RACSAM

Rev. R. Acad. Cien. Serie A. Mat.
VoL. 102 (2), 2008, pp. 221-235

Andlisis Matemdtico / Mathematical Analysis

On the structure of the ultradistributions of Beurling type

Manuel Valdivia

Abstract. Let Q be a nonempty open set of the k-dimensional euclidean space R*. In this paper, we
give a structure theorem on the ultradistributions of Beurling type in 2. Also, other structure results on
certain ultradistributions are obtained, in terms of complex Borel measures in §2.

Sobre la estructura de las ultradistribuciones de tipo Beurling

Resumen. Sea () un abierto no vacio del espacio euclideo k-dimensional R*. En este articulo se obtiene
un teorema de estructura de las ultradistribuciones de Beurling definidas en 2. También se obtienen otros
resultados de estructura de ciertas ultradistribuciones, en términos de medidas complejas definidas en §2.

1 Introduction and notation

Throughout this paper all linear spaces are assumed to be defined over the field C of complex numbers. We
write N for the set of positive integers and by Ny we mean the set of nonnegative integers.

If E is a locally convex space, E’ will be its topological dual and (-, -) will denote the standard duality
between E and E'.

Given a Banach space X, B(X) denotes its closed unit ball and X * is the Banach space conjugate of X .

Given a positive integer k, if o := (aq, ag, ..., ay) is a multiindex of order k, i.e., an element of N’g’,
we put |a for its length, that is, || = a1 + ag + -+ - + ag, and a! := oyl ag! ... gl
Given a complex function f defined in the points = (z1,z2,...,z)) of an open subset O of the
k-dimensional euclidean space R*, and being infinitely differentiable, we write
9ol f(x)
Def(x) := r€0, acNk
/(@) dx{0x5? ...zt ’ 0
We consider a sequence My, M, ..., M, ...of positive numbers satisfying the following conditions:
1. My=1.

2. Logarithmic convexity:
M2 < M, 1M,, n € N.

3. Non-quasi-analyticity:

i]\f&_l < 0.

n=1
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M. Valdivia

Let us take a nonempty open set {2 in R*. A complex function f, defined and infinitely differentiable
in £, is said to be ultradifferentiable of class (M,,) whenever, given h > 0 and a compact subset K of €2,
there is C' > 0 such that

IDf(z)] < Ch*IM,, reK, aeNE

We put £M»)(Q) to denote the linear space over C formed by all the ultradifferentiable functions of class
(M,,) defined in €2, with the ordinary topology, [1]. The topological dual of £(*~)(Q) will be represented
by EM)'(Q). By DM»)(Q) we denote the linear subspace of £(Mn)(£2) formed by those functions which
have compact support.

Given i > 0, by S(gM")’h(Q) we represent the linear space over C of the complex functions f, defined
and infinitely differentiable in €2, such that they vanish at infinity and also does each of its derivatives of
any order, i.e., given € > 0 and 3 € N, there is a compact subset K of 2 such that

|DP f(z)| < e, x €N\ K,
satisfying also that there is C' > 0, depending only on f, for which
|Df(z)| < Ch*M,, 2€Q, aeN}.

We set

|D f ()]
flp == sup sup ————
7] aeNE z€Q h\ale

and assume that géM"')’h(Q) is endowed with the norm | - |,. We then put

EM(Q) = () &MV ™M),

m=1

We consider EéM")(Q) as the projective limit of the sequence (SéM”)’l/ "(€)) of Banach spaces. We
assume the topological dual ESM”)/(Q) of E(SM”) (©) endowed with the strong topology.

We take now a fundamental sequence of compact subsets of )
KicKyCc---CK,C---

If K is an arbitrary compact subset of §2, we use DM») (K) to denote the subspace of £) (Q2) formed by
those functions which have their support in K. We then have that

DMI(Q) = ] DM(K,,).

m=1

We consider DM»)(Q) as the inductive limit of the sequence (DM»)(,,)) of Fréchet spaces. The ele-
ments of the topological dual DM»)"(Q) of DM»)(Q) are called ultradistributions of Beurling type in Q.
We assume that D(*»)’(Q) has its strong topology.

We write Cy(€2) for the linear space over C of the complex functions f, defined and continuous in £2,
which vanish at infinity. We put

[/ lloc := sup | f(z)],
e

and assume that Cp(2) has the norm || - ||oo-

By K(£2) we mean the linear space over C of the complex functions defined in £ which are continuous
and have compact support. If K is any compact subset of {2, K(K) is the subspace of Cy({2) formed by the
functions with support contained in K. We consider K(2) as the inductive limit of the sequence (IC(K,))
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of Banach spaces. A Radon measure in €2 is an element of the topological dual X'(£2) of K(£2). Given a
Radon measure u in € and a compact subset K of 2, we put ||u||(K) for the norm of the restriction of u to
the Banach space IC(K).

In [1, p. 76], a structure theorem for ultradistributions of Beurling type in 2 is given such that we may
state in the following way: a) If S is an element of D) (Q) and G is an open subset of Q which is
relatively compact, for each o € NE, we may find an element v,, in the conjugate of the Banach space
K(G), whose norm we represent by ||v,||, such that, for some h > 0,

sup hla‘MMHvaH < 00
(XGN[’}'

S\G = Z D“va.

aeNé

and

In this paper, we shall prove the following structure theorem on the ultradistributions of Beurling type in €2:
b) If S is an element of DMn)(Q), there is a family (uq, : o € NE ) of Radon measures in Q) so that

(.8) =Y (D%,us), @ eDMI(Q),

aEN’g

where the series converges absolute and uniformly in every bounded subset of D(M")(Q). Besides, for a
given compact subset K of €, there is h > 0 such that

sup hlo“M‘a|HuQ||(K) < 00.
a€EeNE

We shall also give structure theorems for some ultradistributions of Beurling type in terms of complex Borel
measures in {2.

2 Basic constructions

Let X be a Banach space. We use || - || to denote the norm of X and also for the norm of X*. Let Ao, A1,
.. An, ... be a sequence of positive numbers. Given r € N and o € Nk, for each 2 € X, we write

rlol|z|
Ala

|70 =

We denote by X, , the linear space X provided with the norm | - | .. The Banach space conjugate of X,
will be X, and we still will use | - |,. o for its norm. Clearly, if u is in X*, then

Alal

el

|ulro =
We put Z,. for the linear space over C formed by the families (z,, : a € N&) of elements of X, for which
we shall briefly write (z,), such that

lof

' X

o)l = sup “ Wl o
aEN(’ﬁ [ex|

We assume Z,. provided with the norm || - ||,-. It follows that Z,. D Z,.,; and that the canonical injection
from Z, 1 into Z,. is continuous.

We write Z for the Fréchet space given by the projective limit of the sequence (Z,.) of Banach spaces.
We assume that Z’ is endowed with its strong topology.
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If (x,,) is an element of Z and 3 is in N, we set

Z3, ifa= ﬁ,
0, ifa#p.

o =

o T

Clearly, (z2) belongs to Z and, for each r € N,

If Z5 represents the subspace of Z formed by those elements (x,,) are such that z, = 0 when o # 3, we
have that Z# is topologically isomorphic to X, and considering Z” as a linear subspace of Z,., then it is

isometric to X, g.
For an arbitrary element v € Z’ and r € N, we put

[ullry := sup{[{(za), w)| : (za) € B(Zr) N Z }.

For each u € Z’ and each 3 € N’g, we identify, in a natural manner, the restriction of u to Z # with an

element ug of X™.

Proposition 1 Ifu belongs to Z', there is v € N such that

sup =¥ ol [ual| < fluflgy < oo,
aEN(’j

and

<($a)>u> = Z (xa7ua>7 (*Ta) € Z,

aEN’g
where the series converges absolute and uniformly in every bounded subset of Z.

PROOF.  We find a positive integer 7 such that |[u||, is finite. We fix 3 in N§. We have that

[(W)lry = sup{ [{(za), w)| : (za) € B(Z,) N Z }
> sup{ [((z),u)| : (o) € B(Z:) N Z}
= sup{ [(zg, ug)| : |zglrp <1}

Alg|
= |Uﬁ|r,ﬂ = WHUBH

and from here
sup 71N o [Juall < [l < oo
aeNk

6]

2

We take now (z,,) in Z and we see that the family ( (z2) : 3 € N} ) is summable in Z, with sum (z,,). For

this, let us choose s, ¢ € N and we have that

lex]
)~ 3 @l = sup Z 1l
1B1<q lal>a led
(29) ]

jal>q 2% g
1 25)lel
L (2s)1%1]|zq |
29 QENS’ )\‘04

1

= @H(%)stv
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from where the conclusion follows. From

in Z, we deduce that

((za)iu) = D (@), u) = ) (25, up).

BENE BENE

We now take a bounded subset B of Z. We find b > 0 such that B C bB(Za,). We choose an arbitrary
element () of B. We fix 3 in Nf. Then

(2kr) gl Ajsllus]

(zg,ug)l < [lzsllllugll =
’ ’ | (2kr)1P]

1 AkﬂHua”

< [(za)ll2kr sUp ————

(2h)7 metys 1l

1

< Gy @) laerllule
1

and since
> =2
BENE (Qk)lﬂl ’
0

the result follows. W

Note In the former theorem, if we take an arbitrary bounded subset M of Z’, we may choose r in such a
way that (1) is satisfied for each element « of M. Then, (2) converges absolute and uniformly when (z,,)
runs in any bounded subset of Z, and u varies in M.

Proposition 2 Let (v, : o € NE) be a family of elements of X* such that there is h > 0 with

sup hla‘)\|a|Hva|| < 00.
aeNk

Then, there is a unique element v in Z' such that u, = vy, @ € N’g.

PROOF. We find r in N such that 1/r < h. Let 3 be fixed in N&. We take (z,) in Z. Then

(2kr) Mzl A lvsll

< =
w003} < Noslllusl = “=5-EE - TR0
1 Alatllvall
< a T T ol
1
< I(@a)ll2kr sup 21*Aqlval

N (2k)|6| aEeNk

from we where we have that the complex function u defined in Z such that

u((za)) = Z (TasVa), (Ta) € Z,

aeNk
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which is clearly linear, is also continuous. After the former proposition we have that

<(x04)7u> = Z <xa7ua>7 (J?a) € Z.

aeNk

We fix v in N§. We take an arbitrary element ., € X. If (2)) is the element of Z7 such that T] = T, it
follows that

(), uy) = {(22)yw) = D (2, va) = (24, 04),

aENE

and so u, = v., v € N§. The uniqueness of u obtains after the linear span of (J{ Z” : 8 € Nf } being
denseinZ. M

3 On the structure of certain ultradistributions

In this section, we substitute the sequence \,,, n € Ny, of the previous section by M,,, n € N’g . We take
Co(9) instead of X. Hence, each element of Z,. is a family ( f, : a € NE ) of elements of C(£2), and

la|
”(fa)”r = sup supw < o0,
aENE IS Ma

We put V. to denote the subspace of Z,. formed by the families ( D*f : o € N£ ) such that
fe &M,

Let
@: EMNQ) —

such that
o, (f)=(D°f),  fe&Mq).

Then @, is an onto linear isometry. We set V := ({ V. : r € N}, considered as a subspace of Z. Let
o: M) — v

such that
O(f) = (D°f),  fe&M@).
Clearly,  is a topological isomorphism from S(()M") onto V.
Theorem 1 If (i, : o € NE ) is a family of complex Borel measures in §) such that there is h > 0 with

sup hlalM\(x||,u‘a|(Q) < o0,
aeNg

then there is an element S of SéM")'(Q) such that

8= / Ddpa, o £M (@),

aEN’g

where this series converges absolute and uniformly in every bounded subset of S(EM") ().
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PROOF. For each a € NE, we consider 1, as a linear functional on C(€2) by means of the usual duality

(0, pra) = /Q pdpa, @€ Co(Q).
Thus, the norm of i, is |q|(€2). We apply propositions 1 and 2 to obtain an element  in Z’ such that

(fa)u) =D (fartta),  (fa) € 2,

a€eNg

where this series converges absolute and uniformly in every bounded subset of Z. We restrict v to V' and
keep denoting by wu this restriction. Then

(0)0) = S AD%) = ¥ [ Do e @),

a€eNg a€eNg
If
eV — 5(§M")(Q)

is the transpose mapping of @, we put S := *®(u). Then, for each p € SéM") (Q), we have

(D%0),u) = (2(p), u) = (p,"®(u)) = (g, ),

and so
(.9 =Y A Ddpa,  pe&M(Q).

a€eNy

The absolute and uniform convergence of this series in every bounded subset of SéM") (€2) is now immedi-
ate.

Theorem 2 [f S is an element of E(EM")/(Q), there are h > 0 and a family (i, : o € N ) of complex
Borel measures in Q) such that
sup 71 M| (€2) < oo

a€eNE

(.8 = > /QD“sodua, p e &M@,

aENS
where this series converges absolute and uniformly in every bounded subset of S(()M") ().

PROOF. If we use the symbol 9 to denote the mapping ® considered from EéM”) () into Z, then
b 7/ — SéM")/(Q)

is onto. We take u in Z’ such that ‘¢»(u) = S. Applying Proposition 1 we obtain » € N and the family
(uq : a € NE) of elements of Cy(€2)* with the properties there mentioned. Making use of Riesz’s re-
presentation theorem, [2, p. 130], we obtain, for each @ € N k a complex Borel measure p,, in €2 such
that

(6, 11a) = /Q odia, 0 €CoQ), luall = 1l ().
Then, if & := r~1, we have that

sup Al Mo [l (€) < o0 3)
aENS
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and

(D) u)= Y [ Ddpa, o e &M (@),
L JQ
a€eNg

where this series converges absolute and uniformly in every bounded subset of E(EM") (). Finally,
(D), u) = (P(p),u) = (0, "¥(u)) = {p,S),
and the conclusion now follows. M

Theorem 3 [f M is a bounded subset of ESM")/(Q), there are h > 0 and, for each S € M, a family
(Pas:a € NE) of complex Borel measures in ), such that

sup h‘a|M|a‘|ua}S|(Q) < 00,
aeNk,SeMm

and each S of M can be represented as

(.8 => /QD“sodua,s, p e M (@),

aeNk
where the series converges absolute and uniformly when S varies in M and @ belongs to any given bounded
(M)
subset of €5 " ().

PROOF. Let be the mapping introduced in the proof of Theorem 2. Since ) is a topological isomorphism
from £éM"') (Q2) into Z, there is a bounded subset P of Z’ such that '¢)(P) = M and the restriction of ¢
to P is one-to-one. For each S € M, we put u(S) for the element of P such that ‘¢)(u(S)) = S. Applying
Proposition 1 and the Note, we find r € N such that, if vy s := (u(5))a, S € M, a € N then

sup r_‘“|M|a‘||ua’S|| < 00
aeNE . SeM

and

<(foz)’u(5)> = Z <focaua,S>7 (fa> € Z,

aeNé

where this series converges absolute and uniformly when S varies in M and ( f,,) runs in any given bounded
subset of Z.

Proceeding as in the proof of the previous theorem, we find complex Borel measures fi,,5, @ € N,
S € M, in , so that

ostos) = [ fadhas,  uas] = lia.s| )
Q
If we set now h := r~1, it follows that

sup h‘“|M|a‘|,ua,5|(Q) < 00,
aEeNk,SeMm

and, foreach S € M,
(D0)u(s) = X [ Dpds. e @),
aEN’S

where the series converges absolute and uniformly when S varies in M and ¢ runs in any given bounded
(Mx) :
subset of £~ "/ (£2). Finally,

(DY), u(8)) = (¥(0),u(S)) = (¢, P(u(S))) = (¢, 5)

and the conclusion follows. W
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Theorem 4 Let M be a subset of E(SM”)'(Q). If there exist h > 0 and, for each S in M, a family
(fa,s : o € NE) of complex Borel measures in ) such that

sup AN |a,s1(2) < o0,
aeNk SeMm

and, for each S € M,
5= % [ Dednas,  wes™ @)

aGN’”

then M is bounded.

PROOF. We fix ¢ in ESM") (€2) and find a positive integer r such that r~! < h. For each S in M we have

(o, 8)] < Z/w“ [ dlpes|

aeNk
2kr)lel| D
< 3 (k) e, / ) 2Dl 414
A Q M\al ’
a€eNg
aeNk
_ 1
<lel sup 7 BIM g a5 () > (@k)lel
BENG aENk

= 2|l sup hl* My |11a,s](2)
aGN

and hence
sup |(p, $)| < 2|l sup Al M ol pa,s|(),
SeM aeNk

from where we deduce that A/ is bounded in &; (M) (€2) for the weak topology, and the result follows. W

In the following, in order to obtain Theorem 5, we shall give the details of a previous construction. Let

S be an element of EéM“)'(Q) with support F', where by support of S we mean the support of the restriction
of S to DM»)(Q). Let A be an open subset of 2 such that F C A and the distance from F' to R* \ A is
6 > 0. We find an open cover of R* by means of open balls B,,, n € N, with radius §/8 such that, if C,, is
the open ball of R* with the center as B,, and radius 6/4, { C,, : n € N} is a locally finite covering of R¥.
For x € R¥, we write d(x, F') to denote the distance from z to F and put

G:={2zcRF:d(z,F)<5§/4}.
Let { f, : n € N} be a partition of unity formed by continuous functions, subordinated to the cover

{ B, :n € N}. Let n be an element of £ (M) (RF), which takes non-negative values and whose support is
contained in the closed ball B of R¥, with center the origin and with radius 6/8, such that

/]Rk' n(z)dx = 1.

We denote by m(B) the Lebesgue measure of B and write
gn( ) fn*n / fn —:L’) Z, yeRk~
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It follows that { g, : n € N} is a partition of unity in R¥, subordinated to the open cover { C,, : n € N}
of R¥, formed by elements of DM») (R¥). We set

g::Z{gn:CnﬂG;é@}.

It follows that g has value one in every point of a neighborhood of G and its support is contained in A. We
now apply Theorem 2 to S and obtain h > 0 and the family (e : a € NE) of complex Borel measures in
(2 with the properties there mentioned. We take 0 < s < 1 and put

Da
lInll == sup sup ll‘ﬂ
a€eNE zeRk S M,y
Then
ID°n(x)] < s Mg llnll, = €RF, oeNE
and

k
D) < [ D0ty —a)lde = [ Do)l de < S0 lnll m(B). <R

We take ¢ in EéM") (€2). We then have that g belongs to E(SM") (©) and so

(9, 8) = (gp,8) = ) /Da go)dpa =Y / (Zﬁ, Dﬁ Doh )dua.

aeNk a€eNk

For each z € §, we have

> e |Dﬁ (2)D*Po(z)]
B<a
<Y o ‘“anunmm( Meplss!® P Moy
BLla

= slnll m(B)lels > e 5) s Mg Mo

BLla
< slInll m(B)pls21* M4
hlel
< Gyl (Bl Mie

and thus

S Y g [Pt 0 el d

a€eNk f<a

<l mB)ele - el Miohel ()
a€EeNE

< llnlll m(B)lels D W sup R My s | (2)
a€EeNE

= 2|l m(B)lels sup Rl M, ||ua|( );

aEO
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from where we deduce that we can write, putting v := a — 3,
a- (6 +
> X g [ e tedn = X 5 TR [ 0 ppdussn.
a€eNk B<a YENE BENE v

Let us now take an arbitrary element 6 of C;(2). Then

(B8 +
> W” [ D7g0dusu,)

BENE
B+
< ¥ G [ 108l

BENE

|
< 3 [l B) 6] s

BENE

—lall m(B8 3 A o )

BENE

< llnlim(B)lI6llse D 2155110 g1 | 1544 (2).
BENE

On the other hand,

Z glﬁHISW\M‘ﬁImﬁMKQ) —
BENE

1

M, s > (29) 1M g My 544 |(Q)
Y

BeNK

1
- [B+]
< TR ENk(QS) Mgy |54~ (€)
0

1 1
1B+
: Mmslvl Zk (2k)w+w (4ks)"TV Mg 5441 (€2)

al

_ . la
= sup h'“'M, |M(¥|(Q)'
My sh! aeNk ol

Consequently, there is a constant C', > 0 such that

G+7)
>k [ DPa0ans| < C 10l @
geng 7

Setting

+
v, (0) == Z (66'77 /Dﬁgeduﬁﬂ, 6 € Co(Q),
BeNE

we have that v, is a complex function, clearly linear, which, after (4), is in Co(2)*. Making use of Riesz’s
representation theorem, we obtain a complex Borel measure v, in 2 such that

:/Cdzz,y7 ¢ € Co().
Q
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Then, for each ¢ € ESM") (), we have that

B+ )
Z (5"Y' /DﬁgDWpd,u,ng /D“’cpduﬁf
BENE

Clearly, the Borel measures v.,, v € NS, have their supports in A.
We take 0 < 2kl < s. We choose v € N& and ¢ € C(£2) such that ||(||s < 2 and

vy(¢) = v ().
Then
MMy 14 () = 101 My 040

< ﬂ7|Aﬂ7| ji: ( ﬂ' ! t/"l)BQCWjﬂﬁ+7

BENE

<My m(B) 0l ¢l D> 200 5 13441 (92)
BENE

2 o
< 7 My (Bl NClow =7 sup A7 Mgl ()
eNg

and therefore there is a constant C' > 0 for which

ZMMH%()<CWﬁ”<C(Nﬂgcg§@$m=20

Thus
sup ll'y‘M‘ 4] (92) < oo.

aeN 0

Summarizing, we have obtained [ > 0 and a family v,, o € NO, of complex Borel measures in €2, with
supports contained in A, such that

sup l‘o‘lM|a‘|1/a|(Q) < oo

aENS

We apply Theorem 1 and so obtain an element 7" in & (M")’(Q) such that

=y /Dwdya, o e &M (),

aENk

where the series converges absolute and uniformly in every bounded subset of 5SM") (Q). It follows that,
(Mx)
for each p € &; (Q),

= > /D odu, = /D“ 9¢) dpa = (g, S).
aeNg aeNg
Since, for each ¢ € DMn)(Q), we have that (g, S) = (i, S), we may then write the following

Theorem 5 Let S be an element ofSéM")I(Q) whose support is F. Let A be an open subset of §) contain-
ing F. If the distance from F to R* \ A is positive, there are h > 0 and a family (i, : o € NE ) of complex
Borel measures in ) such that

sup h“"lM|a‘|ua|(Q) < 00, SUpp pa C A4, o €N,
a€eNG
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and

CEDS /D“sﬁdum p € DM(Q),
Q

aeNg

where this series converges absolute and uniformly in every bounded subset of DMn) (Q).

4 Structure of the ultradistributions of Beurling type

Theorem 6 Let {u, : o € N} be a family of Radon measures in . If, given any compact subset K of
Q, there is h > 0 such that
sup Al Mo ||ua[(K) < oo,

aeNg

then there is an element S in DM (Q) so that

(. 8) =Y (D%¢,us), @ eDM(Q),

a€eNg
where this series converges absolute and uniformly in every bounded subset of DM) (Q).

PROOF. For each m € N, we identify in a natural way KC(K,,) with Cyo(K,,). We put " for the

restriction of u,, to (K, ). If 77" is the complex Borel measure in K, for which

(f umy = /K Fdun, f e Co(K)

we have that
[uall(Km) = |ua'[(Kn)

and there is h,,, > 0 such that
sup h|a|M‘a|||uaH(Km) < 0.
a€N§

Thus, we apply Theorem 1 and so obtain an element S,, in SéM”)'(Km) such that

@ Sm) = 3 /K Dopdur, e EM(@),

aeN@

where this series converges absolute and uniformly in every bounded subset of E(SM“) (Km)-
Given an arbitrary element o of DM»)(Q), we find m € N such that

]
supp ¢ C K,

and we put
(,9) = (#, Sim)-

It is easy to see that S belongs to D(M»)"(Q)) and also that it fulfills the requirements of the statement. W
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Theorem 7 If S is an element of D™ (Q), there is a family (uq : o € NE ) of Radon measures in 2,
such that, given any compact subset K of €, there is h > 0 with

sup hlo‘lM‘a|||uaH(K) < 00,

and
(.9) = > (D%¢,ua), ¢ eDMI(Q),

aEN’g
where the series converges absolute and uniformly in every bounded subset of DMn) Q).

PROOF. Let {O,, : m € N} be a locally finite open covering of {2 such that O,, is relatively compact
in Q, m € N. Let { g, : m € N} be a partition of unity of class (M,,) subordinated to the above open
cover. It follows that g,,,S is an element with compact support F,,, contained in O,,, and thus it belongs

to SéM")/(Q). The distance from F),, to R* \ O,, is positive, hence we may apply Theorem 5 to obtain
By > 0 and a family (p™ : « € NE ) of complex Borel measures in €2 so that

sup hl® ‘M‘a||u [(Q) < o0, suppuy C Op, a € N§,

aGO

and

(0 gmS) = > / D% dp, e &M,

a€EeNg

where this series converges absolute and uniformly in every bounded subset of & (Mx) (Q).
Given an arbitrary element f of IC(€2), there is a finite number of subindex m such that

O, Nsupp f # 0.

Consequently, we may define, for each o € NE,
=3 [ rau
meN

It follows that u, is a linear functional on K(£2). Given an arbitrary compact subset K of €2, there is a
positive integer mq such that K N O,, = 0, m > my. Hence, if f has its support contained in K, we have

that
o ()] < Z/\fld\u$\< Zm ) 1 flloe,

meN

from where we deduce that u,, is a Radon measure in 2. Besides,

[[uall(K Z | 1(S2
and, if
=inf{h,, :m=1,2,...,mg },
it follows that

sup hle ‘M| kall (K Z sup h‘ 'M|a\\uZ’\( ) < o0

m=1 aENO
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We now take ¢ in D) (Q) with support in K. Then

<cp,S> = <‘P Z g7mS> = <§0 Z gm7S>
m=1 m=1

mo mo
= {egmS) =D > /Dawdulﬁ
m=1 mzlaENS Q
mo
= > Y [ Ddul = > (D%, u). )
(xENS m=17% aENg

It is now simple to show that the series in (5) converges absolute and uniformly in every bounded subset of
DMa)(Q). W
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