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Abstract 

In this paper we propose a model for monthly inflation with stochastic trend, seasonal and 

transitory components with QGARCH disturbances. This model distinguishes whether the 

long-run or short-run components are heteroscedastic. Furthermore, the uncertainty 

associated with these components may increase with the level of inflation as postulated by 

Friedman. We propose to use the differences between the autocorrelations of squares and 

the squared autocorrelations of the auxiliary residuals to identify heteroscedastic 

components. We show that conditional heteroscedasticity truly present in the data can be 

rejected when looking at the correlations of standardized residuals while the autocorrelations 

of auxiliary residuals have more power to detect conditional heteroscedasticity. Furthermore, 

the proposed statistics can help to decide which component is heteroscedastic. Their finite 

sample performance is compared with that of a Lagrange Multiplier test by means of Monte 

Carlo experiments. Finally, we use auxiliary residuals to detect conditional heteroscedasticity 

in monthly inflation series of eight OECD countries. 

 

JEL codes: C22; C52; E31. 

Keywords: Leverage effect, QGARCH, seasonality, structural time series models, 

unobserved components. 



1 Introduction

Having accurate measures of inflation uncertainty has become crucial for macroeconomic ana-

lysts. Nowadays, it is well accepted that this uncertainty evolves over time. Friedman (1977)

suggests that higher inflation levels lead to greater uncertainty about future inflation1; see Ball

(1992) for an economic theory explaining this causality relationship. The empirical evidence on

the Friedman hypothesis, also named “leverage effect” in the Financial Econometrics literature,

is diverse. The first problem faced by the empirical researcher is that the uncertainty of inflation

is unobservable and, consequently, there is a question about how to measure it. Early papers

used the inflation variability or the forecasts dispersion as proxies for uncertainty; see, for exam-

ple, Okun (1971), Foster (1978) or Cukierman and Wachtel (1979). Later, after the introduction

of the ARCH model by Engle (1982), many authors measured the uncertainty of inflation by the

conditional variance; see, for example, Engle (1983), Bollerslev (1986) and Cosimano and Jansen

(1988). These authors did not find empirical support for the Friedman hypothesis. However,

it has been supported by Joyce (1995), Baillie et al. (1996), Grier and Perry (1998), Kim and

Nelson (1999), Kontonicas (2004), Conrad and Karanasos (2005) and Daal et al. (2005) among

many others. Finally, there are studies as, for example, Hwang (2001), that find a negative

relationship between level of inflation and its future uncertainty.

These contradictory results can be explained by taking into account that the GARCH models

considered in these papers may have at least one of the following limitations. First, GARCH

models assume that the response of the conditional variance to positive and negative inflation

changes is symmetric and this property is intrinsically incompatible with the Friedman hypoth-

esis. In this sense, Brunner and Hess (1993) propose a State-Dependent model that allows for

asymmetric responses; see also Caporale and McKierman (1997) for an empirical implementa-

tion of this model. Alternatively, Daal et al. (2005) also consider modelling the uncertainty

of inflation using the asymmetric power GARCH model of Ding et al. (1993). The second

limitation is that some of the models fitted to inflation did not distinguish between short and

long run uncertainty. However, papers that made this distinction find stronger evidence of the

Friedman hypothesis in the long run although there is mixed evidence; see, for example, Ball

and Cecchetti (1990), Evans (1991), Evans and Watchel (1993), Kim (1993), Garćıa and Perron

1The opposite type of causation, between inflation uncertainty and the level of inflation, has also been con-

sidered between others by Cukierman (1992), Fountas et al. (2000) and Conrad and Karanasos (2005) among

many others; see Cukierman and Meltzer (1986) for a theoretical justification. However, this relationship has

been found to be empirically weaker and we focus on the Friedman hypothesis.
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(1996), Grier and Perry (1998) and Kontonicas (2004).

The objective of this paper is twofold. First, we propose to represent the dynamic evolution

of inflation by an unobserved component model with QGARCH disturbances in order to over-

come the above mentioned limitations. The proposed model is able of distinguishing whether

the short or the long run components of inflation are heteroscedastic. At the same time, the

heteroscedasticity is modelled in such a way that the volatility may respond asymmetrically to

positive and negative movements of inflation. Moreover, previous models for monthly inflation

have been fitted to seasonally adjusted observations. In our model, the seasonal component is

modelled specifically and, consequently, there is no need for a previous seasonal adjustment.

In particular, in order to capture the previously mentioned empirical characteristics, we extend

the random walk plus noise model with QGARCH disturbances, denoted by Q-STARCH and

proposed by Broto and Ruiz (2006), by adding a homoscedastic seasonal component.

Second, to identify the presence of heteroscedasticity in the components, we propose to use

statistics based on the use of the differences between the autocorrelations of squares and the

squared autocorrelations of the auxiliary residuals. We analyze the finite sample behaviour of

these differences and show that they can be useful to identify conditional heteroscedasticity even

in series where looking at the original data or at the traditional standardized residuals, we may

conclude that they are homoscedastic. Furthermore, looking at auxiliary residuals may help

to identity which of the components is heteroscedastic. However, although a test based on the

differences between the autocorrelations of auxiliary residuals is a useful instrument to identify

which component is heteroscedastic, the transmission of heteroscedasticity between auxiliary

residuals, could generate some ambiguity depending on the particular model generating the

data.

The paper is organized as follows. Section 2 introduces the Q-STARCH model with season-

ality and describes its properties. In Section 3, we analyze the finite sample performance of the

differences between the sample autocorrelations of squares and the squared autocorrelations of

the stationary transformation of the observations and of the standardized residuals. We also an-

alyze these differences for the autocorrelations of auxiliary residuals as a tool to detect whether

a given component of the model is conditionally heteroscedastic. Finally, we carry out Monte

Carlo experiments to compare the properties of the proposed tests with those of the Lagrange

Multiplier (LM) tests proposed by Harvey et al. (1992). In Section 4, the Q-STARCH model is

fitted to monthly inflation series of the OECD countries. Finally, Section 5 concludes the paper.
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2 Q-STARCH model with seasonal effects

Consider that the series of interest, yt, can be decomposed into a long run component, represent-

ing an evolving level, µt, a stochastic seasonal component, δt, and a transitory component, εt.

If the level follows a random walk, the seasonal component is specified using a dummy variable

formulation and the transitory component is a white noise, the resulting model for yt is given

by

yt = µt + δt + εt

µt = µt−1 + ηt

δt = −
s−1∑
i=1

δt−i + ωt, (1)

where s is the seasonal period; see Harvey (1989). The transitory and long-run disturbances are

defined by εt = ε†th
1/2

t and ηt = η†
t q

1/2

t respectively where ε†t and η†
t are mutually independent

Gaussian white noise processes and ht and qt are defined as QGARCH processes2 given by

ht = α0 + α1ε
2
t−1 + α2ht−1 + α3εt−1

qt = γ0 + γ1η
2
t−1 + γ2qt−1 + γ3ηt−1. (2)

The parameters α0, α1, α2, α3, γ0, γ1, γ2 and γ3 satisfy the usual conditions to guarantee

the positivity and stationarity of ht and qt; see Sentana (1995). Finally, the disturbance of the

seasonal component is assumed to be a Gaussian white noise with variance σ2
ω independent of εt

and ηt. Model (1) is able to distinguish whether the possibly asymmetric ARCH effects appear

in the permanent and/or in the transitory component. Furthermore, the conditional variances

in (2) have different responses to shocks of the same magnitude but different sign.

Although the series yt is non-stationary, it can be transformed into stationarity by taking

seasonal differences. The stationary form of model (1) is given by

�syt = S(L)ηt + �ωt + �sεt (3)

2Alternatively, the variances of the unobserved components can be specified as Stochastic Volatility (SV)

processes, as in Stock and Watson (2007). However, the estimation of unobserved component models with SV

disturbances is usually based on Simulated Maximum Likelihood and it is rather difficult to extend the method

to allow for different components having different evolutions of the volatility; see, for example, Brandt and Kang

(2004), Koopman and Bos (2004) and Bos and Shephard (2006). Another proposal of unobserved component

models with heteroscedastic errors can be found in Ord et al. (1997), where instead of considering different

disturbance processes for each unobserved component, the source of randomness is unique.
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where �s and � are the seasonal and regular difference operators given by �s = 1 − Ls and

� = 1 − L respectively, and S(L) = 1 + L + ... + Ls−1. The dynamic properties of ∆syt can be

analyzed by deriving its autocorrelation function (acf) that is given by

ρ(h) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(s − 1)σ2
η − σ2

ω

sσ2
η + 2σ2

ω + 2σ2
ε

, h = 1

(s − h)σ2
η

sσ2
η + 2σ2

ω + 2σ2
ε

, h = 2, ..., s − 1

−σ2
ε

sσ2
η + 2σ2

ω + 2σ2
ε

, h = s

0, h > s

(4)

where σ2
ε = α0/(1 − α1 − α2) and σ2

η = γ0/(1 − γ1 − γ2). The first row of Figure 1 plots the acf

in (4) for the following four Q-STARCH models with s = 4,

α0 α1 α2 α3 γ0 γ1 γ2 γ3 σ2
ω

M0 1 0 0 0 0.25 0 0 0 0.01

M1 0.05 0.15 0.8 0.17 0.25 0 0 0 0.01

M2 4 0 0 0 0.05 0.15 0.8 0.17 0.01

M3 0.2 0.15 0.8 0.17 0.05 0.15 0.8 0.17 0.01

The values of the parameters have been chosen to resemble the values typically estimated

when analyzing real time series of monthly inflation. In particular, the signal to noise ratio of

the long run component, qη = σ2
η/σ2

ε = 0.25, is smaller than one, because usually the variance

of the long run component of inflation is smaller than the variance of the transitory component.

The variance of the seasonal component is also rather small, σ2
ω = 0.01. With respect to the

presence of conditional heteroscedasticity, model M0, has all its components homoscedastic.

However, the short run disturbance of model M1 is heteroscedastic while in model M2, the long

run component is heteroscedastic. Finally, both disturbances are heteroscedastic in model M3.

Note that the acf of ∆4yt is the same regardless of whether the disturbances are heteroscedastic

or homocedastic because the parameters of the QGARCH models have been chosen in such a

way that the marginal variance of εt and ηt are the same in the four models considered.

Figure 1 also plots the sample means through 1000 replicates of the sample autocorrelations

of ∆4yt, r(h), of series of size T = 500 generated by the models described before. We can observe
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that, for the models and sample sizes considered in this illustration, the sample autocorrelations

of ∆4yt are unbiased.

The presence of heteroscedasticity in the model is reflected in the kurtosis of ∆syt which is

given by

κy = (sqη + 2qω + 2)
−2

[
q2
η

(
sκη + 6

s−1∑
i=1

(s − i)(1 + (κη − 1)ρη
2(i)

)
+

+2κε + 6(1 + (κε − 1)ρε
2(s) + 12(sqηqω + sqη + 2qω + q2

ω)
]
, (5)

where qω is the signal to noise ratio of the seasonal component, given by qω = σ2
ω/σ2

ε . κε and

ρε
2(h) are the kurtosis and autocorrelations of squares of εt, which are given by

κε = 3(1 + α1 + α2 + (α2
3/α0))(1 − α1 − α2)/(1 − 3α2

1 − α2
2 − 2α1α2) (6)

and

ρε
2(h) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2α1(1 − α1α2 − α2

2) + (α3/σ2
ε)(3α1 + α2)

2(1 − 2α1α2 − α2
2) + (3α3/σ2

ε)
, h = 1

(α1 + α2)
h−1ρε

2(h − 1), h > 1.

(7)

respectively; see Sentana (1995). The expression of the kurtosis and acf of squares of ηt, κη

and ρη
2(h), respectively, are analogous to those of εt. As expected, the kurtosis in (5) is 3 when

all the noises are homoscedastic.

It is well known that when a series is homoscedastic and Gaussian, the autocorrelations of

squared observations are equal to the squared autocorrelations of the original observations; see

Maravall (1987) and Palma and Zevallos (2004). The presence of conditional heteroscedasticity

generates autocorrelations of squares larger than the squared autocorrelations. In order to use

this result in the following sections, we are now deriving the acf of squares of the stationary

transformation of yt denoted by ρ2(h). This acf has been obtained by Broto and Ruiz (2006) for

the particular case of the local level model, i.e. model (1) without seasonal component. They also

show that the effect of the presence of asymmetries in the volatilities of the components on the

autocorrelations of squares is negligible. Therefore, for simplicity, the asymmetric parameters

in equations (2), α3 and γ3, are fixed to zero. In this case, after some very tedious although

straightforward algebra, we derive the following expression of the autocovariance function of
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(∆syt)
2 in the seasonal Q-STARCH model,

γ2(h) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ4
ε [q2

η{(s − 1)(κη − 1) + 2(κη − 1)
s−1∑
i=1

(s − i)ρη
2(i) + ρη

2(s)

+4
s−2∑
i=1

(s − i − 1)(1 + (κη − 1)ρη
2(i)} + 2q2

ω

+(κε − 1){2ρε
2(1) + ρε

2(s − 1) + ρε
2(s + 1)} − 4(s − 1)qηqω], h = 1

σ4
ε [q2

η((κη − 1){(s − h) + 2(s − h)
h−1∑
i=1

ρη
2(i) + 2

s−h∑
i=h

(s − i)ρη
2(i)

+
s+h−1∑

i=s−h+1

(s + h − i)ρη
2(i)} + 4

s−h−1∑
i=1

(s − i − h)(1 + (κη − 1)ρη
2(i)})

+(κε − 1){2ρε
2(h) + ρε

2(s − h) + ρε
2(s + h)}], h = 2, ..., s− 1

σ4
ε [q2

η(κη − 1)(
s∑

i=1

iρη
2(i) +

s−1∑
i=1

(s + i)ρη
2(i))

+(κε − 1){1 + ρε
2(s) + ρε

2(2s)}], h = s

σ4
ε [q2

η(κη − 1)(
h∑

i=h+1−s

(i − h + s)ρη
2(i) +

h+s−1∑
i=h+1

(h + s − i)ρη
2(i))

+(κε − 1){2ρε
2(h) + ρε

2(h − s) + ρε
2(s + h)}] h > s.

(8)

The variance of (∆syt)
2 is given by

V ar
[
(∆syt)

2
]

= σ4
ε

[
q2
η

(
2s2 + s(κη − 3) + 6(κη − 1)

s−1∑
i=1

(s − i)ρη
2(i)

)
+ (9)

8q2
ω + 2(κε + 1) + (4(κε − 1)ρε

2(s)) + 8sqηqω + 8sqη + 12qω

]
From expression (8) and (9), it is possible to obtain the expression of the acf of (∆syt)

2.

Note that when the signal to noise ratio of the long-run component is small, as in the case of

inflation, the heteroscedasticity of this component does not affect the autocorrelations of squares.

However, when this ratio is large, the effect of a heteroscedastic long-run component is larger

than the effect of the transitory component. This result is illustrated in the second row of Figure

1 that plots the acf of (∆syt)
2 for the same four models considered above.

The third row of Figure 1 plots the population differences ρ2(h) − (ρ(h))
2
, where ρ2(h) is

the population autocorrelation of (∆syt)
2, and the corresponding sample means through 1000

replicates. Note that in the homoscedastic model M0, the autocorrelations of squares are clearly

smaller than the squared autocorrelations of ∆syt. However, in the M1 and M3 models in which

the transitory component is heteroscedastic, the autocorrelations of (∆syt)
2 are clearly larger

than those of ∆syt. Finally, in model M2 the autocorrelations of squares are only slightly larger
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than the squared autocorrelations. Note that, because σ2
ε is larger than σ2

η, the characteristics

of the short run component are expected to be more evident in the reduced form than those of

the long run component.

To analyze the finite sample properties of the estimates of the autocorrelations of (∆syt)
2,

Figure 1 also plots the sample means through 1000 replicates of the sample autocorrelations

of (∆4yt)
2, r2(h), of series of size T = 500 generated by each of the models. We can observe

that the biases of the sample autocorrelations of (∆4yt)
2 are negative for small lags and positive

for large lags. It is important to note that in the case of model M2 it could be difficult to

detect the presence of conditional heteroscedasticity by looking at the differences between the

autocorrelations of (∆4yt)
2 and the squared autocorrelations of ∆4yt.

3 Testing for heteroscedasticity

Given that conditional heteroscedasticity generates autocorrelations of squares larger than squared

autocorrelations, one can test for it by testing whether the differences between both statistics

are significantly larger than zero. As far as we know, the asymptotic properties of these differ-

ences are unknown. Therefore, in this section, we analyze by means of Monte Carlo experiments

whether they can be approximated by a Normal distribution. We show that looking at the

differences between the autocorrelations of (∆syt)
2 and the squared autocorrelations of ∆syt,

the heteroscedasticity can be rejected when it is truly present in the data. We also analyze

the finite sample properties of the differences between the autocorrelations of the innovations.

In this case, the asymptotic distribution is known as their autocorrelations are zero. Finally,

we look at the autocorrelations of auxiliary residuals. The properties of the proposed tests are

compared with those of the LM tests.

3.1 Tests based on the stationary transformation

As we mentioned above, when the noises of model (1) are homoscedastic and Gaussian the

autocorrelations of (∆syt)
2 are equal to the squared autocorrelations of ∆syt in expression (4).

However, in the presence of heteroscedasticity, the autocorrelations of squares are larger than the

squared autocorrelations. Therefore, one can use these differences to identify whether a series is

heteroscedastic. In this subsection, we analyze the finite sample distribution of r2(h) − (r(h))
2

by Monte Carlo simulations. First row of Figure 2 plots the QQ-plots corresponding to these
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differences calculated using 1000 replicates simulated by the same models as above when T =

10000. This Figure shows that when the series is homoscedastic, i.e. both disturbances are

homoscedastic, the asymptotic distribution of r2(1) − (r(1))
2

can be adequately approximated

by a N(0,1/
√

T ) distribution for large sample sizes.

Consequently, we propose to test the joint null of H0 : ρ2(h) − (ρ(h))2 = 0 for h = 1, ..., M

versus the alternative that at least one of these differences is larger than zero using the following

statistic.

BPy(M) = T

M∑
h=1

(
r2(h) − (r(h))

2
)2

(10)

Given that under the null hypothesis, r2(h) − (r(h))
2

can be approximated by a N(0, 1/T )

distribution in large samples, the distribution of the statistic in (10) can be approximated by

a χ2
M distribution. The finite sample size and power of the test in (10) have been analyzed

generating 10000 replicates from the same models considered before. The results are represented

for a nominal size of 5%. The sizes (results corresponding to model M0) and powers (results

corresponding to M1, M2 and M3) for M = 1, 4, 12 and 24 appear in Table 1, when T = 100,

200 and 500. These results show that for the sample sizes and models considered, M = 12 is a

good compromise between size and power. Furthermore, Table 1 shows that the power in model

M2 is very low in concordance with the results illustrated in previous section in Figure 1.

3.2 Tests based on standardized residuals

The test above is based on testing whether the stationary transformation, ∆syt, is homoscedastic.

Alternatively, it is possible to test for conditional homoscedasticity by looking at the autocor-

relations of squared innovations, ν2
t = (∆syt − E

t − 1
(∆syt))

2. The t− 1 under the expectation

operator means that the expectation is conditional on the information available at time t − 1.

The innovations are uncorrelated and consequently, if we want to test for homoscedasticity, we

have to look at whether the autocorrelations of ν2
t , denoted by ρν

2(h), are zero or not. Consider

now, model (1) with homoscedastic disturbances. If the parameters were known, the Kalman

filter generates Minimum Mean Square Linear (MMSL) one-step ahead prediction errors; see, for

example, Harvey (1989). Therefore, running the Kalman filter with estimated parameters3, we

can obtain estimates of the innovations, ν̂t, and compute the autocorrelations of their squares.

3In this paper, we estimate the parameters using the QML estimator proposed by Harvey et al. (1992). Ana-

lytical expression of the Kalman filter for the case of the Q-STARCH model with seasonal effects and FORTRAN

codes employed in the estimation are available upon request.
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The first row of Figure 3 plots, for the same models as before, the differences between these

autocorrelations and the corresponding squared autocorrelations obtained assuming that the

parameters are known and T = 10, 000 together with the means obtained with estimated pa-

rameters and T = 500. First, we can observe important negative biases. Furthermore, comparing

the differences of the innovations with the differences corresponding to ∆4yt, we can observe

that both plots have similar shapes. The only noticeable difference is that the differences of the

innovations are slightly larger. However, the autocorrelations of squared innovations of model

M2 still do not allow identifying the heteroscedasticity.

The autocorrelations of squared residuals are, under the null, asymptotically distributed with

a N(0, 1/T ) distribution. Therefore, as before, we can test for conditional homoscedasticity by

testing the null hypothesis H0 : ρν
2(1) = . . . = ρν

2(M) = 0 versus the alternative that at least

one of the autocorrelations is larger than zero. The statistic in (10) becomes

BPν(M) = T

M∑
h=1

(rν
2 (h))

2
(11)

Table 1 reports the Monte Carlo size and adjusted power of the test statistic (11) when the data

is generated by models M0, M1, M2 and M3, for M = 1, 4, 12 and 24, with T = 100, 200 and

500. Looking at the results reported for model M0, we can observe that the size is approximately

equal to the nominal for moderate sample sizes and when M = 12. On the other hand, in models

M1 and M3, the power increases with respect to testing for heteroscedasticity by looking at the

differences between the autocorrelations of ∆syt. However, the power is reduced in model M2

in which the long-run component is heteroscedastic.

Summarizing, looking at the differences between the autocorrelations of squares and the

squared autocorrelations of ∆syt and ν̂t could be an instrument to detect conditional het-

eroscedasticity in the disturbances of unobserved component models. However, tests based

on these differences may have low power mainly when the heteroscedasticity appears in compo-

nents with small signal to noise ratio. There are cases, as, for example, model M2, in which we

can erroneously conclude that the model is homoscedastic. Koopman and Bos (2004), looking

at alternative statistics to detect conditional heteroscedasticity in the innovations, also conclude

that these statistics have low power. Furthermore, even when these differences are not zero, as

in models M1 and M3, they do not allow us to identify whether the heterocedasticity affects

the long run, the short run or both. Next, we analyze how to use the auxiliary residuals to solve

these problems.

BANCO DE ESPAÑA 17 DOCUMENTO DE TRABAJO N.º 0812 

                                                                         



3.3 Tests based on auxiliary residuals

In unobserved component models, it can also be useful to analyze the auxiliary residuals, which

are estimates of the disturbances of each component. Harvey and Koopman (1992) derive the

expressions of the auxiliary residuals, ε̂t, η̂t and ω̂t which are defined as the MMSL smoothed

estimators of εt, ηt and ωt, respectively; see also Durbin and Koopman (2001). In particular,

the auxiliary residuals corresponding to model (1) are given by

ε̂t =
(1 − F s)

θ(F )

σ2
ε

σ2
ξt

η̂t =
(1 − F s)

θ(F )(1 − F )

σ2
η

σ2
ξt

ω̂t =
(1 − F )

θ(F )

σ2
ω

σ2
ξt, (12)

where F is the lead operator such that Fxt = xt+1, θ(F ) is a polynomial of order s+1, ξt is the

reduced form disturbance and σ2 its corresponding variance. The reduced form disturbance is

the unique disturbance of the ARIMA representation of yt. In particular, the reduced form of

model (1) is an ARIMA(0, 0, s)×(0, 1, 1)s model; see Harvey (1989). Due to the presence of het-

eroscedasticity in the components, the innovations of the reduced form of ∆syt are uncorrelated

although not independent neither Gaussian; see Breidt and Davis (1992). The non-Gaussianity

and the lack of independence may affect the sample properties of some estimators often used in

empirical applications.

We propose to use the autocorrelations of auxiliary residuals to identify which disturbances of

an unobserved components model are heteroscedastic4. Once more, the identification is based on

whether the differences between the autocorrelations of squares and the squared autocorrelations

of each auxiliary residual are different from zero.

The acf of the auxiliary residuals can be obtained from the expressions in Durbin and Koop-

man (2001). However, the expressions of the acf of the squared auxiliary residuals are not easy

to obtain. Consequently, we analyze the usefulness of the auxiliary residuals to identify het-

eroscedasticity in the components of seasonal unobserved components models with simulated

data. We have generated 1000 replicates of size T = 10, 000 by models M0, M1, M2 and M3.

Figure 3 plots the Monte Carlo means of the differences between the autocorrelations of ε̂2
t and

η̂2
t and the squared autocorrelations of ε̂t and η̂ when the auxiliary residuals have been obtained

assuming that the model parameters are known. This figure shows that in the homoscedastic

4Wells (1996) proposed to use recursive residuals of the transitory component to test for heteroscedasticity;

see Bhar and Hamori (2004).
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model, M0, none of the auxiliary residuals have autocorrelations of squares larger than the

squared autocorrelations. On the other hand, the results for model M3 show clearly that the

transitory and long-run components are heteroscedastic. The results for model M2 also indicate

that the long-run component is heteroscedastic while the transitory component is homoscedas-

tic. However, in model M1, even though the heteroscedasticity is much evident in the short-run

component than in the long-run component, the differences rη̂
2 (h) − (rη̂(h)

)2
are different from

zero. This could be due to the fact that σ2
ε is four times larger than σ2

η and, therefore, the

heteroscedasticity of εt is somehow transmitted to η̂t. On the other hand, in this case, when ηt

is heteroscedastic, there is not transmission towards ε̂t
5.

Figure 3 also plots the differences between the squared autocorrelations and the autocorre-

lations of squares of the auxiliary residuals when they are estimated using the QML estimates

of the parameters instead of the true parameters and the sample size is T = 500. Although

the differences are negatively biased when the estimated parameters are used in the smoothing

algorithm, the same patterns can be observed regardless of whether the parameters are known

or estimated. Therefore, the differences between autocorrelations of auxiliary residuals seem

to help to identify which disturbance is heteroscedastic. Furthermore, the transmission of het-

eroscedasticity between auxiliary residuals is smaller than when using the true parameters to

run the filters.

Given that to the best of our knowledge, the asymptotic distribution of the differences be-

tween the autocorrelations of squares and the squared autocorrelations is unknown, we have

checked whether it can be approximated by a N(0, 1/T ) distribution by means of Monte Carlo

experiments. We have simulated 1000 series of size T = 10, 000. The QQ-plots corresponding to

Corr
[
ε̂2

t , ε̂
2
t−1

]− (Corr [ε̂t, ε̂t−1])
2 and Corr

[
η̂2

t , η̂2
t−1

]− (Corr [η̂t, η̂t−1])
2 appear in Figure 2 for

the four models considered above. These plots show that the asymptotic distribution of the dif-

ferences between autocorrelations of the auxiliary residuals can be approximated by a N(0, 1/T )

distribution when the model is homoscedastic. However, when there is heteroscedasticity in at

least one of the components, the differences between the autocorrelations corresponding to the

transitory disturbance, εt, loose the normality especially in the positive tail. However, the dis-

tribution of the differences corresponding to the long-run disturbance, ηt, is close to normality

in the positive tail although there are deviations in the left tail.

We have also analyzed the finite sample size and power of the BP (M) statistic in (10) when

5Harvey et al. (1992) also observe some transmission of heteroscedasticity between components when using

LM tests to identify which component is heteroscedastic.
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implemented to test whether the first M differences between autocorrelations of εt and ηt are

jointly equal to zero. The results are reported in Table 1. First, observe that the size of the

statistic when implemented to test for conditional homoscedasticity in εt is adequate in model

M0 and slightly longer than the nominal in model M2 in which the long-run component is

heteroscedastic. However, the results for ηt show that the test is always oversized. Note that

even in the homoscedastic model, the test BP reject the homoscedasticity of ηt more often than

it should do. The oversize is even worse in M1 due to the transmission of volatility. When

looking at power, we can observe that it increases when the test is implemented to test for the

homoscedasticity of the auxiliary residuals with respect to testing for the homoscedasticity of

∆syt or νt.

Finally, we have computed the percentage of correct identifications of the model when T =

500 and M = 12, i.e. of rejecting the null of homoscedasticity when the component is truly

heteroscedastic while not rejecting when the component is homoscedastic. This percentage is

rather large, around 75% and 73%, in models M3 and M0 respectively. However, it decreases

in models M2 and M1 when the heteroscedastic components are correctly identified in 53% and

44% of the simulated series.

3.4 Comparison with LM tests

Harvey et al. (1992) propose to test for conditional heteroscedasticity in the components of

unobserved component models by using the Lagrange Multiplier (LM) principle. In this subsec-

tion, we compare the finite sample size and power of the LM tests with the corresponding tests

based on squared autocorrelations described above. The LM test statistic for homoscedasticity

is constructed from the uncentered coefficient of determination, R2, of a regression of ν∗
j on xj ,

where ν∗
j and the n × 1 vector xj , with n equal to the number of parameters, are defined for

j = 1, ..., 2T by following the expressions

ν∗
t = 2−1/2

[
1 −

(
ν2

t

ft

)]
, t = 1, ..., T

ν∗
T+t = νtf

− 1

2

t , t = 1, ..., T (13)

and

xt =
1√
2

1

ft

∂ft

∂Ψ
, t = 1, ..., T

xT+t =
1

f
1/2

t

∂νt

∂Ψ
, t = 1, ..., T (14)
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where Ψ is the parameter vector and ft the corresponding variance of innovations νt, both

computed by the Kalman filter. Both ν∗
t and xt are evaluated under the null hypothesis; see

Harvey (1989, pp. 240-241). Results for the LM test are reported in Table 2. Comparing

the size of the LM test with the one of the BP (12) test based on the innovations, νt, we can

observe that the latter is closer to the nominal than the former although both are comparable.

Furthermore, the power of the BP (12) test based on νt is clearly larger than the power of LM

in moderate and large sample sizes.

This test can also be conveniently transformed to test the null hypothesis of homoscedasticity

in the transitory component, that is, H0 : α1 = 0 or in the permanent component, H0 : γ1 = 0.

Both tests will be denoted as LM(ε) and LM(η), respectively; see Harvey et al. (1992) for

the expressions of these test. Table 2 also reports the finite sample sizes and powers of both

tests when implemented in the same four models considered before. Comparing the sizes of the

LM(ε) test with those of the BPε(12) reported in Table 1, we can observe that the test LM(ε) is

oversized even in model M0 and that the distortion of its size is larger in model M2 than the one

observed for BPε(12). However, when testing for the homoscedasticity of ηt, the sizes of both

tests are comparable in model M1, while the size of LM(η) is slightly close to the nominal in

model M0. When comparing the power of both tests for testing for conditional homoscedasticity

in the transitory component, we observe that in moderate and large samples, the test based on

squared autocorrelations has larger power. On the other hand, the power of the LM(η) test is

larger in the M2 model when only the long-run component is heteroscedastic, while it is smaller

in the M3 model. Overall, it seems that the properties of the tests for the homoscedasticity of

the transitory components are better when the BPε(M) test is implemented while depending on

the particular model, the LM(η) test may be better to test for homoscedasticity in the long-run.

Finally, we analyze the percentage of correct identifications of the model when T = 500

and the LM tests are implemented. Despite this share is rather large, it only outperforms the

results of the proposed BP test for M2 model where it is 78%. For the rest of the models, the

percentages of correct identifications are higher for BP than for LM , as in models M0, M1

and M3 the later are 71%, 38% and 35%, respectively. That is, BP test outperforms LM test

in most cases, even when a small signal to noise ratio makes difficult the identification of the

heteroscedasticity when it affects the long-run component.
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4 Empirical analysis

In this section, monthly inflation series of eight OECD countries are analyzed by means of the

Q-STARCH model previously proposed. In particular, we have data on inflation measured as

first differences of the CPI, i.e., yt = 100 ∗ � log(CPIt), in France, Germany, Italy, Japan, the

Netherlands, Spain, Sweden and United Kingdom from January 1962 until September 2004,

that is, T = 5136. Figure 4 plots the eight series of inflation, yt, together with the differences

between the autocorrelations of (�12yt)
2 and the squared autocorrelations of �12yt. Note that

the autocorrelations of squares are clearly larger than the squared autocorrelations of the levels

for Italy, Japan, the Netherlands and Spain, suggesting that these series may be conditionally

heteroscedastic. For inflation series of the rest of the countries, this evidence is not so conclusive.

Furthermore, all the series have kurtosis coefficients significantly greater than 3 which run from

4.62 for Japan up to 8.16 for France, so they seem to have non-Gaussian distributions.

We start by fitting model (1) with homoscedastic disturbances to each of the inflation series.

The estimated parameters appear in Table 3. First of all, note that for the eight inflation series,

the estimates of the signal to noise ratios of the long-run component are very small running from

0.007 for Sweden to 0.203 for Italy. Furthermore, the variances of the seasonal components are

also rather small when compared with the variance of the transitory component. Figure 4 plots

the estimated long-run components and Figure 5 plots the seasonal components for each of the

series of inflation. Note that the seasonal components of France and Italy could be well approx-

imated by assuming that they are deterministic. However, the results for these two countries

obtained assuming deterministic seasonality are similar and, therefore, we report the results ob-

tained for stochastic seasonality. Table 3 also reports several sample moments of the estimated

innovations. We can observe that they still have leptokurtic distributions although the kurtosis

coefficients are smaller than in the original data. Furthermore, Table 3 reports the differences of

order one between the autocorrelations of ν̂2
t and the squared autocorrelations of ν̂t as well as for

the auxiliary residuals. Taking into account that under conditional homoscedasticity the distri-

bution of these differences can be approximated by a N(0, 1/T ), we have marked the differences

which are significantly larger than zero. All countries except United Kingdom show symptoms

of heteroscedasticity. It is interesting to know that even in United Kingdom, the differences

6Prior to its analysis, the series have been filtered to be rid of outliers. To detect outliers in the different

components we have used the detection method of Harvey and Koopman (1992) as implemented in the program

STAMP 6.20; see Koopman et al. (2000). The outliers detected affect mainly the transitory component although

we found level outliers in Italy and the Netherlands.

BANCO DE ESPAÑA       22 DOCUMENTO DE TRABAJO N.º 0812 

                                                                         



between autocorrelations corresponding to seasonal orders are significantly larger than zero.

To identify which component could be causing the conditional heteroscedasticity, Figure 6

represents the autocorrelations of the squared auxiliary residuals and the corresponding squares

of the autocorrelations for ε̂t and η̂t, respectively. When looking at the differences for the auxil-

iary residuals of the transitory component, ε̂t, we observe that except in France, the Netherlands

and United Kingdom, all the series show signs of conditional heterocedasticity. However the dif-

ferences corresponding to the long-run component are not different from zero. Therefore, these

results suggest that while the long-run can be modelled with a homoscedastic noise in most of

the series, the uncertainty of the transitory component of inflation seems to be heteroscedastic.

Consequently, the Q-STARCH model is fitted to each of the series of inflation with ho-

moscedastic long-run and seasonal components, but the series corresponding to France and

United Kingdom, which are finally modelled by a Q-STARCH model with homoscedastic short-

run and seasonal components. Table 4 reports the estimated parameters. As expected given our

previous results on the tests based on the differences of autocorrelations, the ARCH coefficients

are significant for all countries. Note that, as it is usual in financial time series, the persistence

estimated for the GARCH models is very close to unity running from 0.72 in Japan to 0.99

in Netherlands. Finally, with respect to the estimated asymmetry parameters, we can observe

that they are positive and significant in France, Germany, Italy, Sweden and United Kingdom

while they are negative and not significant in Japan, the Netherlands and Spain. Therefore, our

results support the Friedman hypothesis of larger inflation increasing future uncertainty in the

former set of countries while the uncertainty of inflation in Japan, the Netherlands and Spain is

time-varying although it does not depend on past levels of inflation.

Finally, Table 5 represents the summary statistics of the standardized innovations νt of the

eight series of inflation. We can observe that the differences between the autocorrelations of

squares and the squared autocorrelations are no longer significant except for Spain. In this

series, the seasonal correlation is significant. It is possible that the seasonal component of

the Spanish inflation series may have some kind of heteroscedastic behavior. The extension of

the model to incorporate a conditional heteroscedastic seasonal component is left for further

research. Finally, note that using the LM statistic, the inflations of France, Sweden and United

Kingdom are still heteroscedastic. However, as we have seen in previous sections, the behaviour

of the LM test is worse than for the BPν(12) test. Consequently, our final conclusions are based

on the latter test.
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5 Conclusions

In this article, we fit a seasonal unobserved components model to monthly series of inflation.

The model allows the transitory and long run components to be conditionally heteroscedastic.

In particular, the variances of the unobserved noises are modelled as QGARCH processes. We

first show how to use the auxiliary residuals to identify which components are heteroscedastic.

We carry out Monte Carlo experiments to show that, if a component is homoscedastic, the finite

sample distribution of the differences between the autocorrelations of the corresponding squared

residuals and the squared autocorrelations of the residuals can be adequately approximated by

a Normal distribution with zero mean and variance 1

T . However, when at least one of the com-

ponents is heteroscedastic, these differences have means different from zero and, consequently,

the heteroscedasticity can be detected by looking at them. We propose to use these differences

not only with estimated innovations but also with the auxiliary residuals. Our results also show

that using auxiliary residuals to detect conditional heteroscedasticity increases the power with

respect to detecting the heteroscedasticity using the estimated innovations. However, the trans-

mission of heteroscedasticity between components may distort the correct identification of the

heteroscedastic component. Further research of measuring this transmission is worthwhile.

Finally, the model is fitted to analyze the dynamic behaviour of inflation in eight OECD coun-

tries. The auxiliary residuals show that, in most of the countries, when there is heteroscedasticity,

it affects the transitory component, while the uncertainty of the long-run component is constant.

The estimated parameters show that, with the exception of France and United Kingdom, where

the long run component is heteroscedastic, the uncertainty of the transitory components of in-

flation can be represented by Q-STARCH model with the above mentioned specification and

high persistence. With the exception of Japan, the Netherlands and Spain all the countries with

time-varying uncertainty show a positive relationship between the uncertainty and past levels

of inflation, supporting the Friedman hypothesis of uncertainty of inflation increasing with its

level.

BANCO DE ESPAÑA       24 DOCUMENTO DE TRABAJO N.º 0812 

                                                                         



References

[1] BAILLIE, R. T., C. CHUNG and M. TIESLAU (1996). “Analyzing inflation by the frac-

tionally integrated ARFIMA-GARCH model”, Journal of Applied Econometrics, 11, pp.

23-40.

[2] BALL, L. (1992). “Why does high inflation rise inflation-uncertainty?”, Journal of Monetary

Economics, 29, pp. 371-388.

[3] BALL, L., and S. G. CECCHETTI (1990). “Inflation and Uncertainty at Short and Long

Horizons”, Brooking Papers on Economic Activity, pp. 215-254.

[4] BHAR, R., and S. HAMORI (2004). “Empirical characteristics of the permanent and tran-

sitory components of stock returns: analysis in a Markov switching heteroscedastic frame-

work”, Economics Letters, 82, pp. 157-165.

[5] BOLLERSLEV, T. (1986). “Generalized Autoregressive Conditional Heterokedasticity”,

Journal of Econometrics, 31, pp. 307-327.

[6] BOS, C., and N. SHEPHARD (2006). “Inference for Adaptive Time Series Models. Sto-

chastic Volatility and Conditionally Gaussian State Space Form”, Econometric Reviews,

25, pp. 219-244.

[7] BRANDT, M. W., and Q. KANG (2004). “On the relationship between the conditional

mean and volatility of stock returns: A latent VAR approach”, Journal of Financial Eco-

nomics, 72, pp. 217-257.

[8] BREIDT, F. J., and R. A. DAVIS (1992). “Time-Reversibility, Identifiability and Indepen-

dence of Innovations for Stationary Time Series”, Journal of Time Series Analysis, 13, pp.

377-390.

[9] BROTO, C., and E. RUIZ (2006). “Unobserved Component models with asymmetric con-

ditional variances”, Computational Statistics and Data Analysis, 50, pp. 2146-2166.

[10] BRUNNER, A. D., and G. D. HESS (1993). “Are Higher Levels of Inflation Less Pre-

dictable? A State Dependent Conditional Heteroskedasticity Approach”, Journal of Busi-

ness & Economic Statistics, Vol. 11, 2, pp. 187-197.

[11] CAPORALE, T., and B. McKIERMAN (1997) .   “High and  variable inflation: further

 evidence on the Friedman hypothesis”, Economics Letters, 54, pp. 65-68.

18
BANCO DE ESPAÑA        25 DOCUMENTO DE TRABAJO N.º 0812 

                                                                         



[12] CONRAD, C., and M. KARANASOS (2005). “On the inflation-uncertainty hypothesis

in the USA, Japan and the UK: a dual long memory approach”, Japan and the World

Economy, 17, pp. 327-343.

[13] COSIMANO, T., and D. JANSEN (1988). “Estimates of the variance of US inflation based

upon the ARCH model”, Journal of Money, Credit and Banking, 20, pp. 409-421.

[14] CUKIERMAN, A. (1992). Central Bank Strategy, Credibility, and Independence,MIT Press,

Cambridge.

[15] CUKIERMAN, A., and A. MELTZER (1986). “A theory of ambiguity, credibility, and

inflation under discretion and asymmetric information”, Econometrica, 54, pp. 1099-1128.

[16] CUKIERMAN A., and P. WACHTEL (1979). “Di erential Inflationary Expectations and

the Variability of the Rate of Inflation: Theory and Evidence”, American Economic Review,

69, 3, pp. 444-447.

[17] DAAL, E., N. NAKA and B. SÁNCHEZ (2005). “Re-examining inflation and inflation

uncertainty in developed and emerging countries”, Economics Letters, 89, pp. 180-186.

[18] DING, Z., C. W. J. GRANGER and R. F. ENGLE (1993). “A long memory property of

stock market returns and a new model”, Journal of Empirical Finance, 1, pp. 83-106.

[19] DURBIN, J., and S. J. KOOPMAN (2001). Time Series Analysis by State Space Methods,

Oxford University Press.

[20] ENGLE, R. F. (1982). “Autoregressive Conditional Heteroskedasticity with Estimates of

the Variance of U.K, Inflation”, Econometrica, 50, pp. 987-1008.

[21] — (1983). “Estimates of the variance of the U.S. Inflation Based Upon the ARCH Model”,

Journal of Money, Credit and Banking, 15, pp. 286-301.

[22] EVANS, M. (1991). “Discovering the Link between Inflation Rates and Inflation Uncer-

tainty”, Journal of Money, Credit and Banking, 23, 2, pp. 169-184.

[23] EVANS, M., and P. WACHTEL (1993). “Inflation Regimes and the Sources of Inflation

Uncertainty”, Journal of Money, Credit and Banking, 25, 2nd part, pp. 475-511.

[24] FOSTER, E. (1978). “The Variability of Inflation”, The Review of Economics and Statistics,

60, 3, pp. 346-350.

19
BANCO DE ESPAÑA        26 DOCUMENTO DE TRABAJO N.º 0812 

                                                                         



[25] FOUNTAS, S., M. KARANASOS and M. KARANASSOU (2000). A Garch model of in-

flation and inflation uncertainty with simultaneous feedback, Working Papers 414, Queen

Mary, University of London, Department of Economics.

[26] FRIEDMAN, M. (1977). “Nobel Lecture: Inflation and Unemployement”, Journal of Po-

litical Economy, 85, pp. 451-472.

[27] GARCIA, R., and P. PERRON (1996). “An analysis of the real interest rate under regime

shifts”, Review of Economics and Statistics, 78, pp. 111-125.

[28] GRIER, K., and M. PERRY (1998). “On inflation and inflation uncertainty in the G7

countries”, Journal of International Money and Finance, 17, pp. 671-689.

[29] HARVEY, A. C. (1989), Forecasting, Structural Time Series Models and the Kalman Filter,

Cambridge University Press.

[30] HARVEY, A. C., and S. KOOPMAN (1992). “Diagnostic Checking of Unobserved-

Components Time Series Models”, Journal of Business & Economic Statistics, 10, pp.

377-389.

[31] HARVEY, A. C., E. RUIZ and E. SENTANA (1992). “Unobserved Component Time Series

Models with ARCH Disturbances”, Journal of Econometrics, 52, p. 129-157.

[32] HWANG, Y. (2001). “Relationship between inflation rate and inflation-uncertainty”, Eco-

nomics Letters, 73, pp. 179-186.

[33] JOYCE, M. (1995). Modelling UK Inflation Uncertainty: the Impact of News and the Re-

lationship with Inflation, Bank of England Working Paper 30.

[34] KIM, C. J. (1993). “Unobserved-Component Time Series Models with Markov-Switching

Heteroskedasticity: Changes in Regime and the Link between Inflation Rates and Inflation

Uncertainty”, Journal of Business and Economic Statistics, 11, pp. 341-349.

[35] KIM, C. J., and C. R. NELSON (1999). State-Space Models with Regime Switching, The

MIT Press, Cambridge.

[36] KONTONICAS, A. (2004). “Inflation and inflation uncertainty in the United Kingdom,

evidence from GARCH modeling”, Economic Modelling, 21, pp. 525-543.

[37] KOOPMAN, S. J., and C. S. BOS (2004). “State Space models with a common stochastic

variance”, Journal of Business & Economic Statistics, 22, pp. 346-357.

20
BANCO DE ESPAÑA        27 DOCUMENTO DE TRABAJO N.º 0812 

                                                                         



[38] KOOPMAN S. J., A. C. HARVEY, J. A. DOORNIK and N. SHEPHARD (2000). STAMP:

Structural Time Series Analyzer, Modeller and Predictor, London, Timberlake Consultants

Press.

[39] MARAVALL, A. (1987). “Minimum Mean Squared Error Estimation of the Noise in Unob-

served Component Models”, Journal of Business & Economic Statistics, 5, pp. 115-120.

[40] OKUN, A. (1971). “The Mirage of Steady State Inflation”, Brookings Papers on Economic

Activity, 1971-2 , pp. 485-498.

[41] ORD, J. K., A. B. KOEHLER and R. D. SNYDER (1997). “Estimation and Prediction

for a Class of Dynamic Nonlinear Statistical Models”, Journal of the American Statistical

Association, 92, No. 440, pp. 1621-1629.

[42] PALMA, W., and M. ZEVALLOS (2004). “Analysis of the correlation structure of square

time series”, Journal of Time Series Analysis, 25, pp. 529-550.

[43] SENTANA, E. (1995). “Quadratic ARCH models”, Review of Economic Studies, 62, pp.

639-661.

[44] STOCK, J. H., and W. WATSON (2007). “Why has US inflation become harder to fore-

cast?”, Journal of Money, Credit and Banking, 39, pp.3-33.

[45] WELLS (1996). The Kalman filter in Finance, Kluwer Academic Publishing, Amsterdam.

21
BANCO DE ESPAÑA       28 DOCUMENTO DE TRABAJO N.º 0812 

                                                                         



M
0

0
1
0

2
0

3
0

-0.3-0.10.10.2

M
1

0
1

0
2

0
3

0

-0.3-0.10.10.2

M
2

0
1

0
2

0
3

0

-0.3-0.10.10.2

M
3

0
1
0

2
0

3
0

-0.3-0.10.10.2

0
1
0

2
0

3
0

-0.3-0.10.10.2

0
1
0

2
0

3
0

-0.3-0.10.10.2

0
1
0

2
0

3
0

-0.3-0.10.10.2

0
1
0

2
0

3
0

-0.3-0.10.10.2

0
1
0

2
0

3
0

-0.3-0.10.10.2

0
1
0

2
0

3
0

-0.3-0.10.10.2

0
1

0
2

0
3

0

-0.3-0.10.10.2

0
1

0
2

0
3

0

-0.3-0.10.10.2

ρ (h) ρ2 (h) ρ2 (h) - (ρ(h) )2

Figure 1: Mean autocorrelation function of (by rows) ∆4yt, (∆4yt)
2, and differences between the

mean autocorrelation function of (∆4yt)
2 and mean autocorrelation function of ∆4yt squared

for four STARCH models (by columns). Results based on 1,000 replications of series with

sample size T = 500. Solid lines represent theoretical values and high density lines their sample

estimates.
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Figure 2: QQ-plots of the differences between the first order autocorrelation of (∆4yt)
2 and the

squared autocorrelation of ∆4yt, and analogue results for ν̂t, ε̂t and η̂t.
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Figure 3: Mean autocorrelation function of (ν̂t)
2 minus mean squared autocorrelation function

of ν̂t, and analogue results for ε̂t and η̂t (by rows) for four STARCH models (by columns).

Results are based on 1,000 replications. The continuous lines represent results for sample size

T = 10000 and known parameters while the high density lines represent results for sample size

T = 500.
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Figure 4: Inflation series for eight countries and estimated trend, together with the differences

between the autocorrelations of (�12yt)
2 and the squared autocorrelations of �12yt.
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Figure 5: Seasonal component (stochastic seasonality) for the inflation series of eight countries.
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Figure 6: Differences between the autocorrelations of squares and squares of the autocorrelations

of the auxiliary residuals for the inflation series of eight countries.
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T = 100 T = 200 T = 500

M = 1 M = 4 M = 12 M = 24 M = 1 M = 4 M = 12 M = 24 M = 1 M = 4 M = 12 M = 24

M0 ∆4yt 0.0487 0.0475 0.0314 0.0229 0.0607 0.0629 0.0494 0.0402 0.0786 0.0841 0.0666 0.0629

ν̂t 0.0399 0.0388 0.0358 0.0229 0.0437 0.0436 0.0414 0.0371 0.0455 0.0465 0.0480 0.0432

ε̂t 0.0523 0.0452 0.0381 0.0247 0.0526 0.0521 0.0486 0.0356 0.0603 0.0615 0.0582 0.0472

η̂t 0.0800 0.1080 0.1328 0.1999 0.0931 0.1494 0.1813 0.2002 0.1083 0.1809 0.2300 0.2786

M1 ∆4yt 0.0992 0.1398 0.1175 0.0730 0.2101 0.3255 0.3352 0.2861 0.4489 0.6871 0.7177 0.6922

ν̂t 0.1128 0.1671 0.1450 0.0828 0.2273 0.3947 0.4140 0.3462 0.5741 0.7803 0.8179 0.7774

ε̂t 0.1467 0.2271 0.1976 0.1210 0.3363 0.5327 0.5207 0.4477 0.7508 0.9027 0.9210 0.8887

η̂t 0.0876 0.1482 0.1621 0.1410 0.1271 0.2416 0.3076 0.3189 0.1693 0.4034 0.5172 0.5420

M2 ∆4yt 0.0709 0.0771 0.0606 0.0399 0.1423 0.1629 0.1588 0.1321 0.3097 0.3564 0.3610 0.3409

ν̂t 0.0568 0.0607 0.0503 0.0309 0.0978 0.1106 0.1123 0.0915 0.1906 0.2225 0.2357 0.2171

ε̂t 0.0540 0.0518 0.0474 0.0280 0.0627 0.0726 0.0722 0.0610 0.0908 0.1142 0.1242 0.1145

η̂t 0.0902 0.1249 0.1347 0.1191 0.1884 0.2648 0.3025 0.3080 0.4594 0.5640 0.6125 0.6265

M3 ∆4yt 0.1250 0.1773 0.1550 0.0973 0.3018 0.4337 0.4491 0.3844 0.6623 0.8390 0.8708 0.8589

ν̂t 0.1444 0.1985 0.1763 0.1083 0.3146 0.4766 0.4943 0.4245 0.6998 0.8793 0.9051 0.8727

ε̂t 0.1652 0.2305 0.2088 0.1297 0.3575 0.5228 0.5326 0.4639 0.7448 0.9098 0.9272 0.9022

η̂t 0.0921 0.1588 0.1823 0.1569 0.1978 0.3682 0.4393 0.4287 0.4398 0.7348 0.8144 0.8140

Table 1: Size and power of the test based on a BP (M) statistic build from the difference between the autocorrelation of (∆4yt)
2 and the

squared autocorrelation of ∆4yt, and analogue results for ν̂t, ε̂t and η̂t.
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LM LM(ε) LM(η)

T = 100 T = 200 T = 500 T = 100 T = 200 T = 500 T = 100 T = 200 T = 500

M0 0.0337 0.0378 0.0415 0.1336 0.1544 0.1632 0.1244 0.1428 0.1495

M1 0.2568 0.2956 0.3245 0.3803 0.4519 0.5770 0.2528 0.3227 0.4897

M2 0.0878 0.0983 0.1068 0.1075 0.1305 0.1531 0.8525 0.9697 0.9992

M3 0.3073 0.3331 0.3535 0.3333 0.3812 0.4065 0.1940 0.3323 0.4207

Table 2: Size and power of the test based on LM principle.

FRA GER ITA JAP NET SPA SWE UK

σ̂2
ε 0.0226 0.0403 0.0338 0.1855 0.0408 0.2069 0.1198 0.0645

σ̂2
η 0.0021 0.0006 0.0068 0.0010 0.0012 0.0029 0.0008 0.0082

σ̂2
ω 0.0006 0.0013 0.0005 0.0021 0.0136 0.0077 0.0035 0.0032

Mean (ν̂t) −0.010 −0.001 0.006 −0.029 −0.024 −0.020 −0.006 0.006

SK(ν̂t) 0.036 0.337
∗

0.506∗ 0.392∗ 0.195 0.421∗ 0.156 0.339∗

κ (ν̂t) 4.198∗ 3.926∗ 4.533∗ 4.274∗ 4.615∗ 4.649∗ 5.161∗ 4.035∗

ρν
2(1) − [ρν(1)]2 0.1376∗ 0.0822∗ 0.1387∗ 0.126∗ 0.0547 0.2053∗ 0.0794∗ 0.0147

ρε
2(1) − [ρε(1)]2 0.0960∗ 0.1018∗ 0.1671∗ 0.0687 0.0769∗ 0.1427∗ 0.0661 −0.0260

ρη
2(1) − [ρη(1)]2 0.1007∗ −0.0318 0.1214∗ 0.0493 −0.0158 0.0207 −0.0440 0.0260

BPν(12) 26.2182∗ 13.2457 101.6285∗ 72.1892∗ 105.7549∗ 132.9338∗ 24.1633∗ 26.3465∗

BPε(12) 30.3204∗ 11.8842 146.3635∗ 78.4584∗ 86.2036∗ 102.5396∗ 21.9724∗ 19.6699

BPη(12) 218.8045∗ 87.5174∗ 156.5293∗ 17.5579 78.1679∗ 275.7314∗ 29.4376∗ 101.8366∗

LM 19.3536∗ 15.7767∗ 9.2716∗ 7.9971∗ 29.171∗ 3.8801 0.7012 24.0882∗

∗ Significant at 5%; SK: Skewness; κ: Kurtosis; ρ(h) : Correlation of order h.

Table 3: Estimates of the parameters of a random walk plus noise model with stochastic sea-

sonality and summary statistics of the corresponding innovations ν̂t for inflation series.

BANCO DE ESPAÑA       36 DOCUMENTO DE TRABAJO N.º 0812 

                                                                         



FRA GER ITA JAP NET SPA SWE UK

α0 0.0347 0.0017 0.0015 0.0441 0.0015 0.0154 0.0022 0.00001

(10.0281) (0.9329) (1.2423) (1.9169) (0.7890) (1.3088) (1.0513) (1.1150)

α1 0.0319 0.0521 0.1832 0.1473 0.4999 0.0711

(1.2572) (1.5647) (2.1906) (2.0066) (3.9954) (2.0340)

α2 0.9498 0.9104 0.5366 0.8390 0.4301 0.9063

(21.8273) (16.3366) (2.7235) (10.7415) (3.0456) (19.1781)

α3 0.0148 0.0521 −0.0441 −0.0299 −0.0204 0.0323

(1.4369) (1.5699) (−1.0336) (−1.1133) (−0.3298) (1.8305)

γ0 0.0001 0.0006 0.0045 0.0013 0.0014 0.0018 0.0006 0.0001

(0.9450) (4.5633) (20.5531) (9.1065) (8.7269) (9.0321) (8.4036) (1.4780)

γ1 0.4413 0.2990

(8.1825) (8.9308)

γ2 0.5067 0.7001

(9.5535) (20.8411)

γ3 0.0122 0.0131

(1.9572) (11.8506)

σ2
ω 0.0008 0.0033 0.0006 0.0062 0.0090 0.0140 0.0044 0.0193

(7.1271) (8.8210) (6.9423) (14.3577) (15.4527) (9.4158) (8.3581) (14.5179)

LogL 487.6183 286.8461 424.8799 111.4025 293.6204 80.9078 231.9807 222.9343

Table 4: Estimates of the Q-STARCH model with stochastic seasonality for inflation series.

FRA GER ITA JAP NET SPA SWE UK

Mean (ν̂t) −0.089 −0.0755 −0.1103 −0.1193 −0.0754 −0.0671 −0.0245 0.043

SK (ν̂t) −0.490∗ −0.7342∗ −0.4555∗ 0.2305∗ −0.3536∗ −0.0281 0.1424 0.242∗

κ (ν̂t) 5.780∗ 5.1473∗ 5.1703∗ 4.4882∗ 5.8214∗ 3.7295∗ 5.3929∗ 3.912∗

ρν
2(1) − [ρν(1)]2 0.0638 0.0206 −0.0189 0.0090 −0.0293 −0.1141 0.0635 0.0151

BPν(12) 7.9294 5.8507 19.0861 15.7857 7.1096 44.4206∗ 20.9023 12.3335

LM 11.0866∗ 2.0992 2.0149 2.4768 1.0362 4.4552 6.5150∗ 6.6906∗

* Significant at 5%; SK: Skewness; κ: Kurtosis; ρ(h) : Correlation of order h.

Table 5: Summary statistics of the standardized innovations ν̂t of a Q-STARCH model with

stochastic seasonality for inflation series.
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