle with trivialising covérp,: n71(U,) — U X Ya }aea. Sincep, =
Talp-1(v.), F is asub-bundle of .

Example 2. Let (F,n,) be a sub-bundle of the holomorphic vector bun@er, 2). By definition
we can find a trivialising cover forr, {7,: 7= 1(U,) — U, x X4 }aca and a collection of Banach
spaceyYas)aca, Yo C Xa, such that{ 7,[,-1(v,): N t(U,) — U, x Y, } is a trivialising cover for

n. Let (L(€), 6,) denote the holomorphic vector bundle with trivialising eo%a: 0~ (U,) — Uy x
L(X4) }aea constructed in Examplée
For eachy € A let
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Zo ={T € L(Xa) T(Xa) CYo, T(Ya) =0}
Fora, B € A, z € Uyg andT’ € Zg we have

[905(2)(T))(Xa) C gap(2) 0 T(g5a(2)Xa)
C gap(2) o T(Xp)
C gap(2)(Yp)
cY,

and

[90s(2) (D)) (Ya) C gap(2)(T(Y5)) = {0}.

Hence@aﬁ(z)(Zg) C Z, forall z € U,g. This implies, following our discussion above, thiH{€ © F) :=
-1
UaeATa (U, x Z4) can be endowed with the structure of a sub-bundI&(@f).

An endomorphisnof the holomorphic vector bundlg€, 7, 2) is a holomorphic mapping: £ — &
suchthatf o = 7, f, := f|e, is a continuous linear mapping for alle €2, and the mapping

2€U —1,0f, o1t € L(X) (4)

is holomorphic for any trivialising map: #=1(U) — U x X. We denote byM (&) the set of all endomor-
phisms ofe. If f2 = f, forall = € Q we call f aprojection
Using the notation of Exampldsand2 we see that the mapping

0: M(&) — T(L(E)),  [0(A)](2) := Ale. (%)

is bijective and, moreover, if is a sub-bundle of then

A() CF <= [0(A)(2)]E, C F.forall z € (6)
and
A(F) = {0} < [0(A)(2)]F. = {0} forall z € Q. )

Clearly A € M(€) is a projection if and only ifd(A)](z) is a (linear) projection for alt € Q. For the
trivial bundle, M (2 x X) ~ H(, L(X)).

Proposition 2. Let(2 be a pseudo-convex open subset of a Banach space with andith@oal basis. If
F = (F,n,Q) is a sub-bundle of the holomorphic vector bun@er, 2) thenF is a direct sub-bundle if
and only if there exists a projectigne M (&) such thap(&) = F.

PROOF.  We first suppose thaf is a direct sub-bundle of. Let {r,: 7 1 (Us) — Uy X Xa}aca
denote a trivialising cover fof such that{r.|,-1(,): 7 (Us) — Ua x Y.} is a trivialising cover
for F. By our hypothesig,, is a complemented subspace ¥f, and we letP, € £(X,) denote a
continuous projection ont®, for eacha € A. For eachu let £, denote the holomorphic vector bundle
(7N (Ua), Tl x=1(u,,), Ua) With trivialising cover(Uy, 7, Xo). ThenF, := (7' (Ua),1ly-1(v.), Ua)
with trivialising cover (Us, Taly-1(v.), Ya) iS a direct sub-bundle of.,. We definef,: &, — &, as
follows: if z € U, let fole, =: fa,. Where

fa,z(§) = To:i 0 Po 0 7a,2(§)
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forall¢ € £,. Thenf, . € L(E.)is aprojectionwithf,, .(£.) = F. forall z € U,. Sincefwofaor(;i =
Py, fa € M(ga) andfa(ga) = Fa-

If o, € A andUa,@ 7£ 0 let fa,@ - fa|€,,5 - fﬁ|5,,5- Thenfa,@ € M(‘saﬁ) andfaﬁ(ga,@) - faﬁ'
Sincef, (&) = fs(§) = ¢ forall z € Uyg and all € F,, fop(Fap) = {0}. By (5) we can identifyf,zs
with g5 € T'(L(E4p3)) and, by Exampl@ and 6) and (7), gog € T'(L(Eap © Fap)). SinCe(gas)a.pen
forms a 1-cocycle in the sheaf 6{& ® F)-valued holomorphic germs di, Corollaryl implies that there
exist, for alla € A, g, € T(L(E, ® F,)) such that

9alUos = 98|Uas = Gap- (8)
By (5) eachy,, can be identified witt,, € M(E,,), satisfyingh,(€,) C F, andh,(F,) = 0 and, by 8),

haleas = hpleas = falews — foleas
forall o, 5 € A whenevel/,,5 # (). Hence

(fa - ha)|5a5 = (f,@ - h,@)|5a5
whenevel/,,3 # () and the mapping

p(§) = fa(§) — ha(§)
forall ¢ € 7=1(U,) is well defined or€ and belongs toV(€). Sincef,, andh,, both mapg, into F,, for
all « € A it follows thatp(£) C F and asfo(Fa) = Fo andhy(F,) = {0} this impliesp(€) = F. If
zeUyand§ € &, thenfa,z(ha,z(f)) = h/oz,z(g)v ha,z(fa,z(g)) =0, andha,z(ha,z(g)) = 0. Hence

p(P(§)) = p(fa,=(€) = ha,=(£))
= f3.(6) = faz(ha2(€) = haz(fa,2(€) + ha,z(ha - (£))
= fa,2(§) = ha,=(§)
= p(&).

This completes the proof in one direction.

Since the converse is a local result we may suppose&hiatthe trivial bundle) x X, thatp €
H(Q2, L(X)) andp(z) is a projection for allz € 2. We must show tha¥ := {(z,z) : « = p(z)xz } is a
direct sub-bundle of. Fix w € , and letX, := p(w)X, X1 := (1x — p(w))X. Forz € Q let

A(z) = p(2)p(w) + (1x — p(2))(1x — p(w)).
SinceA(w) = 1x we can choose a neighbourhoodqfV,,, such thatd(z) is invertible onV,,. Then

A(z)(Xo) = p(z)p(w)X C p(2)X
and

A(2)(X1) = (1x = p(2))(1x — p(w))X
C (1x —p(2)X.

SinceA(z) is invertible onV,, we haveA(z)(Xo + X1) = X, henceA(z)(Xy) = p(z)X andA(z)(X;1) =
(1x — p(2))X. If B(z) denotes the inverse of(z) then X, = B(z)(p(z)X) for all z € V,, and the
mapping

Vi x X =V x X i (2,2) = (2,B(2)x)
provides the required trivialization. This completes theqf. B

Note that we did not require pseudo-convexity or Coroltafgr the second half of the proof.
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4 Generalised Inverses

In this section we consider the following question: fife H(£2, £(X,Y)) and f(z) has a generalised
inverse at all points if2, doesf have a holomorphic generalised inverse?

Definition 3. Letf € H(Q, L(X,Y)), whereX andY are Banach spaces arfdlis an open subset of a
Banach space. A mappinge H(Q2, L(Y, X)) is called a holomorphic generalised inverse fbif g(z) is
a generalised inverse fof(z) for all z € Q.

The following example shows that a holomorphic generaliseerse need not always exist.

Example 3. If h(z) = z1p, whereH is a one dimensional Hilbert space, thene H(C, L(H)). If
z # 0, f(z) is invertible and we have a unique generalised invefsg := (f(z))~' = 2~'1y. Since
lim,_,q g(z) does not exisf does not have a holomorphic generalised inverse.

Proposition 3. Let f € H(, £L(X,Y)), whereX andY are Banach spaces arfdlis an open subset of
a Banach space. Thefhas a holomorphic generalised inverse if and only if theisteR € H (2, £(X))
and@ € H(, L(Y)) such thatP(z) is a continuous projection onfiecer(f(z)) andQ(z) is a continuous
projection ontam(f(z)) forall z € Q.

PrROOF If g is a holomorphic generalised inverse fbthen the mapping® and @, defined by letting
P(z):=g(z) o f(z) andQ(z) := f(z) o g(2), are the required projection-valued holomorphic mappings

Conversely, suppose we are given the projection-valueashhaiphic mapping$’> and@. For conve-
nience letP*(z) = 1x — P(z) and letl, denote the natural injection frof*(z)X into X for all z € Q.
Let

9(2) = Lo (f'(2) " 2 Q(2) ©)
wheref*(z) = f(z)|p+(»)x. Thelinear resultin the second section shows §iia} is a generalised inverse
for f(z) forall z € Q.

To show thay is holomorphic we fixv €  and choose > O suchthatV := {2 : ||[z—w| <€} C Q,
|P(z) — P(w)|| < 1and||Q(z) — Q(w)|| < 1forall z € W. LetU(z) = 1x + P(z) — P(w) =
1x—P*(z2)+P*(w)andV(z) = 1y —Q(2)+ Q(w) = 1y + Q*(2) — Q*(w) forall z € W. By Lemmal,
UecHW,GL(X)),V € HW,GL(Y)), U(2)(P*(2)X) = P*(w)X andV (2)(Q(2)Y) = Q(w)Y for
all z € W. We have

9(2) 1= (Lw o U(2) ™) 0 (U(2) o (f*(2)) OV(Z) Do (V(2) 0 Q(2))
= (Lo oU(2) 7)o (V(2) 0 f(2) o U(2) 7)™ 0 (V(2) 0 Q(2)).

)
2) Iles mH(W LY, Q(w)Y).
(w) . It remains to show

-1

[}

SinceV (z)oQ(z) = Q(w)oQ(z) forall z € W the mapping — V(2)oQ(
By Lemmal, the mapping: € W — I, o U(z) ! belongs toH (W, L(P*
that the mapping

z— k(z):= (V(2) o f(z)0 U(z)*l)f1
lies inH(W, L(Q(w)Y, P*(w)X)). By construction the mapping
2 — k*(2) = V(2) o f(2) o U(2x) ™
lies in H(Q, GL(P*(w)X,Q(w)Y)) and, ask(z) = (k*(z))~!, this proves that is holomorphic. This
completes the proof. B

We now present the main result in this article. Note thatfar €2, ker(f(z)) is the kernel of a linear
operator whiléker( f) is a holomorphic vector bundle.

Theorem 2. Let(2 be a pseudo-convex open subset of a Banach space with andith@oal basis and
let X andY be Banach spaces. ffe H(Q2, £L(X,Y)) has a generalised inverse for eacte (2, then the
following conditions are equivalent:
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(1) f has a holomorphic generalised inverse@n

(2) There exist holomorphic projectio® € H(2, £L(X))
z € Qux e X, f(z)x =0}andQ € H(Q,LY))
ze€QyeY,y= f(z)xforsomer € X },

M(Q x X) ontoker(f) := {(z,2) :
M(Q x Y) ontoim(f) = {(z,v) :

1212

(3) ker(f) andim(f) are direct sub-bundles of the trivial bundi@sx X and{2 x Y respectively,

(4) For everyw € 2 there exist a neighbourhodd, of w and closed subspacés,, ¢ X andY,, C Y
such that for allz € V,,,, ker(f(z)) ® X, = X andim(f(z)) @Y, =Y.

PrROOF By Propositior3, (1) and @) are equivalent. By Propositid) (2) and @) are equivalent. By the
definition of sub-bundle3) implies @), and it remains to show thag)implies @).

Since the result is local we fix € Q2 and show that3) holds on a neighbourhodd, of w. If z € V,,,
x € X andy € Yy, letg(z)(z +y) = f(2)x +y. Theng € H(Vy, L(X +Y,,Y)),

ker(g(z)) = ker(f(2)) +{0} ~and im(g(z)) = im(f(2)) + Y =Y

forall z € V,,. Hencey is surjective with complemented kernel for alE V,,,. By the proof of Propositiot
(see also Theorem 4 irf]), ker(g) = {(z,2,y) € Vi x (X +Yy) : f(2)z = 0,y = 0} is a direct
holomorphic sub-bundle of the trivial bundi§, x (X + Y,). Sinceker(f|y, ) =~ ker(g) C Vi x (X +
{0}) ~ V,, x X thisimpliesker(f|y,, ) is a direct sub-bundle of the trivial bundig, x X.

By Proposition2 there exist a holomorphic projectign € H(V,,, £(X)) such thatker(f(z)) =
p(z)(X) forall z € V,,. By Lemmal and, if necessary, by restricting ourselves to a smallehieurhood
of w we havep(z)(X) = p(w)(X) =: Z,, forall z € V,,. HenceX = Z,,® X, andf(z)(z+y) = f(2)(y)
forall z € Vi, allz € Z,, = ker(f(z)), and ally € X,,. If h(2) := f(2)|x, thenh € H(Vy, L(X,Y)),
h(z) is injective andm(f(z)) = im(h(z)) is a complemented subspaceYofor all z € V,,. By adapting
the proof of Proposition 1 ind] we see thatm (k) = im(f|v,, ) is @ complemented sub-bundle of the trivial
bundleV,, x Y. Hence §) implies @) and this completes the proof. ®
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