

Holomorphically Dependent Generalised Inverses

Seán Dineen and Milena Venkova

Abstract. In this article we investigate when the pointwise existence of a generalised inverse for holomorphic operator-valued mappings defined on domains in a Banach space implies the existence of a holomorphic generalised inverse.

Inversas Generalizadas Holomórficamente Dependientes

Resumen. En este artículo investigamos cuándo la existencia puntual de una inversa generalizada de una aplicación holomorfa operador-valuada definida en un dominio de un espacio de Banach implica la existencia de una inversa generalizada holomorfa.

1 Introduction

Let f denote a holomorphic mapping from a domain Ω in a Banach space into $\mathcal{L}(X, Y)$, the space of continuous linear mappings from the Banach space X into the Banach space Y. Over many years different authors, e.g. [1, 2, 4, 5, 7, 12], have considered when pointwise invertibility properties, of various kinds, imply the existence of a globally smooth inverse of the same kind. For example, if f(z) has a right inverse for each $z \in \Omega$ does there exist g, holomorphic on Ω with values in $\mathcal{L}(Y, X)$, such that g(z) is a right inverse for a f(z) for all $z \in \Omega$? In this paper we continue our investigations of such problems. Many results are known when Ω is a domain in a finite dimensional space.

We refer to [6, 10] for background information on operators between Banach spaces, to [3, 9] for the theory of holomorphic mappings on Banach spaces and to [6, 7, 12] for classical results on holomorphic dependence of operator-valued functions over finite dimensional complex manifolds.

2 Linear Preliminaries

If X and Y are Banach spaces over \mathbb{C} , $\mathcal{L}(X, Y)$ will denote the space of all continuous linear operators from X to Y and GL(X, Y) will denote the set of all invertible linear operators from X to Y. If X and Y are subspaces of the Banach space Z we use the notation $Z = X \oplus Y$ to indicate that X and Y are closed complemented subspaces of Z and that Z is the direct sum of X and Y. We let $\mathcal{H}(\Omega, X)$ denote the set of all X-valued holomorphic mappings defined on an open subset Ω of a Banach space. We also use the standard notation $\mathcal{L}(X) := \mathcal{L}(X, X)$ and GL(X) := GL(X, X).

Presentado por / Submitted by Amable Liñán Martínez

Recibido / Received: 11 de octubre de 2009. Aceptado / Accepted: 14 de enero de 2008.

Palabras clave / Keywords: Generalised inverse, complemented subspace, vector bundle, unconditional basis, projection.

Mathematics Subject Classifications: 46G20

^{© 2009} Real Academia de Ciencias, España.

Definition 1. Let $T \in \mathcal{L}(X, Y)$. If $S \in \mathcal{L}(Y, X)$ and TST = T we call S a pseudo-inverse for T. If, in addition, STS = S we call S a generalised inverse for T. If $TS = \mathbf{1}_Y$ we call S a right inverse for T. The operator T is called splitting if ker(T) and im(T) are complemented in X and Y respectively.

The following proposition contains some important known results about generalised inverses ([2, 12]).

Proposition 1. If X and Y are Banach spaces and $T \in \mathcal{L}(X, Y)$ then the following are equivalent:

- (a) T has a pseudo-inverse,
- (b) T has a generalised inverse,
- (c) *T* is a splitting operator.

Right inverses are generalised inverses and generalised inverses are pseudo-inverses. If S is a pseudo-inverse for T then STS is a generalised inverse for T.

We require the following construction of a generalised inverse. Let $T \in \mathcal{L}(X, Y)$ and suppose $X = \ker(T) \oplus X_1$ and $Y = Y_1 \oplus \operatorname{im}(T)$ are direct sum decompositions. The restriction of T to X_1, T_R , is a continuous bijective linear mapping from X_1 onto $\operatorname{im}(T)$ and has, by the open mapping theorem, a continuous inverse, T_R^{-1} . We define $S: Y \to X$ by letting $S(y_1 + y_2) = T_R^{-1}(y_2)$ for $y_1 \in Y_1$ and $y_2 \in \operatorname{im}(T)$. If $x_1 \in \ker(T)$ and $x_2 \in X_1$ then

$$TST(x_1 + x_2) = TST(x_2) = T(T_R^{-1}T(x_2)) = T(x_2) = T(x_1 + x_2)$$

and TST = T. Moreover, if $y_1 \in Y_1$ and $y_2 \in im(T)$, then

$$STS(y_1 + y_2) = S(TT_R^{-1}(y_2)) = S(y_2) = S(y_1 + y_2),$$

and S is a generalised inverse for T.

Lemma 1. If P and Q are projections in $\mathcal{L}(X)$ and ||P - Q|| < 1 then $(\mathbf{1}_X - P + Q) \in GL(X)$ and $(\mathbf{1}_X - P + Q)(P(X)) = Q(X)$. In particular, $P(X) \simeq Q(X)$.

PROOF. Let $R := \mathbf{1}_X - P + Q$. Since $(\mathbf{1}_X - P + Q)P = QP$ we have

$$R(P(X)) = (\mathbf{1}_X - P + Q)(P(X)) \subseteq Q(X).$$

$$\tag{1}$$

Since ||P - Q|| < 1, $R := \mathbf{1}_X - P + Q \in GL(X)$ and

$$R^{-1} = (\mathbf{1}_X - P + Q)^{-1} = \sum_{n=0}^{\infty} (P - Q)^n = \left[\sum_{n=0}^{\infty} (P - Q)^{2n}\right] (\mathbf{1}_X + P - Q).$$

Interchanging P and Q in (1) we obtain $(\mathbf{1}_X - Q + P)(Q(X)) \subseteq P(X)$ and as $(P - Q)^2 P = P(\mathbf{1}_X - QP)$ we see that $(P - Q)^2 P(X) \subseteq P(X)$. Hence $R^{-1}(Q(X)) \subseteq P(X)$ and $Q(X) \subseteq R(P(X))$. Combining this with (1) completes the proof.

3 Vector Bundles

In this section we recall the definition of holomorphic Banach vector bundles and generalise to Banach spaces a result of Shubin [11] (see also [12, Theorem 3.11]).

Let $\pi: \mathcal{E} \to \Omega$ be a surjective holomorphic map of complex Banach manifolds. We assume that the fibre above $z \in \Omega, \mathcal{E}_z := \pi^{-1}(z)$, has been given a Banach space structure whose topology coincides with the topology induced from \mathcal{E} . A collection $(U_\alpha, \tau_\alpha)_{\alpha \in \Lambda}$ is called a *trivialising cover* for π if $(U_\alpha)_{\alpha \in \Lambda}$ is an open cover of Ω and for each $\alpha \in \Lambda$ there is a Banach space X_α such that $\tau_\alpha: \pi^{-1}(U_\alpha) \to U_\alpha \times X_\alpha$ is a biholomorphic mapping and conditions (i), (ii) and (iii) below are satisfied.

- (i) $\tau_{\alpha,z} := \tau_{\alpha}|_{\mathcal{E}_z}$ is a linear isomorphism¹, from \mathcal{E}_z onto X_{α} for each $z \in U_{\alpha}$.
- (ii) $\pi|_{\pi^{-1}(U_{\alpha})} = \pi_{\alpha} \circ \tau_{\alpha}$, where π_{α} is the canonical projection from $U_{\alpha} \times X_{\alpha}$ onto U_{α} .

Conditions (i) and (ii) imply that $\rho_{\alpha\beta} := \tau_{\alpha} \circ \tau_{\beta}^{-1}|_{U_{\alpha\beta} \times X_{\beta}}$ has the form $\rho_{\alpha\beta}(z, x) = (z, g_{\alpha\beta}(z)x)$, where $g_{\alpha\beta}(z) \in \mathcal{L}(X_{\beta}, X_{\alpha})$ and $x \in X_{\beta}$ whenever $\alpha, \beta \in \Lambda$ and $z \in U_{\alpha\beta} := U_{\alpha} \cap U_{\beta} \neq \emptyset$.

(iii) If $\alpha, \beta \in \Lambda$ and $U_{\alpha} \cap U_{\beta} \neq \emptyset$ then the map $z \mapsto g_{\alpha\beta}(z)$ from $U_{\alpha\beta}$ into $\mathcal{L}(X_{\beta}, X_{\alpha})$ is holomorphic.

Two trivialising covers are said to be *equivalent* if their union is also a trivialising cover.

Definition 2. A holomorphic vector bundle is a triple $(\mathcal{E}, \pi, \Omega)$, where $\pi : \mathcal{E} \to \Omega$ is a surjective holomorphic map of complex Banach manifolds, together with a class of equivalent trivialising covers for π .

We call \mathcal{E} the *bundle space*, π the *projection* of the bundle, Ω the *base* of the bundle, $\{\tau_{\alpha} : \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times X_{\alpha}\}, (U_{\alpha}, \tau_{\alpha}, X_{\alpha}), (U_{\alpha}, \tau_{\alpha})$ or just τ_{α} a *trivialization* of $\pi^{-1}(U_{\alpha})$ and $g_{\alpha\beta}$ a *transition map*. Note that $g_{\alpha\alpha}(z) = \mathbf{1}_{X_{\alpha}}$ for all $z \in U_{\alpha}, g_{\alpha\beta}g_{\beta\gamma} = g_{\alpha\gamma}$ on $U_{\alpha\beta\gamma} := U_{\alpha} \cap U_{\beta} \cap U_{\gamma} \neq \emptyset$, and $g_{\alpha\beta}(z)^{-1} = g_{\beta\alpha}(z)$ for all $z \in U_{\alpha\beta}$. For convenience, we often write \mathcal{E} in place of $(\mathcal{E}, \pi, \Omega)$.

If X is a Banach space and Ω is a complex manifold, the triple $(\Omega \times X, \pi, \Omega)$, where π is the canonical projection from $\Omega \times X$ onto Ω , together with the covering trivialisation $(\mathbf{1}_{\Omega \times X} : \Omega \times X \to \Omega \times X)$ is called the *trivial bundle*. If \mathcal{E} is a holomorphic vector bundle and (U, τ, X) is a trivialisation of $\pi^{-1}(U)$ then $\mathcal{E}_U := (\pi^{-1}(U), \pi|_{\pi^{-1}(U)}, U)$ is a trivial bundle with covering trivialisation (U, τ, X) .

A holomorphic section of the holomorphic vector bundle $(\mathcal{E}, \pi, \Omega)$ is a holomorphic mapping $f : \Omega \to \mathcal{E}$ such that $\pi \circ f = \mathbf{1}_{\Omega}$. We let $\Gamma(\mathcal{E})$ denote the set of all holomorphic sections of \mathcal{E} . For any complex manifold Ω and any Banach space $X, \Gamma(\Omega \times X) \simeq \mathcal{H}(\Omega, X)$.

In proving the main result in this section we require the following important theorem of Lempert [8].

Theorem 1. Let Z be a Banach space with an unconditional basis, $\Omega \subset Z$ pseudo-convex open, $\mathcal{E} \to \Omega$ a holomorphic Banach vector bundle, then the sheaf coholomogy groups $H^q(\Omega, \mathcal{E})$ vanish for all $q \geq 1$.

Let $(U_{\alpha})_{\alpha\in\Gamma}$ be an open covering of Ω . A *Cousin data* for $(U_{\alpha})_{\alpha\in\Gamma}$ is a collection of functions $f_{\alpha\beta} \in \mathcal{H}(U_{\alpha\beta}, \mathcal{E})$ satisfying $f_{\alpha\beta} + f_{\beta\alpha} = 0$ on $U_{\alpha\beta} := U_{\alpha} \cap U_{\beta} \neq \emptyset$, and $f_{\alpha\beta} + f_{\beta\gamma} + f_{\gamma\alpha} = 0$ on $U_{\alpha\beta\gamma} := U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$ whenever $U_{\alpha\beta\gamma} \neq \emptyset$. The *additive Cousin problem* consists in finding $f_{\alpha} \in \mathcal{H}(U_{\alpha}, \mathcal{E})$, for all α , such that

$$f_{\alpha}|_{U_{\alpha\beta}} - f_{\beta}|_{U_{\alpha\beta}} = f_{\alpha\beta}$$

whenever $U_{\alpha\beta} \neq \emptyset$. Since the Cousin data form a 1-cocycle, when q = 1 Theorem 1 implies the following result.

Corollary 1. Let Z be a Banach space with an unconditional basis, Ω be a pseudo-convex open subset of Z, and $(\mathcal{E}, \pi, \Omega)$ a holomorphic Banach vector bundle. If $(U_{\alpha})_{\alpha \in \Gamma}$ is an open cover of Ω and $f_{\alpha\beta} \in \mathcal{H}(U_{\alpha\beta}, \mathcal{E})$ is a Cousin data then the corresponding Cousin problem is solvable.

Example 1. If $(\mathcal{E}, \pi, \Omega)$ is a holomorphic vector bundle we let $\mathcal{L}(\mathcal{E}) = \bigcup_{z \in \Omega} \mathcal{L}(\mathcal{E}_z)$ and let $\theta(T_z) = z$ for all $T_z \in \mathcal{L}(\mathcal{E}_z)$. Then $\theta \colon \mathcal{L}(\mathcal{E}) \to \Omega$ is surjective and $\theta^{-1}(\{z\}) = \mathcal{L}(\mathcal{E})_z = \mathcal{L}(\mathcal{E}_z)$. We endow $\mathcal{L}(\mathcal{E})_z$ with the Banach space structure from $\mathcal{L}(\mathcal{E}_z)$. Let $\{\tau_\alpha \colon \pi^{-1}(U_\alpha) \to U_\alpha \times X_\alpha\}_{\alpha \in \Lambda}$ be a trivialising cover for \mathcal{E} . For $z \in U_\alpha$ and $T_z \in \mathcal{L}(\mathcal{E}_z)$ let

$$\overset{\wedge}{\tau}_{\alpha}(T_z) = (z, \tau_{\alpha,z} \circ T_z \circ \tau_{\alpha,z}^{-1}).$$

Then $\stackrel{\wedge}{\tau}_{\alpha}: \theta^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathcal{L}(X_{\alpha})$ is a bijective mapping and $\stackrel{\wedge}{\tau}_{\alpha,z}: \mathcal{L}(\mathcal{E})_{z} \to \mathcal{L}(X_{\alpha})$ is a continuous linear mapping for all $z \in U_{\alpha}$. If

¹Here and elsewhere we identify, when necessary, $\{z\} \times X_{\alpha}$ and X_{α} .

$$\hat{\tau}_{\alpha\beta} := \hat{\tau}_{\alpha} \circ \hat{\tau}_{\beta}^{-1} \colon U_{\alpha\beta} \times \mathcal{L}(X_{\beta}) \longrightarrow U_{\alpha\beta} \times \mathcal{L}(X_{\alpha})$$
(2)

then, for $z \in U_{\alpha\beta}$ and $T \in \mathcal{L}(X_{\beta})$, we have

$$\stackrel{\wedge}{\tau}_{\alpha\beta}(z,T) = (z,g_{\alpha\beta}(z)\circ T\circ g_{\beta\alpha}(z))$$

where, as previously, $\rho_{\alpha\beta}$, and the transition mappings $g_{\alpha\beta}$ are defined by

$$\rho_{\alpha\beta}(z,x) := \tau_{\alpha} \circ \tau_{\beta}^{-1}(z,x) =: (z,g_{\alpha\beta}(z)x)$$

for $z \in U_{\alpha\beta}$ and $x \in X_{\beta}$. This implies that $\stackrel{\wedge}{\tau}_{\alpha\beta}$ is biholomorphic for all $\alpha, \beta \in \Lambda$ whenever $U_{\alpha\beta} \neq \emptyset$. The bijective mappings $(\stackrel{\wedge}{\tau}_{\alpha})_{\alpha\in\Lambda}$ can now be used with (2) to define a unique complex manifold structure on $\mathcal{L}(\mathcal{E})$ such that $\stackrel{\wedge}{\tau}_{\alpha}: \theta^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathcal{L}(X_{\alpha})$ is biholomorphic for all α and such that $(\mathcal{L}(\mathcal{E}), \theta, \Omega)$ is a holomorphic vector bundle with trivialising cover $(U_{\alpha}, \stackrel{\wedge}{\tau}_{\alpha})_{\alpha\in\Lambda}$. This bundle has transition maps $\stackrel{\wedge}{g}_{\alpha\beta} \in \mathcal{H}(U_{\alpha\beta}, \mathcal{L}(\mathcal{L}(X_{\beta}), \mathcal{L}(X_{\alpha})))$ where

$$\begin{bmatrix} \wedge \\ g_{\alpha\beta}(z) \end{bmatrix} (T) = g_{\beta\alpha}(z) \circ T \circ g_{\alpha\beta}(z)$$

for $z \in U_{\alpha\beta}$ and $T \in \mathcal{L}(X_{\beta})$.

A sub-bundle of $(\mathcal{E}, \pi, \Omega)$ is a bundle $(\mathcal{F}, \eta, \Omega)$ where \mathcal{F} is a subset of $\mathcal{E}, \eta = \pi|_{\mathcal{F}}, \mathcal{F}_z$ is a closed subspace of \mathcal{E}_z for all $z \in \Omega$ and the following condition holds:

There exists a trivialising cover $\{\tau_{\alpha} : \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times X_{\alpha}\}_{\alpha \in \Lambda}$ for \mathcal{E} , and a collection of Banach spaces $(Y_{\alpha})_{\alpha \in \Lambda}$, $Y_{\alpha} \subset X_{\alpha}$, such that $\{\tau_{\alpha}|_{\eta^{-1}(U_{\alpha})} : \eta^{-1}(U_{\alpha}) \to U_{\alpha} \times Y_{\alpha}\}_{\alpha \in \Lambda}$ is a trivialising cover for \mathcal{F} .

Note that a sub-bundle is defined locally, that is given a bundle $(\mathcal{E}, \pi, \Omega)$ and an open cover of Ω , $(U_{\alpha})_{\alpha}$, and for each α a sub-bundle \mathcal{F}_{α} of $\mathcal{E}_{U_{\alpha}}$, then there exists a unique sub-bundle \mathcal{F} of \mathcal{E} such that $\mathcal{F}_{U_{\alpha}} = \mathcal{F}_{\alpha}$.

This means that we may and do identify Y_{α} with a subspace of X_{α} and, moreover, that $[g_{\alpha\beta}(z)]Y_{\beta} = Y_{\alpha}$ for the transition functions $g_{\alpha\beta}$ where $z \in U_{\alpha\beta}$ and $\alpha, \beta \in \Lambda$. If each Y_{α} is a complemented subspace of X_{α} the sub-bundle is called a *direct sub-bundle*.

Sub-bundles can also be characterised by using transition functions. Suppose we are given a trivialising cover $\{\tau_{\alpha}: \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times X_{\alpha}\}_{\alpha \in \Lambda}$ for \mathcal{E} with transition functions $(g_{\alpha\beta})_{\alpha,\beta\in\Lambda}$, and a collection of Banach spaces $(Y_{\alpha})_{\alpha\in\Lambda}, Y_{\alpha} \subset X_{\alpha}$, such that $[g_{\alpha\beta}(z)]Y_{\beta} \subset Y_{\alpha}$ for all $\alpha, \beta \in \Lambda$ and all $z \in U_{\alpha} \cap U_{\beta}$. Since $g_{\alpha\beta}(z)^{-1} = g_{\beta\alpha}(z)$ this implies

$$[g_{\alpha\beta}(z)]Y_{\beta} = Y_{\alpha} \tag{3}$$

for all $z \in U_{\alpha\beta}$. Let $\mathcal{F} = \bigcup_{\alpha \in \Lambda} \pi^{-1}(U_{\alpha} \times Y_{\alpha}), \eta = \pi|_{\mathcal{F}}$ and $\varphi_{\alpha} = \tau_{\alpha}|_{\eta^{-1}(U_{\alpha})}$ for all $\alpha \in \Lambda$. Then $\varphi_{\alpha,z} : \eta^{-1}(\{z\}) = \mathcal{F}_z \to \{z\} \times Y_{\alpha}$ is bijective and the Banach space \mathcal{E}_z induces on \mathcal{F}_z a Banach space structure. Since each φ_{α} is the restriction of a bijective mapping it also is bijective onto its image and as $\varphi_{\alpha\beta} := \varphi_{\alpha} \circ \varphi_{\beta}^{-1}(z, y) = (z, g_{\alpha\beta}(z)y)$ for all $(z, y) \in U_{\alpha\beta} \times Y_{\beta}$ we see, by (3), that $(\mathcal{F}, \eta, \Omega)$ is a holomorphic vector bundle with trivialising cover $\{\varphi_{\alpha} : \eta^{-1}(U_{\alpha}) \to U_{\alpha} \times Y_{\alpha}\}_{\alpha \in \Lambda}$. Since $\varphi_{\alpha} = \tau_{\alpha}|_{\eta^{-1}(U_{\alpha})}, \mathcal{F}$ is a sub-bundle of \mathcal{E} .

Example 2. Let $(\mathcal{F}, \eta, \Omega)$ be a sub-bundle of the holomorphic vector bundle $(\mathcal{E}, \pi, \Omega)$. By definition we can find a trivialising cover for π , $\{\tau_{\alpha}: \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times X_{\alpha}\}_{\alpha \in \Lambda}$ and a collection of Banach spaces $(Y_{\alpha})_{\alpha \in \Lambda}, Y_{\alpha} \subset X_{\alpha}$, such that $\{\tau_{\alpha}|_{\eta^{-1}(U_{\alpha})}: \eta^{-1}(U_{\alpha}) \to U_{\alpha} \times Y_{\alpha}\}$ is a trivialising cover for η . Let $(\mathcal{L}(\mathcal{E}), \theta, \Omega)$ denote the holomorphic vector bundle with trivialising cover $\{\mathring{\tau}_{\alpha}: \theta^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathcal{L}(X_{\alpha})\}_{\alpha \in \Lambda}$ constructed in Example 1.

For each $\alpha \in \Lambda$ let

$$Z_{\alpha} := \{ T \in \mathcal{L}(X_{\alpha}) : T(X_{\alpha}) \subset Y_{\alpha}, T(Y_{\alpha}) = 0 \}$$

For $\alpha, \beta \in \Lambda, z \in U_{\alpha\beta}$ and $T \in Z_{\beta}$ we have

$$\begin{aligned} [\hat{g}_{\alpha\beta}(z)(T)](X_{\alpha}) &\subset g_{\alpha\beta}(z) \circ T(g_{\beta\alpha}(z)X_{\alpha}) \\ &\subset g_{\alpha\beta}(z) \circ T(X_{\beta}) \\ &\subset g_{\alpha\beta}(z)(Y_{\beta}) \\ &\subset Y_{\alpha} \end{aligned}$$

and

$$[{}^{\wedge}_{g_{\alpha\beta}}(z)(T)](Y_{\alpha}) \subset g_{\alpha\beta}(z)(T(Y_{\beta})) = \{0\}.$$

Hence $\stackrel{\wedge}{g}_{\alpha\beta}(z)(Z_{\beta}) \subset Z_{\alpha}$ for all $z \in U_{\alpha\beta}$. This implies, following our discussion above, that $\mathcal{L}(\mathcal{E} \odot \mathcal{F}) := \cup_{\alpha \in \Lambda} \stackrel{\wedge}{\tau_{\alpha}}^{-1}(U_{\alpha} \times Z_{\alpha})$ can be endowed with the structure of a sub-bundle of $\mathcal{L}(\mathcal{E})$.

An *endomorphism* of the holomorphic vector bundle $(\mathcal{E}, \pi, \Omega)$ is a holomorphic mapping $f : \mathcal{E} \to \mathcal{E}$ such that $f \circ \pi = \pi$, $f_z := f|_{\mathcal{E}_z}$ is a continuous linear mapping for all $z \in \Omega$, and the mapping

$$z \in U \longrightarrow \tau_z \circ f_z \circ \tau_z^{-1} \in \mathcal{L}(X)$$
(4)

is holomorphic for any trivialising map $\tau : \pi^{-1}(U) \to U \times X$. We denote by $\mathcal{M}(\mathcal{E})$ the set of all endomorphisms of \mathcal{E} . If $f_z^2 = f_z$ for all $z \in \Omega$ we call f a projection.

Using the notation of Examples 1 and 2 we see that the mapping

$$\theta \colon \mathcal{M}(\mathcal{E}) \longrightarrow \Gamma(\mathcal{L}(\mathcal{E})), \qquad [\theta(A)](z) := A|_{\mathcal{E}_z}$$
(5)

is bijective and, moreover, if ${\mathcal F}$ is a sub-bundle of ${\mathcal E}$ then

$$A(\mathcal{E}) \subset \mathcal{F} \iff [\theta(A)(z)]\mathcal{E}_z \subset \mathcal{F}_z \text{ for all } z \in \Omega$$
(6)

and

$$A(\mathcal{F}) = \{0\} \iff [\theta(A)(z)]\mathcal{F}_z = \{0\} \text{ for all } z \in \Omega.$$
(7)

Clearly $A \in \mathcal{M}(\mathcal{E})$ is a projection if and only if $[\theta(A)](z)$ is a (linear) projection for all $z \in \Omega$. For the trivial bundle, $\mathcal{M}(\Omega \times X) \simeq \mathcal{H}(\Omega, \mathcal{L}(X))$.

Proposition 2. Let Ω be a pseudo-convex open subset of a Banach space with an unconditional basis. If $\mathcal{F} := (\mathcal{F}, \eta, \Omega)$ is a sub-bundle of the holomorphic vector bundle $(\mathcal{E}, \pi, \Omega)$ then \mathcal{F} is a direct sub-bundle if and only if there exists a projection $p \in \mathcal{M}(\mathcal{E})$ such that $p(\mathcal{E}) = \mathcal{F}$.

PROOF. We first suppose that \mathcal{F} is a direct sub-bundle of \mathcal{E} . Let $\{\tau_{\alpha} : \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times X_{\alpha}\}_{\alpha \in \Lambda}$ denote a trivialising cover for \mathcal{E} such that $\{\tau_{\alpha}|_{\eta^{-1}(U_{\alpha})} : \eta^{-1}(U_{\alpha}) \to U_{\alpha} \times Y_{\alpha}\}$ is a trivialising cover for \mathcal{F} . By our hypothesis Y_{α} is a complemented subspace of X_{α} and we let $P_{\alpha} \in \mathcal{L}(X_{\alpha})$ denote a continuous projection onto Y_{α} for each $\alpha \in \Lambda$. For each α let \mathcal{E}_{α} denote the holomorphic vector bundle $(\pi^{-1}(U_{\alpha}), \pi|_{\pi^{-1}(U_{\alpha})}, U_{\alpha})$ with trivialising cover $(U_{\alpha}, \tau_{\alpha}, X_{\alpha})$. Then $\mathcal{F}_{\alpha} := (\eta^{-1}(U_{\alpha}), \eta|_{\eta^{-1}(U_{\alpha})}, U_{\alpha})$ with trivialising cover $(U_{\alpha}, \tau_{\alpha}|_{\eta^{-1}(U_{\alpha})}, Y_{\alpha})$ is a direct sub-bundle of \mathcal{E}_{α} . We define $f_{\alpha} : \mathcal{E}_{\alpha} \to \mathcal{E}_{\alpha}$ as follows: if $z \in U_{\alpha}$ let $f_{\alpha}|_{\mathcal{E}_{z}} :=: f_{\alpha,z}$ where

$$f_{\alpha,z}(\xi) = \tau_{\alpha,z}^{-1} \circ P_{\alpha} \circ \tau_{\alpha,z}(\xi)$$

for all $\xi \in \mathcal{E}_z$. Then $f_{\alpha,z} \in \mathcal{L}(\mathcal{E}_z)$ is a projection with $f_{\alpha,z}(\mathcal{E}_z) = \mathcal{F}_z$ for all $z \in U_\alpha$. Since $\tau_{\alpha,z} \circ f_\alpha \circ \tau_{\alpha,z}^{-1} = P_\alpha$, $f_\alpha \in \mathcal{M}(\mathcal{E}_\alpha)$ and $f_\alpha(\mathcal{E}_\alpha) = \mathcal{F}_\alpha$.

If $\alpha, \beta \in \Lambda$ and $U_{\alpha\beta} \neq \emptyset$ let $f_{\alpha\beta} = f_{\alpha}|_{\mathcal{E}_{\alpha\beta}} - f_{\beta}|_{\mathcal{E}_{\alpha\beta}}$. Then $f_{\alpha\beta} \in \mathcal{M}(\mathcal{E}_{\alpha\beta})$ and $f_{\alpha\beta}(\mathcal{E}_{\alpha\beta}) \subset \mathcal{F}_{\alpha\beta}$. Since $f_{\alpha}(\xi) = f_{\beta}(\xi) = \xi$ for all $z \in U_{\alpha\beta}$ and all $\xi \in \mathcal{F}_z$, $f_{\alpha\beta}(\mathcal{F}_{\alpha\beta}) = \{0\}$. By (5) we can identify $f_{\alpha\beta}$ with $g_{\alpha\beta} \in \Gamma(\mathcal{L}(\mathcal{E}_{\alpha\beta}))$ and, by Example 2 and (6) and (7), $g_{\alpha\beta} \in \Gamma(\mathcal{L}(\mathcal{E}_{\alpha\beta} \odot \mathcal{F}_{\alpha\beta}))$. Since $(g_{\alpha\beta})_{\alpha,\beta\in\Lambda}$ forms a 1-cocycle in the sheaf of $\mathcal{L}(\mathcal{E} \odot \mathcal{F})$ -valued holomorphic germs on Ω , Corollary 1 implies that there exist, for all $\alpha \in \Lambda$, $g_{\alpha} \in \Gamma(\mathcal{L}(\mathcal{E}_{\alpha} \odot \mathcal{F}_{\alpha}))$ such that

$$g_{\alpha}|_{U_{\alpha\beta}} - g_{\beta}|_{U_{\alpha\beta}} = g_{\alpha\beta}.$$
(8)

By (5) each g_{α} can be identified with $h_{\alpha} \in \mathcal{M}(\mathcal{E}_{\alpha})$, satisfying $h_{\alpha}(\mathcal{E}_{\alpha}) \subset \mathcal{F}_{\alpha}$ and $h_{\alpha}(\mathcal{F}_{\alpha}) = 0$ and, by (8),

$$h_{\alpha}|_{\mathcal{E}_{\alpha\beta}} - h_{\beta}|_{\mathcal{E}_{\alpha\beta}} = f_{\alpha}|_{\mathcal{E}_{\alpha\beta}} - f_{\beta}|_{\mathcal{E}_{\alpha\beta}}$$

for all $\alpha, \beta \in \Lambda$ whenever $U_{\alpha\beta} \neq \emptyset$. Hence

$$(f_{\alpha} - h_{\alpha})|_{\mathcal{E}_{\alpha\beta}} = (f_{\beta} - h_{\beta})|_{\mathcal{E}_{\alpha\beta}}$$

whenever $U_{\alpha\beta} \neq \emptyset$ and the mapping

$$p(\xi) := f_{\alpha}(\xi) - h_{\alpha}(\xi)$$

for all $\xi \in \pi^{-1}(U_{\alpha})$ is well defined on \mathcal{E} and belongs to $\mathcal{M}(\mathcal{E})$. Since f_{α} and h_{α} both map \mathcal{E}_{α} into \mathcal{F}_{α} for all $\alpha \in \Lambda$ it follows that $p(\mathcal{E}) \subset \mathcal{F}$ and as $f_{\alpha}(\mathcal{F}_{\alpha}) = \mathcal{F}_{\alpha}$ and $h_{\alpha}(\mathcal{F}_{\alpha}) = \{0\}$ this implies $p(\mathcal{E}) = \mathcal{F}$. If $z \in U_{\alpha}$ and $\xi \in \mathcal{E}_z$ then $f_{\alpha,z}(h_{\alpha,z}(\xi)) = h_{\alpha,z}(\xi), h_{\alpha,z}(f_{\alpha,z}(\xi)) = 0$, and $h_{\alpha,z}(h_{\alpha,z}(\xi)) = 0$. Hence

$$p(p(\xi)) = p(f_{\alpha,z}(\xi) - h_{\alpha,z}(\xi))$$

= $f_{\alpha,z}^2(\xi) - f_{\alpha,z}(h_{\alpha,z}(\xi)) - h_{\alpha,z}(f_{\alpha,z}(\xi)) + h_{\alpha,z}(h_{\alpha,z}(\xi))$
= $f_{\alpha,z}(\xi) - h_{\alpha,z}(\xi)$
= $p(\xi)$.

This completes the proof in one direction.

Since the converse is a local result we may suppose that \mathcal{E} is the trivial bundle, $\Omega \times X$, that $p \in \mathcal{H}(\Omega, \mathcal{L}(X))$ and p(z) is a projection for all $z \in \Omega$. We must show that $\mathcal{F} := \{(z, x) : x = p(z)x\}$ is a direct sub-bundle of \mathcal{E} . Fix $w \in \Omega$, and let $X_0 := p(w)X$, $X_1 := (\mathbf{1}_X - p(w))X$. For $z \in \Omega$ let

$$A(z) := p(z)p(w) + (\mathbf{1}_X - p(z))(\mathbf{1}_X - p(w)).$$

Since $A(w) = \mathbf{1}_X$ we can choose a neighbourhood of w, V_w , such that A(z) is invertible on V_w . Then

$$A(z)(X_0) = p(z)p(w)X \subset p(z)X$$

and

$$A(z)(X_1) = (\mathbf{1}_X - p(z))(\mathbf{1}_X - p(w))X$$

$$\subset (\mathbf{1}_X - p(z))X.$$

Since A(z) is invertible on V_w we have $A(z)(X_0 + X_1) = X$, hence $A(z)(X_0) = p(z)X$ and $A(z)(X_1) = (\mathbf{1}_X - p(z))X$. If B(z) denotes the inverse of A(z) then $X_0 = B(z)(p(z)X)$ for all $z \in V_w$ and the mapping

$$V_w \times X \to V_w \times X : (z, x) \to (z, B(z)x)$$

provides the required trivialization. This completes the proof.

Note that we did not require pseudo-convexity or Corollary 1 for the second half of the proof.

4 Generalised Inverses

In this section we consider the following question: if $f \in \mathcal{H}(\Omega, \mathcal{L}(X, Y))$ and f(z) has a generalised inverse at all points in Ω , does f have a holomorphic generalised inverse?

Definition 3. Let $f \in \mathcal{H}(\Omega, \mathcal{L}(X, Y))$, where X and Y are Banach spaces and Ω is an open subset of a Banach space. A mapping $g \in \mathcal{H}(\Omega, \mathcal{L}(Y, X))$ is called a holomorphic generalised inverse for f if g(z) is a generalised inverse for f(z) for all $z \in \Omega$.

The following example shows that a holomorphic generalised inverse need not always exist.

Example 3. If $h(z) = z\mathbf{1}_H$, where H is a one dimensional Hilbert space, then $h \in \mathcal{H}(\mathbb{C}, \mathcal{L}(H))$. If $z \neq 0, f(z)$ is invertible and we have a unique generalised inverse $g(z) := (f(z))^{-1} = z^{-1}\mathbf{1}_H$. Since $\lim_{z\to 0} g(z)$ does not exist f does not have a holomorphic generalised inverse.

Proposition 3. Let $f \in \mathcal{H}(\Omega, \mathcal{L}(X, Y))$, where X and Y are Banach spaces and Ω is an open subset of a Banach space. Then f has a holomorphic generalised inverse if and only if there exist $P \in \mathcal{H}(\Omega, \mathcal{L}(X))$ and $Q \in \mathcal{H}(\Omega, \mathcal{L}(Y))$ such that P(z) is a continuous projection onto $\ker(f(z))$ and Q(z) is a continuous projection onto $\ker(f(z))$ and Q(z) is a continuous projection onto $\inf(f(z))$ for all $z \in \Omega$.

PROOF. If g is a holomorphic generalised inverse for f then the mappings P and Q, defined by letting $P(z) := g(z) \circ f(z)$ and $Q(z) := f(z) \circ g(z)$, are the required projection-valued holomorphic mappings.

Conversely, suppose we are given the projection-valued holomorphic mappings P and Q. For convenience let $P^*(z) = \mathbf{1}_X - P(z)$ and let I_z denote the natural injection from $P^*(z)X$ into X for all $z \in \Omega$. Let

$$g(z) := I_z \circ \left(f^*(z)\right)^{-1} \circ Q(z) \tag{9}$$

where $f^*(z) = f(z)|_{P^*(z)X}$. The linear result in the second section shows that g(z) is a generalised inverse for f(z) for all $z \in \Omega$.

To show that g is holomorphic we fix $w \in \Omega$ and choose $\epsilon > 0$ such that $W := \{z : ||z-w|| < \epsilon\} \subset \Omega$, ||P(z) - P(w)|| < 1 and ||Q(z) - Q(w)|| < 1 for all $z \in W$. Let $U(z) = \mathbf{1}_X + P(z) - P(w) = \mathbf{1}_X - P^*(z) + P^*(w)$ and $V(z) = \mathbf{1}_Y - Q(z) + Q(w) = \mathbf{1}_Y + Q^*(z) - Q^*(w)$ for all $z \in W$. By Lemma 1, $U \in \mathcal{H}(W, GL(X)), V \in \mathcal{H}(W, GL(Y)), U(z)(P^*(z)X) = P^*(w)X$ and V(z)(Q(z)Y) = Q(w)Y for all $z \in W$. We have

$$g(z) := (I_w \circ U(z)^{-1}) \circ (U(z) \circ (f^*(z))^{-1} \circ V(z)^{-1}) \circ (V(z) \circ Q(z))$$

= $(I_w \circ U(z)^{-1}) \circ (V(z) \circ f(z) \circ U(z)^{-1})^{-1} \circ (V(z) \circ Q(z)).$

Since $V(z) \circ Q(z) = Q(w) \circ Q(z)$ for all $z \in W$ the mapping $z \to V(z) \circ Q(z)$ lies in $\mathcal{H}(W, \mathcal{L}(Y, Q(w)Y))$. By Lemma 1, the mapping $z \in W \to I_w \circ U(z)^{-1}$ belongs to $\mathcal{H}(W, \mathcal{L}(P^*(w)X, X))$. It remains to show that the mapping

$$z \longrightarrow k(z) := \left(V(z) \circ f(z) \circ U(z)^{-1} \right)^{-1}$$

lies in $\mathcal{H}(W, \mathcal{L}(Q(w)Y, P^*(w)X))$. By construction the mapping

$$z \longrightarrow k^*(z) := V(z) \circ f(z) \circ U(z)^{-1}$$

lies in $\mathcal{H}(\Omega, GL(P^*(w)X, Q(w)Y))$ and, as $k(z) = (k^*(z))^{-1}$, this proves that k is holomorphic. This completes the proof.

We now present the main result in this article. Note that for $z \in \Omega$, ker(f(z)) is the kernel of a linear operator while ker(f) is a holomorphic vector bundle.

Theorem 2. Let Ω be a pseudo-convex open subset of a Banach space with an unconditional basis and let X and Y be Banach spaces. If $f \in \mathcal{H}(\Omega, \mathcal{L}(X, Y))$ has a generalised inverse for each $z \in \Omega$, then the following conditions are equivalent:

- (1) f has a holomorphic generalised inverse on Ω ,
- (2) There exist holomorphic projections $P \in \mathcal{H}(\Omega, \mathcal{L}(X)) \simeq \mathcal{M}(\Omega \times X)$ onto $\ker(f) := \{(z, x) : z \in \Omega, x \in X, f(z)x = 0\}$ and $Q \in \mathcal{H}(\Omega, \mathcal{L}(Y)) \simeq \mathcal{M}(\Omega \times Y)$ onto $\operatorname{im}(f) := \{(z, y) : z \in \Omega, y \in Y, y = f(z)x \text{ for some } x \in X\},$
- (3) ker(f) and im(f) are direct sub-bundles of the trivial bundles $\Omega \times X$ and $\Omega \times Y$ respectively,
- (4) For every $w \in \Omega$ there exist a neighbourhood V_w of w and closed subspaces $X_w \subset X$ and $Y_w \subset Y$ such that for all $z \in V_w$, $\ker(f(z)) \oplus X_w = X$ and $\operatorname{im}(f(z)) \oplus Y_w = Y$.

PROOF. By Proposition 3, (1) and (2) are equivalent. By Proposition 2, (2) and (3) are equivalent. By the definition of sub-bundle, (3) implies (4), and it remains to show that (4) implies (3).

Since the result is local we fix $w \in \Omega$ and show that (3) holds on a neighbourhood V_w of w. If $z \in V_w$, $x \in X$ and $y \in Y_w$ let g(z)(x+y) = f(z)x + y. Then $g \in \mathcal{H}(V_w, \mathcal{L}(X+Y_w, Y))$,

$$\ker(g(z)) = \ker(f(z)) + \{0\}$$
 and $\operatorname{im}(g(z)) = \operatorname{im}(f(z)) + Y_w = Y$

for all $z \in V_w$. Hence g is surjective with complemented kernel for all $z \in V_w$. By the proof of Proposition 1 (see also Theorem 4 in [4]), $\ker(g) = \{(z, x, y) \in V_w \times (X + Y_w) : f(z)x = 0, y = 0\}$ is a direct holomorphic sub-bundle of the trivial bundle $V_w \times (X + Y_w)$. Since $\ker(f|_{V_w}) \simeq \ker(g) \subset V_w \times (X + \{0\}) \simeq V_w \times X$ this implies $\ker(f|_{V_w})$ is a direct sub-bundle of the trivial bundle $V_w \times X$.

By Proposition 2 there exist a holomorphic projection $p \in \mathcal{H}(V_w, \mathcal{L}(X))$ such that $\ker(f(z)) = p(z)(X)$ for all $z \in V_w$. By Lemma 1 and, if necessary, by restricting ourselves to a smaller neighbourhood of w we have $p(z)(X) = p(w)(X) =: Z_w$ for all $z \in V_w$. Hence $X = Z_w \oplus X_w$ and f(z)(x+y) = f(z)(y) for all $z \in V_w$, all $x \in Z_w = \ker(f(z))$, and all $y \in X_w$. If $h(z) := f(z)|_{X_w}$ then $h \in \mathcal{H}(V_w, \mathcal{L}(X_w, Y))$, h(z) is injective and $\operatorname{im}(f(z)) = \operatorname{im}(h(z))$ is a complemented subspace of Y for all $z \in V_w$. By adapting the proof of Proposition 1 in [4] we see that $\operatorname{im}(h) = \operatorname{im}(f|_{V_w})$ is a complemented sub-bundle of the trivial bundle $V_w \times Y$. Hence (4) implies (3) and this completes the proof.

Acknowledgement. This work was carried out with the partial support of SFI grant R9317.

References

- ALLAN, G. R., (1967). On one-sided inverses in Banach algebras of holomorphic vector-valued functions, J. London Math. Soc., 42, 463–470.
- [2] ATKINSON, F. V., (1953). On relatively regular operators, Acta Sc. Math. Szeged., 15, 38–56.
- [3] DINEEN, S., (1999). *Complex Analysis on Infinite Dimensional Spaces*, Springer-Verlag Monographs in Mathematics.
- [4] DINEEN, S., PATYI, I. AND VENKOVA, M., (2006). Inverses Depending Holomorphically on a Parameter in a Banach Space, J. Funct. Anal., 237, 141–156.
- [5] DINEEN, S. AND VENKOVA, M., Fredholm-Valued Holomorphic Mappings on a Banach Space, *Indag. Math.* (to appear).
- [6] GOHBERG, I., GOLBERG, S. AND KAASHOEK, M. A., (1990). Classes of Linear Operators, Vol. 1, Birkhäuser, Basel.
- [7] GRAMSCH, B. AND KABALLO, W., (1980). Spectral Theory for Fredholm functions, in *Functional Analysis: Surveys and Recent Results II*, Proceedings of the Paderborn Conference on Functional Analysis, Ed. K-D. Bierstedt and B. Fuchssteiner, North-Holland Mathematical Studies, 38, 319–342.

- [8] LEMPERT, L., (2004). Vanishing Cohomology for Holomorphic Vector Bundles in a Banach Setting, Asian J. Math., 8, 1, 65–68.
- [9] MUJICA, J., (1986). Complex Analysis in Banach Spaces, North-Holland Mathematical Studies, 120.
- [10] MURPHY, G. J., (1990). C*-Algebras and Operator Theory, Academic Press, Inc.
- [11] SHUBIN, M. A., (1979). On Holomorphic Families of Subspaces of a Banach Space, *Integral Equations and Operator Theory*, 2, 3, 407–420, (Translation from Mat. Issled. (Kishinev) 5, vyp 4 (18), 1970, 153–165.)
- [12] ZAIDENBERG, M. G., KREIN, S. G., KUCHMENT, P. A. AND PANKOV, A. A., (1975). Banach Bundles and Linear Operators, *Russian Math. Surveys*, 30, 5, 115–175.

Seán Dineen	Milena Venkova
School of Mathematical Sciences,	School of Mathematical Sciences,
University College	University College
Dublin,	Dublin,
Dublin 4,	Dublin 4,
Ireland.	Ireland.