

# On the structure of the ultradistributions of Beurling type

#### **Manuel Valdivia**

**Abstract.** Let  $\Omega$  be a nonempty open set of the k-dimensional euclidean space  $\mathbb{R}^k$ . In this paper, we give a structure theorem on the ultradistributions of Beurling type in  $\Omega$ . Also, other structure results on certain ultradistributions are obtained, in terms of complex Borel measures in  $\Omega$ .

#### Sobre la estructura de las ultradistribuciones de tipo Beurling

**Resumen.** Sea  $\Omega$  un abierto no vacío del espacio euclídeo k-dimensional  $\mathbb{R}^k$ . En este artículo se obtiene un teorema de estructura de las ultradistribuciones de Beurling definidas en  $\Omega$ . También se obtienen otros resultados de estructura de ciertas ultradistribuciones, en términos de medidas complejas definidas en  $\Omega$ .

### **1** Introduction and notation

Throughout this paper all linear spaces are assumed to be defined over the field  $\mathbb{C}$  of complex numbers. We write  $\mathbb{N}$  for the set of positive integers and by  $\mathbb{N}_0$  we mean the set of nonnegative integers.

If E is a locally convex space, E' will be its topological dual and  $\langle \cdot, \cdot \rangle$  will denote the standard duality between E and E'.

Given a Banach space X, B(X) denotes its closed unit ball and  $X^*$  is the Banach space conjugate of X. Given a positive integer k, if  $\alpha := (\alpha_1, \alpha_2, \dots, \alpha_k)$  is a multiindex of order k, i.e., an element of  $\mathbb{N}_0^k$ , we put  $|\alpha|$  for its length, that is,  $|\alpha| = \alpha_1 + \alpha_2 + \dots + \alpha_k$ , and  $\alpha! := \alpha_1! \alpha_2! \dots \alpha_k!$ .

Given a complex function f defined in the points  $x = (x_1, x_2, ..., x_k)$  of an open subset O of the k-dimensional euclidean space  $\mathbb{R}^k$ , and being infinitely differentiable, we write

$$D^{\alpha}f(x) := \frac{\partial^{|\alpha|}f(x)}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \dots \partial x_k^{\alpha_k}}, \qquad x \in O, \quad \alpha \in \mathbb{N}_0^k$$

We consider a sequence  $M_0, M_1, \ldots, M_n, \ldots$  of positive numbers satisfying the following conditions:

1.  $M_0 = 1$ .

2. Logarithmic convexity:

$$M_n^2 \leq M_{n-1}M_{n+1}, \qquad n \in \mathbb{N}.$$

3. Non-quasi-analyticity:

$$\sum_{n=1}^{\infty} \frac{M_{n-1}}{M_n} < \infty.$$

Presentado por / Submitted by Darío Maravall Casesnoves.

Recibido / Received: 21 de julio de 2007. Aceptado / Accepted: 15 de octubre de 2008.

Palabras clave / Keywords: Banach space, complex Borel measures, locally convex spaces, projective limit, strong topology, Radon measure, ultradifferentiable functions, ultradistributions of Beurling type.

Mathematics Subject Classifications: Primary 46F05. Secondary 46F20.

<sup>© 2008</sup> Real Academia de Ciencias, España.

Let us take a nonempty open set  $\Omega$  in  $\mathbb{R}^k$ . A complex function f, defined and infinitely differentiable in  $\Omega$ , is said to be *ultradifferentiable of class*  $(M_n)$  whenever, given h > 0 and a compact subset K of  $\Omega$ , there is C > 0 such that

$$|D^{\alpha}f(x)| \le C h^{|\alpha|} M_{|\alpha|}, \qquad x \in K, \quad \alpha \in \mathbb{N}_0^k.$$

We put  $\mathcal{E}^{(M_n)}(\Omega)$  to denote the linear space over  $\mathbb{C}$  formed by all the ultradifferentiable functions of class  $(M_n)$  defined in  $\Omega$ , with the ordinary topology, [1]. The topological dual of  $\mathcal{E}^{(M_n)}(\Omega)$  will be represented by  $\mathcal{E}^{(M_n)'}(\Omega)$ . By  $\mathcal{D}^{(M_n)}(\Omega)$  we denote the linear subspace of  $\mathcal{E}^{(M_n)}(\Omega)$  formed by those functions which have compact support.

Given h > 0, by  $\mathcal{E}_0^{(M_n),h}(\Omega)$  we represent the linear space over  $\mathbb{C}$  of the complex functions f, defined and infinitely differentiable in  $\Omega$ , such that they vanish at infinity and also does each of its derivatives of any order, i.e., given  $\epsilon > 0$  and  $\beta \in \mathbb{N}^k$ , there is a compact subset K of  $\Omega$  such that

$$|D^{\beta}f(x)| < \epsilon, \qquad x \in \Omega \setminus K$$

satisfying also that there is C > 0, depending only on f, for which

$$|D^{\alpha}f(x)| \le C h^{|\alpha|} M_{|\alpha|}, \qquad x \in \Omega, \quad \alpha \in \mathbb{N}_0^k.$$

We set

$$|f|_h := \sup_{\alpha \in \mathbb{N}_0^k} \sup_{x \in \Omega} \frac{|D^{\alpha} f(x)|}{h^{|\alpha|} M_{|\alpha|}}$$

and assume that  $\mathcal{E}_0^{(M_n),h}(\Omega)$  is endowed with the norm  $|\cdot|_h$ . We then put

$$\mathcal{E}_0^{(M_n)}(\Omega) := \bigcap_{m=1}^{\infty} \mathcal{E}_0^{(M_n), 1/m}(\Omega).$$

We consider  $\mathcal{E}_0^{(M_n)}(\Omega)$  as the projective limit of the sequence  $(\mathcal{E}_0^{(M_n),1/m}(\Omega))$  of Banach spaces. We assume the topological dual  $\mathcal{E}_0^{(M_n)'}(\Omega)$  of  $\mathcal{E}_0^{(M_n)}(\Omega)$  endowed with the strong topology.

We take now a fundamental sequence of compact subsets of  $\Omega$ :

$$K_1 \subset K_2 \subset \cdots \subset K_m \subset \cdots$$

If K is an arbitrary compact subset of  $\Omega$ , we use  $\mathcal{D}^{(M_n)}(K)$  to denote the subspace of  $\mathcal{E}^{(M_n)}(\Omega)$  formed by those functions which have their support in K. We then have that

$$\mathcal{D}^{(M_n)}(\Omega) = \bigcup_{m=1}^{\infty} \mathcal{D}^{(M_n)}(K_m).$$

We consider  $\mathcal{D}^{(M_n)}(\Omega)$  as the inductive limit of the sequence  $(\mathcal{D}^{(M_n)}(K_m))$  of Fréchet spaces. The elements of the topological dual  $\mathcal{D}^{(M_n)'}(\Omega)$  of  $\mathcal{D}^{(M_n)}(\Omega)$  are called *ultradistributions of Beurling type* in  $\Omega$ . We assume that  $\mathcal{D}^{(M_n)'}(\Omega)$  has its strong topology.

We write  $C_0(\Omega)$  for the linear space over  $\mathbb{C}$  of the complex functions f, defined and continuous in  $\Omega$ , which vanish at infinity. We put

$$||f||_{\infty} := \sup_{x \in \Omega} |f(x)|,$$

and assume that  $C_0(\Omega)$  has the norm  $\|\cdot\|_{\infty}$ .

By  $\mathcal{K}(\Omega)$  we mean the linear space over  $\mathbb{C}$  of the complex functions defined in  $\Omega$  which are continuous and have compact support. If K is any compact subset of  $\Omega$ ,  $\mathcal{K}(K)$  is the subspace of  $C_0(\Omega)$  formed by the functions with support contained in K. We consider  $\mathcal{K}(\Omega)$  as the inductive limit of the sequence  $(\mathcal{K}(K_m))$  of Banach spaces. A Radon measure in  $\Omega$  is an element of the topological dual  $\mathcal{K}'(\Omega)$  of  $\mathcal{K}(\Omega)$ . Given a Radon measure u in  $\Omega$  and a compact subset K of  $\Omega$ , we put ||u||(K) for the norm of the restriction of u to the Banach space  $\mathcal{K}(K)$ .

In [1, p. 76], a structure theorem for ultradistributions of Beurling type in  $\Omega$  is given such that we may state in the following way: a) If S is an element of  $\mathcal{D}^{(M_n)'}(\Omega)$  and G is an open subset of  $\Omega$  which is relatively compact, for each  $\alpha \in \mathbb{N}_0^k$ , we may find an element  $v_\alpha$  in the conjugate of the Banach space  $\mathcal{K}(\overline{G})$ , whose norm we represent by  $||v_\alpha||$ , such that, for some h > 0,

$$\sup_{\alpha \in \mathbb{N}_0^k} h^{|\alpha|} M_{|\alpha|} \| v_\alpha \| < \infty$$

and

$$S_{|G} = \sum_{\alpha \in \mathbb{N}_0^k} D^\alpha v_\alpha.$$

In this paper, we shall prove the following structure theorem on the ultradistributions of Beurling type in  $\Omega$ : b) If S is an element of  $\mathcal{D}^{(M_n)'}(\Omega)$ , there is a family  $(u_{\alpha} : \alpha \in \mathbb{N}_0^k)$  of Radon measures in  $\Omega$  so that

$$\langle \varphi, S \rangle = \sum_{\alpha \in \mathbb{N}_0^k} \langle D^{\alpha} \varphi, u_{\alpha} \rangle, \qquad \varphi \in \mathcal{D}^{(M_n)}(\Omega),$$

where the series converges absolute and uniformly in every bounded subset of  $\mathcal{D}^{(M_n)}(\Omega)$ . Besides, for a given compact subset K of  $\Omega$ , there is h > 0 such that

$$\sup_{\alpha \in \mathbb{N}_0^k} h^{|\alpha|} M_{|\alpha|} \| u_\alpha \| (K) < \infty$$

We shall also give structure theorems for some ultradistributions of Beurling type in terms of complex Borel measures in  $\Omega$ .

## 2 Basic constructions

Let X be a Banach space. We use  $\|\cdot\|$  to denote the norm of X and also for the norm of  $X^*$ . Let  $\lambda_0$ ,  $\lambda_1$ , ...,  $\lambda_n$ , ..., be a sequence of positive numbers. Given  $r \in \mathbb{N}$  and  $\alpha \in \mathbb{N}_0^k$ , for each  $x \in X$ , we write

$$|x|_{r,\alpha} := \frac{r^{|\alpha|} ||x||}{\lambda_{|\alpha|}}.$$

We denote by  $X_{r,\alpha}$  the linear space X provided with the norm  $|\cdot|_{r,\alpha}$ . The Banach space conjugate of  $X_{r,\alpha}$  will be  $X_{r,\alpha}^*$  and we still will use  $|\cdot|_{r,\alpha}$  for its norm. Clearly, if u is in  $X^*$ , then

$$|u|_{r,\alpha} = \frac{\lambda_{|\alpha|}}{r^{|\alpha|}} ||u||.$$

We put  $Z_r$  for the linear space over  $\mathbb{C}$  formed by the families  $(x_\alpha : \alpha \in \mathbb{N}_0^k)$  of elements of X, for which we shall briefly write  $(x_\alpha)$ , such that

$$\|(x_{\alpha})\|_{r} := \sup_{\alpha \in \mathbb{N}_{0}^{k}} \frac{r^{|\alpha|} \|x_{\alpha}\|}{\lambda_{|\alpha|}} < \infty.$$

We assume  $Z_r$  provided with the norm  $\|\cdot\|_r$ . It follows that  $Z_r \supset Z_{r+1}$  and that the canonical injection from  $Z_{r+1}$  into  $Z_r$  is continuous.

We write Z for the Fréchet space given by the projective limit of the sequence  $(Z_r)$  of Banach spaces. We assume that Z' is endowed with its strong topology. If  $(x_{\alpha})$  is an element of Z and  $\beta$  is in  $\mathbb{N}_0^k$ , we set

$$x_{\alpha}^{\beta} := \begin{cases} x_{\beta}, & \text{if } \alpha = \beta, \\ 0, & \text{if } \alpha \neq \beta. \end{cases}$$

Clearly,  $(x_{\alpha}^{\beta})$  belongs to Z and, for each  $r \in \mathbb{N}$ ,

$$||(x_{\alpha}^{\beta})||_{r} \leq ||(x_{\alpha})||_{r}.$$

If  $Z^{\beta}$  represents the subspace of Z formed by those elements  $(x_{\alpha})$  are such that  $x_{\alpha} = 0$  when  $\alpha \neq \beta$ , we have that  $Z^{\beta}$  is topologically isomorphic to X, and considering  $Z^{\beta}$  as a linear subspace of  $Z_r$ , then it is isometric to  $X_{r,\beta}$ .

For an arbitrary element  $u \in Z'$  and  $r \in \mathbb{N}$ , we put

$$||u||_{(r)} := \sup\{ |\langle (x_{\alpha}), u \rangle| : (x_{\alpha}) \in B(Z_r) \cap Z \}.$$

For each  $u \in Z'$  and each  $\beta \in \mathbb{N}_0^k$ , we identify, in a natural manner, the restriction of u to  $Z^\beta$  with an element  $u_\beta$  of  $X^*$ .

**Proposition 1** If u belongs to Z', there is  $r \in \mathbb{N}$  such that

$$\sup_{\alpha \in \mathbb{N}_0^k} r^{-|\alpha|} \lambda |\alpha| \|u_\alpha\| \le \|u\|_{(r)} < \infty, \tag{1}$$

and

$$\langle (x_{\alpha}), u \rangle = \sum_{\alpha \in \mathbb{N}_0^k} \langle x_{\alpha}, u_{\alpha} \rangle, \qquad (x_{\alpha}) \in Z,$$
(2)

where the series converges absolute and uniformly in every bounded subset of Z.

**PROOF.** We find a positive integer r such that  $||u||_{(r)}$  is finite. We fix  $\beta$  in  $\mathbb{N}_0^k$ . We have that

$$\begin{split} \|(u)\|_{(r)} &= \sup\{ \left| \langle (x_{\alpha}), u \rangle \right| : (x_{\alpha}) \in B(Z_r) \cap Z \} \\ &\geq \sup\{ \left| \langle (x_{\alpha}^{\beta}), u \rangle \right| : (x_{\alpha}) \in B(Z_r) \cap Z \} \\ &= \sup\{ \left| \langle x_{\beta}, u_{\beta} \rangle \right| : |x_{\beta}|_{r,\beta} \leq 1 \} \\ &= |u_{\beta}|_{r,\beta} = \frac{\lambda_{|\beta|}}{r^{|\beta|}} \|u_{\beta}\| \end{split}$$

and from here

$$\sup_{\alpha \in \mathbb{N}_0^k} r^{-|\alpha|} \lambda_{|\alpha|} \|u_{\alpha}\| \le \|u\|_{(r)} < \infty.$$

We take now  $(x_{\alpha})$  in Z and we see that the family  $((x_{\alpha}^{\beta}) : \beta \in \mathbb{N}_{0}^{k})$  is summable in Z, with sum  $(x_{\alpha})$ . For this, let us choose  $s, q \in \mathbb{N}$  and we have that

$$\begin{aligned} \|(x_{\alpha}) - \sum_{|\beta| \le q} (x_{\alpha}^{\beta})\|_{s} &= \sup_{|\alpha| > q} \frac{s^{|\alpha|} \|x_{\alpha}\|}{\lambda_{|\alpha|}} \\ &= \sup_{|\alpha| > q} \frac{(2s)^{|\alpha|} \|x_{\alpha}\|}{2^{|\alpha|} \lambda_{|\alpha|}} \\ &\le \frac{1}{2^{q}} \sup_{\alpha \in \mathbb{N}_{0}^{k}} \frac{(2s)^{|\alpha|} \|x_{\alpha}\|}{\lambda_{|\alpha|}} \\ &= \frac{1}{2^{q}} \|(x_{\alpha})\|_{2s}, \end{aligned}$$

from where the conclusion follows. From

$$(x_{\alpha}) = \sum_{\beta \in \mathbb{N}_0^k} (x_{\alpha}^{\beta})$$

in Z, we deduce that

$$\langle (x_{\alpha}), u \rangle = \sum_{\beta \in \mathbb{N}_0^k} \langle (x_{\alpha}^{\beta}), u \rangle = \sum_{\beta \in \mathbb{N}_0^k} \langle x_{\beta}, u_{\beta} \rangle.$$

We now take a bounded subset B of Z. We find b > 0 such that  $B \subset bB(Z_{2kr})$ . We choose an arbitrary element  $(x_{\alpha})$  of B. We fix  $\beta$  in  $\mathbb{N}_0^k$ . Then

$$\begin{aligned} |\langle x_{\beta}, u_{\beta} \rangle| &\leq \|x_{\beta}\| \|u_{\beta}\| = \frac{(2kr)^{|\beta|} \|x_{\beta}\|}{\lambda_{|\beta|}} \cdot \frac{\lambda_{|\beta|} \|u_{\beta}\|}{(2kr)^{|\beta|}} \\ &\leq \frac{1}{(2k)^{|\beta|}} \|(x_{\alpha})\|_{2kr} \sup_{\alpha \in \mathbb{N}_{0}^{k}} \frac{\lambda_{|\alpha|} \|u_{\alpha}\|}{r^{|\alpha|}} \\ &\leq \frac{1}{(2k)^{|\beta|}} \|(x_{\alpha})\|_{2kr} \|u\|_{(r)} \\ &\leq \frac{1}{(2k)^{|\beta|}} b \|u\|_{(r)}, \end{aligned}$$

and since

$$\sum_{\beta\in\mathbb{N}_0^k}\frac{1}{(2k)^{|\beta|}}=2,$$

the result follows.

**Note** In the former theorem, if we take an arbitrary bounded subset M of Z', we may choose r in such a way that (1) is satisfied for each element u of M. Then, (2) converges absolute and uniformly when  $(x_{\alpha})$  runs in any bounded subset of Z, and u varies in M.

**Proposition 2** Let  $(v_{\alpha} : \alpha \in \mathbb{N}_0^k)$  be a family of elements of  $X^*$  such that there is h > 0 with

$$\sup_{\alpha \in \mathbb{N}_0^h} h^{|\alpha|} \lambda_{|\alpha|} \| v_{\alpha} \| < \infty.$$

Then, there is a unique element u in Z' such that  $u_{\alpha} = v_{\alpha}$ ,  $\alpha \in \mathbb{N}_0^k$ .

**PROOF.** We find r in  $\mathbb{N}$  such that 1/r < h. Let  $\beta$  be fixed in  $\mathbb{N}_0^k$ . We take  $(x_\alpha)$  in Z. Then

$$\begin{aligned} |\langle x_{\beta}, v_{\beta} \rangle| &\leq \|x_{\beta}\| \|v_{\beta}\| = \frac{(2kr)^{|\beta|} \|x_{\beta}\|}{\lambda_{|\beta|}} \cdot \frac{\lambda_{|\beta|} \|v_{\beta}\|}{(2kr)^{|\beta|}} \\ &\leq \frac{1}{(2k)^{|\beta|}} \|(x_{\alpha})\|_{2kr} \sup_{\alpha \in \mathbb{N}_{0}^{k}} \frac{\lambda_{|\alpha|} \|v_{\alpha}\|}{r^{|\alpha|}} \\ &\leq \frac{1}{(2k)^{|\beta|}} \|(x_{\alpha})\|_{2kr} \sup_{\alpha \in \mathbb{N}_{0}^{k}} h^{|\alpha|} \lambda_{|\alpha|} \|v_{\alpha}\| \end{aligned}$$

from we where we have that the complex function u defined in Z such that

$$u((x_{\alpha})) = \sum_{\alpha \in \mathbb{N}_0^k} \langle x_{\alpha}, v_{\alpha} \rangle, \qquad (x_{\alpha}) \in Z,$$

which is clearly linear, is also continuous. After the former proposition we have that

$$\langle (x_{\alpha}), u \rangle = \sum_{\alpha \in \mathbb{N}_0^k} \langle x_{\alpha}, u_{\alpha} \rangle, \qquad (x_{\alpha}) \in Z.$$

We fix  $\gamma$  in  $\mathbb{N}_0^k$ . We take an arbitrary element  $x_{\gamma} \in X$ . If  $(x_{\alpha}^{\gamma})$  is the element of  $Z^{\gamma}$  such that  $x_{\gamma}^{\gamma} = x_{\gamma}$ , it follows that

$$\langle (x_{\gamma}), u_{\gamma} \rangle = \langle (x_{\alpha}^{\gamma}), u \rangle = \sum_{\alpha \in \mathbb{N}_0^k} \langle x_{\alpha}^{\gamma}, v_{\alpha} \rangle = \langle x_{\gamma}, v_{\gamma} \rangle,$$

and so  $u_{\gamma} = v_{\gamma}, \gamma \in \mathbb{N}_0^k$ . The uniqueness of u obtains after the linear span of  $\bigcup \{ Z^{\beta} : \beta \in \mathbb{N}_0^k \}$  being dense in Z.

#### 3 On the structure of certain ultradistributions

In this section, we substitute the sequence  $\lambda_n$ ,  $n \in \mathbb{N}_0$ , of the previous section by  $M_n$ ,  $n \in \mathbb{N}_0^k$ . We take  $C_0(\Omega)$  instead of X. Hence, each element of  $Z_r$  is a family  $(f_\alpha : \alpha \in \mathbb{N}_0^k)$  of elements of  $C_0(\Omega)$ , and

$$\|(f_{\alpha})\|_{r} = \sup_{\alpha \in \mathbb{N}_{0}^{k}} \sup_{x \in \Omega} \frac{r^{|\alpha|}|f_{\alpha}(x)|}{M_{\alpha}} < \infty.$$

We put  $V_r$  to denote the subspace of  $Z_r$  formed by the families  $(D^{\alpha}f : \alpha \in \mathbb{N}_0^k)$  such that

$$f \in \mathcal{E}_0^{(M_n), 1/r}(\Omega).$$

Let

$$\Phi_r \colon \mathcal{E}_0^{(M_n), 1/r}(\Omega) \longrightarrow V_r$$

such that

$$\Phi_r(f) = (D^{\alpha}f), \qquad f \in \mathcal{E}_0^{(M_n), 1/r}(\Omega).$$

Then  $\Phi_r$  is an onto linear isometry. We set  $V := \bigcap \{ V_r : r \in \mathbb{N} \}$ , considered as a subspace of Z. Let

$$\Phi\colon \mathcal{E}_0^{(M_n)}(\Omega)\longrightarrow V$$

such that

$$\Phi(f) = (D^{\alpha}f), \qquad f \in \mathcal{E}_0^{(M_n)}(\Omega)$$

Clearly,  $\Phi$  is a topological isomorphism from  $\mathcal{E}_0^{(M_n)}$  onto V.

**Theorem 1** If  $(\mu_{\alpha} : \alpha \in \mathbb{N}_{0}^{k})$  is a family of complex Borel measures in  $\Omega$  such that there is h > 0 with

$$\sup_{\alpha \in \mathbb{N}_0^k} h^{|\alpha|} M_{|\alpha|} |\mu_{\alpha}|(\Omega) < \infty,$$

then there is an element S of  $\mathcal{E}_0^{(M_n)'}(\Omega)$  such that

$$\langle \varphi, S \rangle = \sum_{\alpha \in \mathbb{N}_0^k} \int_{\Omega} D^{\alpha} \varphi \, \mathrm{d}\mu_{\alpha}, \qquad \varphi \in \mathcal{E}_0^{(M_n)}(\Omega),$$

where this series converges absolute and uniformly in every bounded subset of  $\mathcal{E}_0^{(M_n)}(\Omega)$ .

**PROOF.** For each  $\alpha \in \mathbb{N}_0^k$ , we consider  $\mu_{\alpha}$  as a linear functional on  $C_0(\Omega)$  by means of the usual duality

$$\langle \varphi, \mu_{\alpha} \rangle = \int_{\Omega} \varphi \, \mathrm{d}\mu_{\alpha}, \qquad \varphi \in C_0(\Omega).$$

Thus, the norm of  $\mu_{\alpha}$  is  $|\mu_{\alpha}|(\Omega)$ . We apply propositions 1 and 2 to obtain an element u in Z' such that

$$\langle (f_{\alpha}), u \rangle = \sum_{\alpha \in \mathbb{N}_0^k} \langle f_{\alpha}, \mu_{\alpha} \rangle, \qquad (f_{\alpha}) \in Z,$$

where this series converges absolute and uniformly in every bounded subset of Z. We restrict u to V and keep denoting by u this restriction. Then

$$\langle (D^{\alpha}\varphi), u \rangle = \sum_{\alpha \in \mathbb{N}_0^k} \langle D^{\alpha}\varphi, \mu_{\alpha} \rangle = \sum_{\alpha \in \mathbb{N}_0^k} \int_{\Omega} D^{\alpha}\varphi \, d\mu_{\alpha}, \qquad \varphi \in \mathcal{E}_0^{(M_n)}(\Omega).$$

If

$${}^t\Phi$$
 :  $V' \longrightarrow \mathcal{E}_0^{(M_n)}(\Omega)$ 

is the transpose mapping of  $\Phi$ , we put  $S := {}^t \Phi(u)$ . Then, for each  $\varphi \in \mathcal{E}_0^{(M_n)}(\Omega)$ , we have

$$\langle (D^{\alpha}\varphi), u \rangle = \langle \Phi(\varphi), u \rangle = \langle \varphi, {}^{t}\Phi(u) \rangle = \langle \varphi, S \rangle,$$

and so

$$\langle \varphi, S \rangle = \sum_{\alpha \in \mathbb{N}_0^k} \int_{\Omega} D^{\alpha} \varphi \, \mathrm{d} \mu_{\alpha}, \qquad \varphi \in \mathcal{E}_0^{(M_n)}(\Omega).$$

The absolute and uniform convergence of this series in every bounded subset of  $\mathcal{E}_0^{(M_n)}(\Omega)$  is now immediate.

**Theorem 2** If S is an element of  $\mathcal{E}_0^{(M_n)'}(\Omega)$ , there are h > 0 and a family  $(\mu_{\alpha} : \alpha \in \mathbb{N}_0^k)$  of complex Borel measures in  $\Omega$  such that

$$\sup_{\alpha \in \mathbb{N}_0^k} h^{|\alpha|} M_{|\alpha|} |\mu_{\alpha}|(\Omega) < \infty$$

and

$$\langle \varphi, S \rangle = \sum_{\alpha \in \mathbb{N}_0^k} \int_{\Omega} D^{\alpha} \varphi \, d\mu_{\alpha}, \qquad \varphi \in \mathcal{E}_0^{(M_n)}(\Omega),$$

where this series converges absolute and uniformly in every bounded subset of  $\mathcal{E}_0^{(M_n)}(\Omega)$ .

**PROOF.** If we use the symbol  $\psi$  to denote the mapping  $\Phi$  considered from  $\mathcal{E}_0^{(M_n)}(\Omega)$  into Z, then

$${}^t\psi\colon Z'\longrightarrow \mathcal{E}_0^{(M_n)'}(\Omega)$$

is onto. We take u in Z' such that  ${}^t\psi(u) = S$ . Applying Proposition 1 we obtain  $r \in \mathbb{N}$  and the family  $(u_{\alpha} : \alpha \in \mathbb{N}_0^k)$  of elements of  $C_0(\Omega)^*$  with the properties there mentioned. Making use of Riesz's representation theorem, [2, p. 130], we obtain, for each  $\alpha \in \mathbb{N}_0^k$ , a complex Borel measure  $\mu_{\alpha}$  in  $\Omega$  such that

$$\langle \varphi, u_{\alpha} \rangle = \int_{\Omega} \varphi \, \mathrm{d}\mu_{\alpha}, \qquad \varphi \in C_0(\Omega), \quad \|u_{\alpha}\| = |\mu_{\alpha}|(\Omega).$$
  
have that

Then, if  $h := r^{-1}$ , we have that

$$\sup_{\alpha \in \mathbb{N}_0^k} h^{|\alpha|} M_{|\alpha|} |\mu_{\alpha}|(\Omega) < \infty \tag{3}$$

and

$$\langle (D^{\alpha}\varphi), u \rangle = \sum_{\alpha \in \mathbb{N}_0^k} \int_{\Omega} D^{\alpha}\varphi \,\mathrm{d}\mu_{\alpha}, \qquad \varphi \in \mathcal{E}_0^{(M_n)}(\Omega),$$

where this series converges absolute and uniformly in every bounded subset of  $\mathcal{E}_0^{(M_n)}(\Omega)$ . Finally,

$$\langle (D^{\alpha}\varphi), u \rangle = \langle \psi(\varphi), u \rangle = \langle \varphi, {}^{t}\psi(u) \rangle = \langle \varphi, S \rangle,$$

and the conclusion now follows.

**Theorem 3** If M is a bounded subset of  $\mathcal{E}_0^{(M_n)'}(\Omega)$ , there are h > 0 and, for each  $S \in M$ , a family  $(\mu_{\alpha,S} : \alpha \in \mathbb{N}_0^k)$  of complex Borel measures in  $\Omega$ , such that

$$\sup_{\alpha \in \mathbb{N}_{0}^{k}, S \in M} h^{|\alpha|} M_{|\alpha|} |\mu_{\alpha,S}|(\Omega) < \infty,$$

and each S of M can be represented as

$$\langle \varphi, S \rangle = \sum_{\alpha \in \mathbb{N}_0^k} \int_{\Omega} D^{\alpha} \varphi \, \mathrm{d}\mu_{\alpha,S}, \qquad \varphi \in \mathcal{E}_0^{(M_n)}(\Omega),$$

where the series converges absolute and uniformly when S varies in M and  $\varphi$  belongs to any given bounded subset of  $\mathcal{E}_0^{(M_n)}(\Omega)$ .

PROOF. Let  $\psi$  be the mapping introduced in the proof of Theorem 2. Since  $\psi$  is a topological isomorphism from  $\mathcal{E}_0^{(M_n)}(\Omega)$  into Z, there is a bounded subset P of Z' such that  ${}^t\psi(P) = M$  and the restriction of  ${}^t\psi$  to P is one-to-one. For each  $S \in M$ , we put u(S) for the element of P such that  ${}^t\psi(u(S)) = S$ . Applying Proposition 1 and the Note, we find  $r \in \mathbb{N}$  such that, if  $u_{\alpha,S} := (u(S))_{\alpha}, S \in M, \alpha \in \mathbb{N}_0^k$ , then

$$\sup_{\alpha \in \mathbb{N}_0^k, S \in M} r^{-|\alpha|} M_{|\alpha|} \| u_{\alpha,S} \| < \infty$$

and

$$\langle (f_{\alpha}), u(S) \rangle = \sum_{\alpha \in \mathbb{N}_0^k} \langle f_{\alpha}, u_{\alpha, S} \rangle, \qquad (f_{\alpha}) \in Z,$$

where this series converges absolute and uniformly when S varies in M and  $(f_{\alpha})$  runs in any given bounded subset of Z.

Proceeding as in the proof of the previous theorem, we find complex Borel measures  $\mu_{\alpha,S}$ ,  $\alpha \in \mathbb{N}_0^k$ ,  $S \in M$ , in  $\Omega$ , so that

$$\langle f_{\alpha}, u_{\alpha,S} \rangle = \int_{\Omega} f_{\alpha} \, \mathrm{d}\mu_{\alpha,S}, \qquad \|u_{\alpha,S}\| = |\mu_{\alpha,S}|(\Omega).$$

If we set now  $h := r^{-1}$ , it follows that

$$\sup_{\alpha \in \mathbb{N}_{0}^{k}, S \in M} h^{|\alpha|} M_{|\alpha|} |\mu_{\alpha,S}|(\Omega) < \infty,$$

and, for each  $S \in M$ ,

$$\langle (D^{\alpha}\varphi), u(S) \rangle = \sum_{\alpha \in \mathbb{N}_0^k} \int_{\Omega} D^{\alpha}\varphi \, \mathrm{d}\mu_{\alpha,S}, \qquad \varphi \in \mathcal{E}_0^{(M_n)}(\Omega),$$

where the series converges absolute and uniformly when S varies in M and  $\varphi$  runs in any given bounded subset of  $\mathcal{E}_0^{(M_n)}(\Omega)$ . Finally,

$$\langle (D^{\alpha}\varphi), u(S) \rangle = \langle \psi(\varphi), u(S) \rangle = \langle \varphi, {}^{t}\psi(u(S)) \rangle = \langle \varphi, S \rangle$$

and the conclusion follows.

**Theorem 4** Let M be a subset of  $\mathcal{E}_0^{(M_n)'}(\Omega)$ . If there exist h > 0 and, for each S in M, a family  $(\mu_{\alpha,S} : \alpha \in \mathbb{N}_0^k)$  of complex Borel measures in  $\Omega$  such that

$$\sup_{\alpha \in \mathbb{N}_0^k, S \in M} h^{|\alpha|} M_{|\alpha|} |\mu_{\alpha,S}|(\Omega) < \infty,$$

and, for each  $S \in M$ ,

$$\langle \varphi, S \rangle = \sum_{\alpha \in \mathbb{N}_0^k} \int_{\Omega} D^{\alpha} \varphi \, \mathrm{d} \mu_{\alpha, S}, \qquad \varphi \in \mathcal{E}_0^{(M_n)}(\Omega),$$

then M is bounded.

**PROOF.** We fix  $\varphi$  in  $\mathcal{E}_0^{(M_n)}(\Omega)$  and find a positive integer r such that  $r^{-1} < h$ . For each S in M we have

$$\begin{split} |\langle \varphi, S \rangle| &\leq \sum_{\alpha \in \mathbb{N}_0^k} \int_{\Omega} |D^{\alpha} \varphi| \, \mathrm{d} |\mu_{\alpha,S}| \\ &\leq \sum_{\alpha \in \mathbb{N}_0^k} (2kr)^{-|\alpha|} M_{|\alpha|} \int_{\Omega} \frac{(2kr)^{|\alpha|} |D^{\alpha} \varphi|}{M_{|\alpha|}} \, \mathrm{d} |\mu_{\alpha,S}| \\ &\leq \sum_{\alpha \in \mathbb{N}_0^k} r^{-|\alpha|} M_{|\alpha|} |\mu_{\alpha,S}|(\Omega) \frac{1}{(2k)^{|\alpha|}} |\varphi|_{\frac{1}{2kr}} \\ &\leq |\varphi|_{\frac{1}{2kr}} \sup_{\beta \in \mathbb{N}_0^k} r^{-|\beta|} M_{|\beta|} \mu_{\alpha,S}|(\Omega) \sum_{\alpha \in \mathbb{N}_0^k} \frac{1}{(2k)^{|\alpha|}} \\ &= 2|\varphi|_{\frac{1}{2kr}} \sup_{\alpha \in \mathbb{N}_0^k} h^{|\alpha|} M_{|\alpha|} |\mu_{\alpha,S}|(\Omega) \end{split}$$

and hence

$$\sup_{S \in M} |\langle \varphi, S \rangle| \le 2|\varphi|_{\frac{1}{2kr}} \sup_{\alpha \in \mathbb{N}_0^k} h^{|\alpha|} M_{|\alpha|} |\mu_{\alpha,S}|(\Omega),$$

from where we deduce that M is bounded in  $\mathcal{E}_0^{(M_n)'}(\Omega)$  for the weak topology, and the result follows.

In the following, in order to obtain Theorem 5, we shall give the details of a previous construction. Let S be an element of  $\mathcal{E}_0^{(M_n)'}(\Omega)$  with support F, where by support of S we mean the support of the restriction of S to  $\mathcal{D}^{(M_n)}(\Omega)$ . Let A be an open subset of  $\Omega$  such that  $F \subset A$  and the distance from F to  $\mathbb{R}^k \setminus A$  is  $\delta > 0$ . We find an open cover of  $\mathbb{R}^k$  by means of open balls  $B_n$ ,  $n \in \mathbb{N}$ , with radius  $\delta/8$  such that, if  $C_n$  is the open ball of  $\mathbb{R}^k$  with the center as  $B_n$  and radius  $\delta/4$ ,  $\{C_n : n \in \mathbb{N}\}$  is a locally finite covering of  $\mathbb{R}^k$ . For  $x \in \mathbb{R}^k$ , we write d(x, F) to denote the distance from x to F and put

$$G := \{ x \in \mathbb{R}^k : d(x, F) \le \delta/4 \}.$$

Let  $\{f_n : n \in \mathbb{N}\}\$  be a partition of unity formed by continuous functions, subordinated to the cover  $\{B_n : n \in \mathbb{N}\}\$ . Let  $\eta$  be an element of  $\mathcal{E}^{(M_n)}(\mathbb{R}^k)$ , which takes non-negative values and whose support is contained in the closed ball B of  $\mathbb{R}^k$ , with center the origin and with radius  $\delta/8$ , such that

$$\int_{\mathbb{R}^k} \eta(x) \, \mathrm{d}x = 1$$

We denote by m(B) the Lebesgue measure of B and write

$$g_n(y) := (f_n * \eta)(y) = \int_{\mathbb{R}^k} f_n(x)\eta(y-x) \,\mathrm{d}x, \qquad y \in \mathbb{R}^k.$$

It follows that  $\{g_n : n \in \mathbb{N}\}\$  is a partition of unity in  $\mathbb{R}^k$ , subordinated to the open cover  $\{C_n : n \in \mathbb{N}\}\$  of  $\mathbb{R}^k$ , formed by elements of  $\mathcal{D}^{(M_n)}(\mathbb{R}^k)$ . We set

$$g := \sum \{ g_n : C_n \cap G \neq \emptyset \}.$$

It follows that g has value one in every point of a neighborhood of G and its support is contained in A. We now apply Theorem 2 to S and obtain h > 0 and the family  $(\mu_{\alpha} : \alpha \in \mathbb{N}_0^k)$  of complex Borel measures in  $\Omega$  with the properties there mentioned. We take  $0 < s < \frac{h}{4k}$  and put

$$\|\|\eta\|\| := \sup_{\alpha \in \mathbb{N}^k_{\alpha}} \sup_{x \in \mathbb{R}^k} \frac{|D^{\alpha}\eta(x)|}{s^{|\alpha|}M_{|\alpha|}}.$$

Then

$$|D^{\alpha}\eta(x)| \le s^{|\alpha|} M_{|\alpha|} |||\eta|||, \qquad x \in \mathbb{R}^k, \quad \alpha \in \mathbb{N}_0^k,$$

and

$$|D^{\alpha}g(y)| \leq \int_{\mathbb{R}^k} |D^{\alpha}\eta(y-x)| \,\mathrm{d}x = \int_{\mathbb{R}}^k |D^{\alpha}\eta(x)| \,\mathrm{d}x \leq s^{|\alpha|} M_{|\alpha|} |||\eta||| \, m(B), \qquad y \in \mathbb{R}^k.$$

We take  $\varphi$  in  $\mathcal{E}_0^{(M_n)}(\Omega)$ . We then have that  $g\varphi$  belongs to  $\mathcal{E}_0^{(M_n)}(\Omega)$  and so

$$\langle \varphi, S \rangle = \langle g\varphi, S \rangle = \sum_{\alpha \in \mathbb{N}_0^k} \int_{\Omega} D^{\alpha}(g\varphi) \, \mathrm{d}\mu_{\alpha} = \sum_{\alpha \in \mathbb{N}_0^k} \int_{\Omega} \left( \sum_{\beta \le \alpha} \frac{\alpha!}{\beta! (\alpha - \beta)!} D^{\beta} g \, D^{\alpha - \beta} \varphi \right) \mathrm{d}\mu_{\alpha}.$$

For each  $x \in \Omega$ , we have

$$\begin{split} \sum_{\beta \leq \alpha} \frac{\alpha!}{\beta!(\alpha - \beta)!} |D^{\beta}g(x)D^{\alpha - \beta}\varphi(x)| \\ &\leq \sum_{\beta \leq \alpha} \frac{\alpha!}{\beta!(\alpha - \beta)!} s^{|\beta|} M_{|\beta|} |||\eta||| \, m(B) |\varphi|_s s^{|\alpha - \beta|} M_{|\alpha - \beta|} \\ &= s^{|\alpha|} |||\eta||| \, m(B) |\varphi|_s \sum_{\beta \leq \alpha} \frac{\alpha!}{\beta!(\alpha - \beta)!} M_{|\beta|} M_{|\alpha - \beta|} \\ &\leq s^{|\alpha|} |||\eta||| \, m(B) |\varphi|_s 2^{|\alpha|} M_{|\alpha|} \\ &\leq \frac{h^{|\alpha|}}{(2k)^{|\alpha|}} |||\eta||| \, m(B) |\varphi|_s M_{|\alpha|} \end{split}$$

and thus

$$\begin{split} \sum_{\alpha \in \mathbb{N}_{0}^{k}} \sum_{\beta \leq \alpha} \frac{\alpha!}{\beta!(\alpha - \beta)!} \int_{\Omega} |D^{\beta}g \, D^{\alpha - \beta}\varphi| \, \mathrm{d}\mu_{\alpha} \\ &\leq |||\eta||| \, m(B) |\varphi|_{s} \sum_{\alpha \in \mathbb{N}_{0}^{k}} \frac{1}{(2k)^{|\alpha|}} h^{|\alpha|} M_{|\alpha|} |\mu_{\alpha}|(\Omega) \\ &\leq |||\eta||| \, m(B) |\varphi|_{s} \sum_{\alpha \in \mathbb{N}_{0}^{k}} \frac{1}{(2k)^{|\alpha|}} \sup_{\gamma \in \mathbb{N}_{0}^{k}} h^{|\gamma|} M_{|\gamma|} |\mu_{\gamma}|(\Omega) \\ &= 2 |||\eta||| \, m(B) |\varphi|_{s} \sup_{\alpha \in \mathbb{N}_{0}^{k}} h^{|\alpha|} M_{|\alpha|} |\mu_{\alpha}|(\Omega), \end{split}$$

from where we deduce that we can write, putting  $\gamma := \alpha - \beta$ ,

$$\sum_{\alpha \in \mathbb{N}_0^k} \sum_{\beta \le \alpha} \frac{\alpha!}{\beta! (\alpha - \beta)!} \int_{\Omega} D^{\beta} g \, D^{\alpha - \beta} \varphi \, \mathrm{d}\mu_{\alpha} = \sum_{\gamma \in \mathbb{N}_0^k} \sum_{\beta \in \mathbb{N}_0^k} \frac{(\beta + \gamma)!}{\beta! \gamma!} \int_{\Omega} D^{\beta} g \, D^{\gamma} \varphi \, \mathrm{d}\mu_{\beta + \gamma}.$$

Let us now take an arbitrary element  $\theta$  of  $C_0(\Omega)$ . Then

$$\begin{split} \sum_{\beta \in \mathbb{N}_{0}^{k}} \frac{(\beta + \gamma)!}{\beta! \gamma!} \int_{\Omega} D^{\beta} g \, \theta \, \mathrm{d}\mu_{\beta + \gamma} \Big| \\ &\leq \sum_{\beta \in \mathbb{N}_{0}^{k}} \frac{(\beta + \gamma)!}{\beta! \gamma!} \int_{\Omega} |D^{\beta} g \, \theta| |\mathrm{d}\mu_{\beta + \gamma}| \\ &\leq \sum_{\beta \in \mathbb{N}_{0}^{k}} \frac{(\beta + \gamma)!}{\beta! \gamma!} \int_{\Omega} s^{|\beta|} ||\eta|| \, m(B) M_{|\beta|} ||\theta||_{\infty} \, \mathrm{d}|\mu_{\beta + \gamma}| \\ &= ||\eta|| \, m(B) ||\theta||_{\infty} \sum_{\beta \in \mathbb{N}_{0}^{k}} \frac{(\beta + \gamma)}{\beta! \gamma!} s^{|\beta|} M_{|\beta|} |\mu_{\beta + \gamma}|(\Omega) \\ &\leq ||\eta|| \, m(B) ||\theta||_{\infty} \sum_{\beta \in \mathbb{N}_{0}^{k}} 2^{|\beta + \gamma|} s^{|\beta|} M_{|\beta|} |\mu_{\beta + \gamma}|(\Omega). \end{split}$$

On the other hand,

$$\begin{split} \sum_{\beta \in \mathbb{N}_{0}^{k}} 2^{|\beta+\gamma|} s^{|\beta|} M_{|\beta|} |\mu_{\beta+\gamma}|(\Omega) &= \frac{1}{M_{|\gamma|} s^{|\gamma|}} \sum_{\beta \in \mathbb{N}_{0}^{k}} (2s)^{|\beta+\gamma|} M_{|\beta|} M_{|\gamma|} |\mu_{\beta+\gamma}|(\Omega) \\ &\leq \frac{1}{M_{|\gamma|} s^{|\gamma|}} \sum_{\beta \in \mathbb{N}_{0}^{k}} (2s)^{|\beta+\gamma|} M_{|\beta+\gamma|} |\mu_{\beta+\gamma}|(\Omega) \\ &\leq \frac{1}{M_{|\gamma|} s^{|\gamma|}} \sum_{\beta \in \mathbb{N}_{0}^{k}} \frac{1}{(2k)^{|\beta+\gamma|}} (4ks)^{|\beta+\gamma|} M_{|\beta+\gamma|} |\mu_{\beta+\gamma}|(\Omega) \\ &\leq \frac{1}{M_{|\gamma|} s^{|\gamma|}} \sum_{\beta \in \mathbb{N}_{0}^{k}} \frac{1}{(2k)^{|\beta|}} \sup_{\alpha \in \mathbb{N}_{0}^{k}} h^{|\alpha|} M_{|\alpha|} |\mu_{\alpha}|(\Omega) \\ &= \frac{2}{M_{|\gamma|} s^{|\gamma|}} \sup_{\alpha \in \mathbb{N}_{0}^{k}} h^{|\alpha|} M_{|\alpha|} |\mu_{\alpha}|(\Omega). \end{split}$$

Consequently, there is a constant  $C_{\gamma}>0$  such that

$$\left|\sum_{\beta \in \mathbb{N}_0^k} \frac{(\beta + \gamma)!}{\beta! \gamma!} \int_{\Omega} D^{\beta} g \, \theta \, \mathrm{d}\mu_{\beta + \gamma}\right| \le C_{\gamma} \|\theta\|_{\infty} \tag{4}$$

.

Setting

$$v_{\gamma}(\theta) := \sum_{\beta \in \mathbb{N}_{0}^{k}} \frac{(\beta + \gamma)!}{\beta! \gamma!} \int_{\Omega} D^{\beta} g \, \theta \, \mathrm{d}\mu_{\beta + \gamma}, \qquad \theta \in C_{0}(\Omega),$$

we have that  $v_{\gamma}$  is a complex function, clearly linear, which, after (4), is in  $C_0(\Omega)^*$ . Making use of Riesz's representation theorem, we obtain a complex Borel measure  $\nu_{\gamma}$  in  $\Omega$  such that

$$v_{\gamma}(\zeta) = \int_{\Omega} \zeta \, \mathrm{d}\nu_{\gamma}, \qquad \zeta \in C_0(\Omega).$$

Then, for each  $\varphi \in \mathcal{E}_0^{(M_n)}(\Omega)$ , we have that

$$\left|\sum_{\beta\in\mathbb{N}_0^k}\frac{(\beta+\gamma)!}{\beta!\gamma!}\int_{\Omega}D^{\beta}g\,D^{\gamma}\varphi\,\mathrm{d}\mu_{\beta+\gamma}\right| = \int_{\Omega}D^{\gamma}\varphi\,\mathrm{d}\nu_{\gamma}.$$

Clearly, the Borel measures  $\nu_{\gamma}, \gamma \in \mathbb{N}_0^k$ , have their supports in A. We take 0 < 2kl < s. We choose  $\gamma \in \mathbb{N}_0^k$  and  $\zeta \in C_0(\Omega)$  such that  $\|\zeta\|_{\infty} < 2$  and

$$v_{\gamma}(\zeta) = |\nu_{\gamma}|(\Omega).$$

Then

$$\begin{split} l^{|\gamma|} M_{|\gamma|} |\nu_{\gamma}|(\Omega) &= l^{|\gamma|} M_{|\gamma|} v_{\gamma}(\zeta) \\ &\leq l^{|\gamma|} M_{|\gamma|} \left| \sum_{\beta \in \mathbb{N}_{0}^{k}} \frac{(\beta + \gamma)!}{\beta! \gamma!} \int_{\Omega} D^{\beta} g \, \zeta \, \mathrm{d}\mu_{\beta + \gamma} \right| \\ &\leq l^{|\gamma|} M_{|\gamma|} \, m(B) \, |||\eta||| \, ||\zeta||_{\infty} \sum_{\beta \in \mathbb{N}_{0}^{k}} 2^{|\beta + \gamma|} s^{|\beta|} M_{|\beta|} |\mu_{\beta + \gamma}|(\Omega) \\ &\leq l^{|\gamma|} M_{|\gamma|} \, m(B) |||\eta||| \, ||\zeta||_{\infty} \frac{2}{M_{|\gamma|} s^{|\gamma|}} \sup_{\alpha \in \mathbb{N}_{0}^{k}} h^{|\alpha|} M_{|\alpha|} |\mu_{\alpha}|(\Omega) \end{split}$$

and therefore there is a constant C > 0 for which

$$l^{|\gamma|} M_{|\gamma|} |\nu_{\gamma}|(\Omega) \le C(l/s)^{|\gamma|} \le C \frac{1}{(2k)^{|\gamma|}} \le C \sum_{\alpha \in \mathbb{N}_0^k} \frac{1}{(2k)^{|\alpha|}} = 2 C.$$

Thus

$$\sup_{\alpha \in \mathbb{N}_0^k} l^{|\gamma|} M_{|\gamma|} |\nu_{\gamma}|(\Omega) < \infty.$$

Summarizing, we have obtained l > 0 and a family  $\nu_{\alpha}, \alpha \in \mathbb{N}_0^k$ , of complex Borel measures in  $\Omega$ , with supports contained in A, such that

$$\sup_{\alpha \in \mathbb{N}_0^k} l^{|\alpha|} M_{|\alpha|} |\nu_{\alpha}|(\Omega) < \infty$$

We apply Theorem 1 and so obtain an element T in  $\mathcal{E}_0^{(M_n)\prime}(\Omega)$  such that

$$\langle \varphi, T \rangle = \sum_{\alpha \in \mathbb{N}_0^k} \int_{\Omega} D^{\alpha} \varphi \, \mathrm{d} \nu_{\alpha}, \qquad \varphi \in \mathcal{E}_0^{(M_n)}(\Omega),$$

where the series converges absolute and uniformly in every bounded subset of  $\mathcal{E}_0^{(M_n)}(\Omega)$ . It follows that, for each  $\varphi \in \mathcal{E}_0^{(M_n)}(\Omega)$ ,

$$\langle \varphi, T \rangle = \sum_{\alpha \in \mathbb{N}_0^k} \int_{\Omega} D^{\alpha} \varphi \, \mathrm{d}\nu_{\alpha} = \sum_{\alpha \in \mathbb{N}_0^k} \int_{\Omega} D^{\alpha}(g\varphi) \, \mathrm{d}\mu_{\alpha} = \langle g\varphi, S \rangle.$$

Since, for each  $\varphi \in \mathcal{D}^{(M_n)}(\Omega)$ , we have that  $\langle g\varphi, S \rangle = \langle \varphi, S \rangle$ , we may then write the following

**Theorem 5** Let S be an element of  $\mathcal{E}_0^{(M_n)'}(\Omega)$  whose support is F. Let A be an open subset of  $\Omega$  containing F. If the distance from F to  $\mathbb{R}^k \setminus A$  is positive, there are h > 0 and a family ( $\mu_{\alpha} : \alpha \in \mathbb{N}_0^k$ ) of complex Borel measures in  $\Omega$  such that

$$\sup_{\alpha \in \mathbb{N}_0^k} h^{|\alpha|} M_{|\alpha|} |\mu_{\alpha}|(\Omega) < \infty, \quad \operatorname{supp} \mu_{\alpha} \subset A, \qquad \alpha \in \mathbb{N}_0^k,$$

and

$$\langle \varphi, S \rangle = \sum_{\alpha \in \mathbb{N}_0^k} \int_{\Omega} D^{\alpha} \varphi \, \mathrm{d}\mu_{\alpha}, \qquad \varphi \in \mathcal{D}^{(M_n)}(\Omega),$$

where this series converges absolute and uniformly in every bounded subset of  $\mathcal{D}^{(M_n)}(\Omega)$ .

## 4 Structure of the ultradistributions of Beurling type

**Theorem 6** Let  $\{u_{\alpha} : \alpha \in \mathbb{N}_{0}^{k}\}$  be a family of Radon measures in  $\Omega$ . If, given any compact subset K of  $\Omega$ , there is h > 0 such that

$$\sup_{\alpha \in \mathbb{N}_0^k} h^{|\alpha|} M_{|\alpha|} \| u_\alpha \| (K) < \infty,$$

then there is an element S in  $\mathcal{D}^{(M_n)'}(\Omega)$  so that

$$\langle \varphi, S \rangle = \sum_{\alpha \in \mathbb{N}_0^k} \langle D^{\alpha} \varphi, u_{\alpha} \rangle, \qquad \varphi \in \mathcal{D}^{(M_n)}(\Omega),$$

where this series converges absolute and uniformly in every bounded subset of  $\mathcal{D}^{(M_n)}(\Omega)$ .

PROOF. For each  $m \in \mathbb{N}$ , we identify in a natural way  $\mathcal{K}(K_m)$  with  $C_0(\overset{\circ}{K_m})$ . We put  $u^m_{\alpha}$  for the restriction of  $u_{\alpha}$  to  $\mathcal{K}(K_m)$ . If  $\mu^m_{\alpha}$  is the complex Borel measure in  $\overset{\circ}{K_m}$  for which

$$\langle f, u^m_{\alpha} \rangle = \int_{K^\circ_m} f \,\mathrm{d} \mu^m_{\alpha}, \qquad f \in C_0(\overset{\circ}{K_m})$$

we have that

$$||u_{\alpha}||(K_m) = |\mu_{\alpha}^m|(\overset{\circ}{K_m})$$

and there is  $h_m > 0$  such that

$$\sup_{\alpha \in \mathbb{N}_0^k} h^{|\alpha|} M_{|\alpha|} ||u_\alpha||(K_m) < \infty.$$

Thus, we apply Theorem 1 and so obtain an element  $S_m$  in  $\mathcal{E}_0^{(M_n)\prime}(\overset{\circ}{K_m})$  such that

$$\langle \varphi, S_m \rangle = \sum_{\alpha \in \mathbb{N}_0^k} \int_{\mathcal{K}_m}^{\circ} D^{\alpha} \varphi \, \mathrm{d} \mu_{\alpha}^m, \qquad \varphi \in \mathcal{E}_0^{(M_n)}(\Omega),$$

where this series converges absolute and uniformly in every bounded subset of  $\mathcal{E}_0^{(M_n)}(\overset{\circ}{K_m})$ . Given an arbitrary element  $\varphi$  of  $\mathcal{D}^{(M_n)}(\Omega)$ , we find  $m \in \mathbb{N}$  such that

$$\operatorname{supp} \varphi \subset \overset{\circ}{K_m}$$

and we put

$$\langle \varphi, S \rangle := \langle \varphi, S_m \rangle$$

It is easy to see that S belongs to  $\mathcal{D}^{(M_n)'}(\Omega)$  and also that it fulfills the requirements of the statement.

**Theorem 7** If S is an element of  $\mathcal{D}^{(M_n)'}(\Omega)$ , there is a family  $(u_\alpha : \alpha \in \mathbb{N}_0^k)$  of Radon measures in  $\Omega$ , such that, given any compact subset K of  $\Omega$ , there is h > 0 with

$$\sup h^{|\alpha|} M_{|\alpha|} ||u_{\alpha}||(K) < \infty,$$

and

$$\langle \varphi, S \rangle = \sum_{\alpha \in \mathbb{N}_0^k} \langle D^{\alpha} \varphi, u_{\alpha} \rangle, \qquad \varphi \in \mathcal{D}^{(M_n)}(\Omega),$$

where the series converges absolute and uniformly in every bounded subset of  $\mathcal{D}^{(M_n)}(\Omega)$ .

PROOF. Let  $\{O_m : m \in \mathbb{N}\}\$  be a locally finite open covering of  $\Omega$  such that  $O_m$  is relatively compact in  $\Omega$ ,  $m \in \mathbb{N}$ . Let  $\{g_m : m \in \mathbb{N}\}\$  be a partition of unity of class  $(M_n)$  subordinated to the above open cover. It follows that  $g_m S$  is an element with compact support  $F_m$  contained in  $O_m$  and thus it belongs to  $\mathcal{E}_0^{(M_n)'}(\Omega)$ . The distance from  $F_m$  to  $\mathbb{R}^k \setminus O_m$  is positive, hence we may apply Theorem 5 to obtain  $h_m > 0$  and a family  $(\mu_{\alpha}^m : \alpha \in \mathbb{N}_0^k)$  of complex Borel measures in  $\Omega$  so that

$$\sup_{\alpha \in \mathbb{N}_{0}^{k}} h_{m}^{|\alpha|} M_{|\alpha|} | \mu_{\alpha}^{m} | (\Omega) < \infty, \quad \operatorname{supp} \mu_{\alpha}^{m} \subset O_{m}, \qquad \alpha \in \mathbb{N}_{0}^{k},$$

and

$$\langle \varphi, g_m S \rangle = \sum_{\alpha \in \mathbb{N}_0^k} \int_{\Omega} D^{\alpha} \varphi \, \mathrm{d} \mu_{\alpha}^m, \qquad \varphi \in \mathcal{E}_0^{(M_n)}(\Omega),$$

where this series converges absolute and uniformly in every bounded subset of  $\mathcal{E}_0^{(M_n)}(\Omega)$ .

Given an arbitrary element f of  $\mathcal{K}(\Omega)$ , there is a finite number of subindex m such that

$$O_m \cap \operatorname{supp} f \neq \emptyset.$$

Consequently, we may define, for each  $\alpha \in \mathbb{N}_0^k$ ,

$$u_{\alpha}(f) := \sum_{m \in \mathbb{N}} \int_{\Omega} f \,\mathrm{d}\mu_{\alpha}^{m}.$$

It follows that  $u_{\alpha}$  is a linear functional on  $\mathcal{K}(\Omega)$ . Given an arbitrary compact subset K of  $\Omega$ , there is a positive integer  $m_0$  such that  $K \cap O_m = \emptyset$ ,  $m > m_0$ . Hence, if f has its support contained in K, we have that

$$|u_{\alpha}(f)| \leq \sum_{m \in \mathbb{N}} \int_{\Omega} |f| \, \mathrm{d} |\mu_{\alpha}^{m}| \leq \sum_{m=1}^{m_{0}} |\mu_{\alpha}^{m}|(\Omega) \cdot ||f||_{\infty},$$

from where we deduce that  $u_{\alpha}$  is a Radon measure in  $\Omega$ . Besides,

$$||u_{\alpha}||(K) \leq \sum_{m=1}^{m_0} |\mu_{\alpha}^m|(\Omega),$$

and, if

$$h := \inf\{h_m : m = 1, 2, \dots, m_0\},\$$

it follows that

$$\sup_{\alpha \in \mathbb{N}_0^k} h^{|\alpha|} M_{|\alpha|} \|\mu_{\alpha}\|(K) \le \sum_{m=1}^{m_0} \sup_{\alpha \in \mathbb{N}_0^k} h_m^{|\alpha|} M_{|\alpha|} |\mu_{\alpha}^m|(\Omega) < \infty.$$

We now take  $\varphi$  in  $\mathcal{D}^{(M_n)}(\Omega)$  with support in K. Then

$$\begin{split} \langle \varphi, S \rangle &= \langle \varphi \sum_{m=1}^{\infty} g_m, S \rangle = \langle \varphi \sum_{m=1}^{m_0} g_m, S \rangle \\ &= \sum_{m=1}^{m_0} \langle \varphi, g_m S \rangle = \sum_{m=1}^{m_0} \sum_{\alpha \in \mathbb{N}_0^k} \int_{\Omega} D^{\alpha} \varphi \, \mathrm{d} \mu_{\alpha}^m \\ &= \sum_{\alpha \in \mathbb{N}_0^k} \sum_{m=1}^{m_0} \int_{\Omega} D^{\alpha} \varphi \, \mathrm{d} \mu_{\alpha}^m = \sum_{\alpha \in \mathbb{N}_0^k} \langle D^{\alpha} \varphi, u_{\alpha} \rangle. \end{split}$$
(5)

It is now simple to show that the series in (5) converges absolute and uniformly in every bounded subset of  $\mathcal{D}^{(M_n)}(\Omega)$ .

**Acknowledgement.** The author has been partially supported by MEC and FEDER Project MTM2005-08210.

# References

- [1] KOMATSU, H., (1973). Ultradistributions I. Structure theorems and characterizations, *J. Fac. Sci. Uni. Tokyo*, **20**, 25–105.
- [2] RUDIN, W., (1970). Real and Complex Analysis, McGraw-Hill, London New York.

Manuel Valdivia Departamento de Análisis Matemático Universidad de Valencia Dr. Moliner, 50 46100, Burjasot (Valencia) Spain