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Abstract.  We survey results related to the problem of the existencejoilieria in some classes of
infinitely repeated two-person games of incomplete infdiameon one side, first considered by Aumann,
Maschler and Stearns. We generalize this setting to a brasdeof principal-agent problems. We also
discuss topological results needed, presenting themydfuesling cohomology in place of homology) and
more systematically than in our earlier papers.

Equilibrios en una clase de juegos
y resultados topol 6gicos que implican su existencia

Resumen.  Exponemos resultados relacionados con el problema de $éeagia de equilibrios en
algunas clases de juegos bipersonales infinitamente depeton informacion incompleta por una de las
partes, considerados por primera vez por Aumann, Masctitegrns. Generalizamos este marco a uno
mas amplio de problemas de agentes principales. Tamiséatinos los resultados topologicos necesa-
rios, presentandolos dualmente (usando cohomologiagam e homologia) y de modo mas sistematico
gue en nuestros articulos anteriores.

1 Introduction

In answer to a question of R. Aumann, M. Maschler and R. Sggdine existence of equilibria in various
classes of infinitely repeated games has been establish8d®grin [19], J. Renault]14] and the present
authors[[1[_18]. The purpose of this paper is to survey tesul infinitely repeated games related to the
above-mentioned question and to outline the topologicthous used. Also the existence of an equilibrium
for certain principal-agent problems is demonstrated.

The paper is organized as follows. The survey on game theamritained in Sectidd 3. We show how
the existence of equilibrium was proven for repeated gamé@scomplete information on one side using
our topological results. An effort is being made to preséetriesults surveyed so as to relate them to the
issue of cooperation (in our case between 2 persons), ana apgication is given in Sectidd 4. There, we
consider principal-agent situations where Nature choastate, informs the agent of this choice, the agent
can send a signal to the principal and the two players can makiacts concerning the signals and joint
actions. Under reasonable conditions concerning whata&cistare acceptable to both parties there will be
an acceptable contract in equilibrium.
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The topological results are discussed in Sedflon 2. The Inadion is that of “propertys” of a compact
setF’ C R™ x Y. Itis this property which allowed us to conclude that thejgeton of F' to R™ contained a
given simplex—which folF" described by some complex conditions given by the game @ditie existence
of its equilibrium, as discussed in Sectldn 3. The prop&rtyad been defined il [L8]. TlL7] in homological
terms, but here we make an attempt to describe its cohonualbgimalogue, which hopefully may become
more handy for applications because of the richer struafi@mhomology theory. At the same time we
isolate as Propositions certain “axioms” for prope$twhich make it useful for game-theoretic applications.
These axioms have to do with cohomology (or homology) themly inasmuch as they use the notion of
acyclicity, that is of being equivalent to a point in this ¢ing

2 The spanning property of correspondences

2.1 Cohomological properties of subsets of an R™

Throughout the paper we denote®yor by cl C the closure of a s&f, byint C the interior ofC and bysC
the boundary of the interior a@f'. Alltopological spaces are assumed to be metrizable. \vedlthe reduced
Cech cohomology and homology functors with coefficientsrirabelian group, CfLI751X.7]. If h is one
of these functors theh(X, X,) is considered as a graded group, i.e., as a direct sum 6fth&, X,)’s,
and a specific group™ (X, Xj) is isolated only if needed; similarly for a homomorphisiy) induced by
amapf: (X, Xo) — (V,Yy). As usual,h(X) andh(X, () are identified.In subsection®J Z2 andiZ3
let h stay for reducedohomologywith coefficients in a fixed abelian group.

In this subsection we discuss elementary properties ofedslidf the spac®™ on which the further
results rest. We consid®” as a subset of its one-point compactificatish

Lemmal LetU be a connected, non-empty open sef'in Then:
(@. n(U,8U) # {0}.
(b). (D, D N é&U) = {0} for any proper closed subsét of U.

PROOF  Ad[(@). Excision ofS™ \ U shows that" (U, sU) = h™(S™, S™\ U). Hence by duality theorem
we geth™ (U, 5U) = Hy(U), the0-th singular homology group df—which is non-trivial becausg # (.
(Seell2D, Theorem 17, page 296])

Ad[[B). The same argument shows thabif> §U thenh™(D,6U) = Hy(U,U \ D) —which is{0},
becausé/ is connected an@ \ D # 0. In the general case it remains to note tha{(D, D N éU) —
(DU U, 6U)) is an isomorphism, by excision, so we may replatby D UéU. R

Lemma 2 Let(D,D’)and(C,C") be compact pairs ifR™ with (C,C") C (D, D"). If D\ D' is connected
and open irfR™ and is contained in a component®f\ C’ which is open ifR™, then the inclusion-induced
homomorphism™ ((C, C") — (D, D’)) is injective.

PROOF Leta andV be the homomorphism and the componen€of C’ in question. The inclusion-
induced homomorphisii*(S™, S™\(D\D')) — h™(S™, S™\V) is an isomorphism because it corresponds
to the homomorphisnify (D \ D’ — V) of singular homology groups. Thereforelif = C' \ C’ then
excision ofV' shows thatv is an isomorphism.

In the general case we note that the above additional aseamipmet wherC' gets replaced bg’' UV,
whence the inclusion-induced homomorphismh™(D, D') — h™(C' UV, ") is an isomorphism. The
assertion follows, since = o afor 3 = h"((C' UV,C’) — (C,C’)). M

Our last lemma here is a cohomological version of Borsukisasation criterion[[7, Theorem 3.6 on
p. 302]:
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Lemma 3 Let F' be a compact subset &" not containing the origin. Then}" separates) from oo if
and only if the radial projection of F' to the unit spher&s™~1 C R", defined by(z) = z/|z|, has the
property thath(p): h(S"~1) — h(F) is a monomorphism.

PROOF The separation property above means fRat\ F is a disjoint union of two open sets, one of
which is bounded and contaifis When £ fails to separate then it is well known thais null-homotopic
and soh(p) = 0. (SeellT].)

Let us now assumeé’ separates this way and I8t denote the above bounded set. [[&be a closed
ball andV an open ball, both centered@tsuch that” c D, V ¢ W andS™~! ¢ D\ V. Letus consider
the diagram

h"(C,F) «—— h" Y(F)

] d
h"(D,D') —— h* (D)

whereD’ := D\V, C := FUW, the vertical homomorphisms are induced by inclusions hadhbrizontal
ones are coboundary homomorphisms. By Lerhina 8,injective. Moreoverh™~1(D’) — h™(D, D') is

an isomorphism and s6: h»~1(D’) — h"~1(F) must be a monomorphism by the commutativity of the
diagram. Consequently™~!(p) is a monomorphism as well, fgr = h»~1(p)oy withy = h* =1 (S~ —

D’) an isomorphism. H

3

2.2 Cohomological essentiality of mappings over subsets of R™

Let us say that a map: X — R"™ of a compact spac& is h—essentiabver a bounded st C R" if, with
U = int T, the f—induced homomorphist” ((f~'(U), f~*(6U)) — (U,éU)) is injective. (By amap
we mean in this paper a continuous function.)

Remark 1 The above notion is equivalent to that of “proped (of the correspondencg—!) to be
described in SectidB.3, but is more intuitive. We define it in analogy with the “edt@mmaps onto cubes”
of P. Alexandrofffd].

Remark 2

(a). Thusf is h—essential ovet” if and only if it is such ovet/ = int T'.

(b). Also, f is h-essential ovef” if and only if »™ ((f~(U), f~1(6T)) — (T U 6T, 0T)) is injective.
(This is so because” (U, 6U) — (T'U 6T, 8T)) is an isomorphism, adim ((7'U 6T) \ U) < n.)
We recall thatyT = §U, the boundary ot/.

(c). The cases whefi is compact or open are central to us. ClearfyU 67 = T whenT is open, and
T U 0T =T whenT is compact.

Lemma4 LetX be acompact spacg,; X — R" be a map and/ C R" be open and bounded.
(a). If fis h—essential over each componentbthen it is essential oveay.
(b). If fis h—essential ovel/ then so it is over any open setC U.

(c). If fis h—essential ovel/ thenf(X) D U.

PROOF.  Letus writeXs for f~1(S) whenS C R,

Ad[@]. Suppose that is essential over each componentbénd let) be the family of all components
of U. As noted earlieh™ (U, 6U) is isomorphic to the singular homology grotif (U), which is isomor-
phic to[[{ Ho(V)|V € V} and hence tq[{ r"(V,5V)|V € V}. It follows that the homomorphism
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h™(U,0U) — [I{h™(V,6V)|V € V}, given by the family{ h"((V,6V) — (U,6U)) |V € V},isan
isomorphism. Now, let us consider the diagram

[H{P (X5, Xov) [V €V} —— h"( Xy, Xov)

| I

[T{r"(V,6V)|V eV} —=— n(U,dU),

where the vertical homomorphisms are induced’land horizontal ones are given by families of inclusion-
induced morphisms. Since the left vertical homomorphisia lmonomorphism by assumption, so is the
right one as well.

Ad[(B]. By par{{d) we may assume additionally that thelsét connected. (If it isn't, we treat each of
its components individually.) We consider the diagram

(X, Xou) 22— h"(Xgr, Xgpyy) —2— h"(X, Xov)

VUT VT 'YVT
(U, 6U) 22— wU,U\V) —2— »w(V,6V),

where horizontal homomorphisms are induced by inclusionsthe vertical ones by. By Lemmd2 .o
is a monomorphism. Sincg; is a monomorphism either (by assumption), sg Isy the commutativity of
the left square of the diagram.

Moreovera, andgs are isomorphisms by excision whence by using now the righésgjof the diagram
it follows that~y, is a monomorphism, as desired.

Ad[C]. LetD = f(Xg). The homomorphism witnessing theessentiality off overU factors through
the grouph™(D, D N 6U) and is defined on™ (U, §U). Hence it follows from LemmEl1 that it could not
be injective unles® =U. N

Lemma5 Leta setl’ C R™ be bounded. For a map: X — R” of a compact spac& the following
conditions on a compact séf C f~!(67) are equivalent (below, the undefined homomorphisms are
induced byf):

(@). kerh"((X,Z) — (R",8T)) C ker h ((T U 6T, 5T) — (R™,8T));

(b). ker(Oxoh™""Y(Z — &T)) C ker Or, wheredy is the coboundary homomorphism of the pair, Z),
andor that of the pair(T" U 6T, 6T).

Moreover,f is essential ovet’ if and only if there exists a compact sétC f~1(47) satisfying these
conditions, in which cas¢~!(47") satisfies them also.

PROOF  Observe that the coboundaty h"~*(6T) — h™(R",T) is an isomorphism. Thus, the equali-
tiesdx o h"~1(Z — 6T) = h"((X, Z) — (R",6T)) 0 d anddy = h"((T' U 6T,6T) — (R",6T)) 0 &
imply the equivalence ¢t () afid ]b).

Suppose now that is h—essential ovef. The monomorphism from Remdrk]b), when right composed
with b (T UST, 6T) — (R™,4T)), factors througtk™ (X, f~1(6T)) — (R™,T)). This yieldd(d) with
Z = f=Y(6T).

Finally, suppose th&f{a) holds for a compact et f~!(47); then it holds withZ = f~1(6T) as
well. With U = int T' we consider the following diagram

’

WX FTHOU) —— R(fTND), fHE0)) @ A (TR T, fH(0U)

jT k:(kl,kg)T

W (Re,6U)) 202, W (T, 6U) & h*(R"\ U, 8U) ,
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wherej andk are induced byf, while v andy’ by inclusions (componentwise). SinbeN (R™ \ U) = 6U

andf~1(U)nf~YR"\U) = f~1(sU) it follows from exactness of Mayer-Vietoris sequences figrtou-
ples of pairs{ (U, 6U), (R™ \ U, 6U)} and{(f~1(U), f~1(6U)), (f "L (R*\ U), f~1(6U))}, respectively,
thaty and~’ are isomorphisms. From this and the assumed inclusiofy) C ker(~) it easily follows
thatker(k,) = {0}, i.e. f is essential ovef. W

Definition 1 Let a setl” C R™ be bounded. We say thatwitnesseshe h-essentiality ovefl” of a map
f: X — R",if Zis acompact subset gf~!(67") and the equivalent conditioffg} [b) above are satisfied.
Recall also that a mapping: X — C'is said to beh—acyclicif h(f~*(c)) = h({c}) forc € C.

Lemma6 Letf: X — R™ be a map of a spac& = X; U X5, where eachX; is compact, and lef;
andCy be compact sets iR™ such thafint C; N int C> = (). Thenf is h-essential ove€; U C5 provided
eachf|X; is h-essential over’; and this is withessed by compact sgtsand Z,, respectively, such that
f|1Z1 N Zy is anh-acyclic map ont@Cy N §Cs.

PROOFE We consider the diagram below in which homomorphigmsjs andv are induced by and the
remaining ones by suitable inclusions:

(X1, Z1) © h"(X2, Z3) —— (X, Z1U Zy)

j1€Bj2T UT
h"(R",éCl) @h"(R",éCQ) — hn(Rn,601 U&Cg)
il@izl Ll
K™ (Ch,8C) @ h™(Ca, 6Ca) ——t— h7(Cy U Ca, 5C1 U SCy) .
By assumptionker(js) C ker(is), s = 1, 2, whenceker(j; @ j2) C ker(iy @ i2). Moreover, since

dim(C1NCs) < nthe Mayer-Vietoris cohomology sequence of the couple asddi’;, 6C1), (Ca, 6Cs)}
tells us that: is a monomorphism. By commutativity of the diagram this irapithat

ker(v) C ker(v). (%)
We now let:
A:=06C1UICy, Ay :=6C1NCy, Ay = 6(01 U Cg), Ag = A1 NAy
B:=7,U2,, By := 7, N Zy, By:=f"Y(4)NB, By:=BiNDB,.

Thenf(By) C Ax, A= A; U Ay andB = By U Bs, so we get a commutative diagram

hn(Bl, Bo) — hn(X, BQ) — hn(X, B) — hnil(Bl, BQ)

hn(Al, AQ) — hn(Rn, AQ) — hn(Rn, A) — hnil(Al, Ao)
where vertical homomorphisms are induced pynd rows are parts of the Mayer-Vietoris cohomology
sequences of the couples of pafsX, Bs), (B1, B1)} and{(R", A3), (A1, A1)}, respectively. (In these
sequences we skip the trivial factdr$(B;, B1) andh™ (A1, A1).)

We haveh™ (A1, Ag) = 0, sincedim A; < n. Thus, by exactness, the homomorphishtR", A;) —
h™(R™, A) is onto. By assumptiory| B, : By — A; is acyclic. Since additionallgy = f~1(A4¢) N By it
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follows from Vietoris mapping theorem thatis an isomorphism. Hence, by)(and the commutativity of
the inclusion-induced diagram

h™(R™, Ay)  —— h™(R™, A)
h”(Cl U CQ,AQ) — h”(Cl U CQ,A) s

it follows from the Claim below thaker(u) C ker(:"). Thus the seBs witnesses:-essentiality off over
C1 U Cs, what completes the proof. B

Claim 1 Let the following diagram of homomorphisms of abelian geoup

H H, H
<] 1]
G I a G

F1<—F2

be commutative and have exact rows.f landw are epimorphisms anler(v) C ker(¢) thenker(u) C
ker(:').

2.3 Property S of (compact) correspondences: a cohomological version

In this paper, by @orrespondencel’: X — Y we mean angompacsubset ofX x Y. The image ot in
Y x X under the coordinate-switching map is denaked' . If X, is a subset of(, thenF N (X x Y) is
called the restriction of to X, and denoted’| X,. For a correspondende: X — Y, the image of the set
F| X, under the projection t&” is denoted by (X) and called the image of, underF. We also write

im(F):=F(X), F(z):=F({a})forze X and dom(F):={zeX:F(z)#0}.

Note that the setlom(F') is closed inX, as it is the image of a compact sEtunder the projection
X xY — X. Clearly, a single-valued correspondei¢e— Y is a map (i.e., a continuous function).

If F: X — Y is a correspondence, it is not assumed a priori that) # @ for all (or even for
some)z € X. In fact, the problem faced in game-theoretic applicatisn® establish, in the case when
X = R", whetherdom F' contains a givem-simplexA c R™. The importance of such a conclusion is
that it allows interpreting the non-emptinessifp), for a suitably chosen corresponderf¢eand a point
p € A, in terms of the existence of solutions to systems of ingtieslencountered in game theory. The
approach of handling this problem in]17] and][18] dependethe use of a certain homological property
of correspondences: R™ — Y which implied thatdom F' contained a given compact set. The aim of this
subsection is to present a dual version of this propertynddfcohomologically, and to isolate propositions
which could be treated as “axioms” that make whether homodd@r cohomological versions useful in
our applications.

Definition 2 LetF: R™ — Y be a correspondence. We say ttiahaspropertyS for a set 7' C R"™, and
that a compact sef witnesseshis, if T' is bounded and the projectign F' — R™ has propertysS for T,
it being witnessed by .
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Remark 3
(a). In view of the earlier definitionZ” has propertyS for an open bounded sét if and only if

h*(p: (F|U,F|6U) — (U,6U)) is a monomorphism (1)

(b). Above, “propertyS” stays for an abbreviation of thepanning property This name is justified by
part[{@a] of the following Proposition collecting some consequemddisis property that follow easily
either from definition and earlier results.

Proposition 1
(a). If F has propertyS for an open set/, thendom(F) D U.
(b). If C D D and F has propertyS for C thenF|D has it for D.
(c). If F, G are correspondences such thatc G and F' has propertyS for a setC, thenG has it either.

(d). F has propertys for a compact set’ provided for every neighborhodd of 6C in R™ and for every
neighborhood” of F in R™ x Y there exists a correspondengé: R® — Y such thatF’ ¢ V and
F' has propertyS for a compact se€” satisfyingéC’ c U andC\U c ¢' c CUU.

In particular, if each of the correspondencEs: R™ — Y has propertysS for C andF; D Fy D F5---
then(,, F;, has this property also.

PrROOF Assertion[(d) follows from the definition, whife {a) afd](fllow from LemmalZ. (Parf{h))
reduces to the case whéhandD are open.)
Ad[(d]. This follows from the continuity of the functér. W

Partd{d) anfi (¢l) imply:

Corollary 1 If a correspondencé’ has propertyS for a compact se€’ ¢ R", then so does any compact
correspondenc&’ C R” x Y containingF |int(C).

WhenY = (0, 1), propertyS for a simplex can easily be characterized:

Proposition 2 Let A be ann-simplex inR™. A correspondencé’: A — (0, 1) has propertyS for A if
and only if it separates\ x [0, 1] betweem\ x {0} andA x {1}.

PROOE We assume tha" is naturally embedded in its one point compactificatish which we con-
sider to be the unitsphereBf* !, and that, b € (0, 1) are such that' C Ax[a, b]. The setS™ x [a, b] may
be naturally identified with an annulusi*+* aroundd, and the seF” := FU(S™\ int A) x [a, b] —with a
subset of this annulus. Théhseparated x [0, 1] betweem x {0} andA x {1} if and only if F' separates
R"*+1 betweerD andco. The latter condition holds if and only i (p: F— S™) is a monomorphism (by
LemmalB) which in turn by exactness and excision is equitateh” ((F|A, F|A) — (A, 8A)) being a
monomorphism. Sincé|int A = F|int A, the assertion follows from CorollaF} 1. B

Essential is the relation of properfyto acyclicity. We employ the following notion: a correspamte
F: X — Y is said to beacyclic-valued over a selC’ C X if each setF'(x), = € C, is h-acyclic, i.e.
satisfiesh(F(z)) = h({point}) (and hence is non-empty).

Proposition 3

(a). If a correspondence is acyclic—valued over a compactstten it has propertys for C.
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(b). If correspondence$’, G: R™ — Y and compact set€’, D C R" are such thatF’ has property
S for C and G has it for D, then F' U G has it for C U D provided additionallyG is acyclic-
valued overD N 6C and the propertys of F' for C is being witnessed by a compact &esuch that
ZIDnéC c GA

PRoOF Ad[(@]. This follows from Vietoris theorem (se€le[20, Thewr#5, p. 344]).

Ad[(B). We apply Lemma&l6 withk; = F U (G|6C, Nd6C), Xo =G, C1 =C, Cy = D\ intC
and f being the restriction of the projection along thieaxis. The withesseg&; are defined as follows:
Z1 = Z U (G]6C) N6Cs) and Zy = G|6Cs. Then, the assumptions of lemral 6 are satisfied and its
assertion implies the desired propertyfof G. R

Proposition 4 LetU C R™ be open and bounded arfd, G: R™ — Y be correspondences satisfying
F|SU c G. Suppose further thak' has propertyS for U and G~! is acyclic-valued oveim(G). If
dim F(U) < nthenG has propertyS for U, it being witnessed b¥ |6U .

PROOF We may replacé& by a smaller correspondencén (R" X F(5U)) and thus assume thét C
R™ x F(6U). By lemmd® applied td"|U,

ker (9p o K"~ (F|6U — 6U)) C kerd (%)

whered: h"~1(6U) — h"(U,8U) andor: "1 (F|6U) — h™(F|U, F|6U) are coboundary homomor-
phisms. Suppose we knew thit o « = 0, wherer = h"~1(F|§U — G). Thenker d¢ = im ¢ C ker dp,
wheredg: h"~Y(F|6U) — h"(G, F|sU) is the coboundary homomorphism. Witk) ¢this would give
ker(dg o k"1 (F|SU — §U)) C ker 8, which by Lemmdb is equivalent to the assertion.

Thus it remains to show thaiz o ¢ is trivial, and to this end we consider the following comniivia
diagram

WO, FloU) 22— pn=1(F|6U)

| d
h"(F(U), F(6U)) «—— h"~'(F(3U)),

where horizontal homomorphisms are coboundary homomsmmhiand the vertical ones are induced by
projections along th&"-axis. Note that"(F(U), F(sU)) = 0 sincedim(F(U)) < n. It follows that
8}7 o ﬁ = 0.

Now, 3 is the composition of with the homomorphism”~!(F(6U)) — h™~1(G) induced by projec-
tion along theR™-axis. The latter is an isomorphism by Vietoris theorem, hadce fromdr o 5 = 0 it
follows thator o« = 0, as desired. l

2.4 Property S: a homological version

The approach of the previous subsection may easily be auahlihat is, withh now denoting the reduced
Cechhomologyfunctor with coefficients in a compact abelian group, let ualite the definition of property
S (see below), while keeping intact the definitiongieficyclicity of a compact set and of an acyclic—valued
correspondence. (To be strict the latter should be cdlfeatyclic—valued, but the choice fhfis assumed
to be clear or irrelevant.)

Definition 3 With h as above, a correspondenée R™ — Y is said to have property for an open set
U c R™if U is bounded and

hn(p: (F|U,F|6U) — (U,8U)) is an epimorphism

1in part c) of [18, Lemma 2], which corresponds to a weakeriversf this statement, there is a misprint: instead of “prop&
of F' for U,” there should be “propertys of F' for U;”
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Moreover if for a given compact set C F|oU
imh, (p: (F,Z) — (R",8U)) D imh, ((U,sU) — (R",8U))

then we say thak witnesses the property for U. (Abovep is the projection along th& -axis.) We also
say F' has propertyS for a bounded sef’ C R", witnessed by a compact sétC F|§T, if this is true with
T replaced byint T'.

Proposition 5 The previous propositions remain valid with the above deédimiof propertyS, as does
also Corollaryll

To see this, one may reverse all arrows and interchange Wsudgctive” and “injective” in the proofs
of these propositions given in subsectiod 2.3. These paegend only on lemmé&$ 1[b 6, the homological
versions of which remain valid (with definition of homologleessentiality being obtained from that of
subsectiof 212 by a similar dualization). The proofs of leasidh td#, however, need to be given anew, for
the duality theorem we used is not self dual. Another metHqaaving the Propositions is given in 1L8].

Remark 4 The approach ifil8] was somewhat different. To recall it let us denoterthephereR™ U {oo }
by S™ and for an open bounded sEtlet [U, 6U] be the image of an orientation classe h(S™) under the
composition

h(S™) — h(S™, 8™\ U) — h(U,sU),

where the first homomorphism is induced by inclusion andékersd one by excision aft(S™ \ U). The
property of a correspondendé: R™ — Y isolated in[L8] demanded thai/, §U] be in the image of the
projection—induced map,, ((F|U, F|6U) — (U,6U)). This, however, turns out to be equivalent to the

homological propertyS defined above. We skip the proof, which involves the fact[thalU/] generates
h,(U,5U) whenU is connected.

To summarize, both cohomological and homological versafiEopertyS can be defined. We'll see
however that there is no real need to distinguish betweemn thewever, as far as current applications go:
these rely only on Propositiofk[l-4 (and on their conseqgvehich hold true for both versions.

2.5 Applications to saturated correspondences

In the sequel whefl’ and L are given sets, witl finite, thenT” denotes the produdf,., 7;, where
T, = T for eachl. If L is a subset of a set then forz € R¥ we denote by:” the natural projection of
x to RE; in particular,z! is thel—th coordinate ofc. We equip the spacR” with the dot scalar product
z-y=>Y,z'y". By A orbyA(L) we denote the simplex

AL)={p=(pher€(0,1]":> p'=1}
l

and we conside”A(L) as a subset of\(K) by identifying eachx € A(L) with the (unique) point
7 € A(K) such thatt? = z.
For applications to game theory, “saturated” correspondsimto cubes turn out to be special:

Definition 4 If F: A(L) — Y is a correspondence arid C R%, then byF* we denote the correspon-
denceA(L) — Y defined by

F*(p):={y €Y :3x e F(p)suchthat! <y'foralll € Landz' =4'ifp' >0}.

We callF+ theY-saturationof F and say thatF is saturatedif F = F+. Below,Y = I'” is a cube, with
1 a non-trivial compact segment iR.
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Theorem 1 Let £ be a family of non-void subsets of a finite 8&2such that| J £ = K. Suppose further
there are given a point € A(K) and, for evenyl. € £, a saturated correspondenég, : A(L) — I with
propertyS for A(L) and a closed convex subdét, of 7% containing the pointb, b, ...,b). Then there
exist a pointy € (., UL C I and finitely many seté, ..., Ly € £ and pointsy; € A(L;) C A(K),
i=1,..., s, such that the following conditions hold

p € conv{py,...,ps} andy’ € Fp,(p;) foreveryi =1,...,s.
To warrant propertys of the correspondencés, we depend on the following

Theorem 2 Let F: A — I” be a convex-valued correspondence andA — I be a lower semi-
continuous function such that

a(q) <sup{y-q:y € F(p)} forallp,qe A. (2)

With F+ denoting thel “—saturation ofF’, the correspondenc@: A — R’ defined by the formula below
has propertysS for A:

F(p):=={y€c(F")(p):y-q>alg) forallqeA}. (3)

Above, convex-valuedmeans that each sét(p), p € A, is non-empty and convex, whilgF'")
denotes thdevelwise convexificationof the correspondenc€ = F* —by which we mean the set
Uyerr conv(G~1(y)) x {y} € A x I*. Let us note that(F*)(p) consists of all pointy € I" such
that for somepy, ..., ps € Aone haw € conv{p;};_, andy € F*(p;)fori =1,..., s.

These two results are the consequences of Propositionglftod needed in game theory. Their proofs,
given in [18] (see Corollary 2 and Theorem 1 there), depenthertruth of Propositions frofal 1 {d 4 but
not on the definition of propert$. The proof of Theorerfl1 leads also to the following charazagion of
certain saturated correspondences having progerty

Theorem 3 Let F': A(K) — I be a saturated correspondence such that for each im(F') the set
F~1(y) is acyclic. ThenF has propertyS for A(K) if and only if, with.J = [a, b] denoting a segment
such that! C (a,b), the image of the/X-saturation of I’ separates the cubg” between the vertices
vy = (b,...,b)andv_ = (a,...,a).

2.6 Relation to antipodal-type theorems

From Propositioll4 applied to a single-valued function tdies that whenzg is a point of a compact set
C Cc R™andf: C — Y isamapping into a space of dimension 1, then in the boundary af' there exists

a setCy mapped byf into a singleton and containing in its convex hull. By Caratheodory’s theorem one
can always replac€) by its subset consisting &f n+ 1 points. In general, this number cannot be lowered;
an example is given i [9] an@ L7, p. 6]. However, in the sakcase wherd” is an(n — 1)-manifold, a
generalization of Borsuk-Ulam theorem given by OledzK][implies thatC, may be taken to consist of
2 points. (Special cases of this were establishef’ih [16][@0H The well-known Borsuk-Ulam theorem
deals with the case whefiis a ball.)

It would be interesting to know less restrictive assumggionder which: + 1 above could be replaced
by a smaller number. This is related also to estimating:thirysohn diameterof a compact sef’, defined
as the infimum ofup{ diam(f~'(y) : y € f(C) } wheref runs over all mappings af' to k-dimensional
spaces. It follows easily from the above and the exampled, [@7], that thgrn — 1)-diameter of a ball in
R™ equals to the “usual” diameter of a regular simplex insaibeo this ball's boundary (apparently this
has already been known). Wheére (n/2,n — 2] the k-Urysohn diameter of an—ball remains unknown.
For more information se¢ 15, 1] and the references qubieebt

170



Equilibria in a class of games and topology

3 Repeated Games of Incomplete Information on One Side

3.1 Introduction

One-shot games of incomplete information on one side weseifitroduced by J. Harsanyil[8] and the
infinitely repeated ones of this type by R. Aumann and M. M&sdZ], both in the middle 1960’s; further
basic results relevant to this section were obtainedlinlfE8) and[[19](1983). The specific case of in-
finitely repeated two-person, non-zero-sum games of indetmnformation on one side, described below,
was introduced by R. Aumann, M. Maschler, and R. Stearnsibich was a technical report to the U.S.
Disarment Agency. The papeld [2]33, 5] got reprintedn [4blshed in 1995.

There is a finite sek( of states of nature and two players. Nature chooses a/stat&” according to a
commonly known probability distribution off'. The first player, but not the second player, is informed of
nature’s choice. The finite sets of moves for the playersteaame for all states. The chosen state remains
constant throughout the play. Although the chosen gtasdong with the moves of the players, determines
the stage payoffs, during the play the second player leastigng about his payoff, as this could give him
information about the state of nature.

Let m be the number of the first player’s actions anthe number of the second player’s actions. For
every staté: € K there are twon x n matricesA* andB*. Thei, j entry of A* is the payoff that the first
player receives if the state of naturékisthe first player chooses the actiband the second player chooses
the actiong. Likewise thei, j entry of B¥ is the payoff that the second player receives if the stat@atfme
is k, the first player chooses the actiband the second player chooses the actjons

An equilibrium of the game is a pair of strategies such thaefery state: there are limits:* andb*
as the numben of stages go to infinity for the averages summed over the stagdo the stage of the
expected payoffs of Players One and Two, respectively, aitber player can obtain a higher limit superior
asn goes to infinity for his average payoff summed over the stage® n (and determined by the initial
probability distribution onK) by choosing a different strategy. One should not define theffis as the
expected limit superior taken first on each state indepethgdecause then erratic behavior by the second
player could result in meaningless payoffs.

We divide the problem of equilibrium existence for these garnmto four levels of difficulty.

The first level of difficulty concerns the conventional garoédtandard information): after each stage
of play both players are informed of each others’ moves arsdgtthe only information the players receive
additional to what they knew when the play began. Equilibrexistence for this level was proven [n]17],
c.f. [19].

For the second level of difficulty both players do not knowatkawhat the other player has done, but
at least the perception of the second player is independém state. Equilibrium existence for the second
level was proven by J. Renault]14].

For the third level of difficulty the perception of the secapldyer could be dependent on the state,
however the first player has at least some channel with whiehcan communicate messages that reveal
nothing about the state. With the first and second levelsf@i€dity the second player gains information
on the state only from inferences obtained from the behafithe first player. But with the third level of
difficulty the second player’s opportunity to learn aboud gtate is more complex. Equilibrium existence
for the third level was established in]18].

For the fourth level of difficulty there are no assumptionsatgoever concerning the perception of the
second player. The question of equilibrium existence ferfturth level remains open.

The primary difficulty in establishing equilibrium existemfor all levels concerns the ability of the first
player to deceive. By an opportunity for deception we meanftayer One can act initially as if the state is
something different from what it is, with initial unfavorigypayoffs for her, in order to convince the second
player to behave in the future in a way that is very favorabléér. A typical real-life example of such
behavior would be that of “pool sharking”. If we allow the garo be repeated only finitely many times (or
allow for infinite repetition but introduce a discount fagtequilibrium existence is not problematic because
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the payoffs will be continuous functions on compact stratgzaces. With such equilibria the first player’'s
payoff is a sum giving positive weight to all stages. Deaaptiere involves a balancing act; the deceiver
takes an initial loss to be balanced by a future gain. But vareimfinitely repeated game is un-discounted
there is no balancing act since the payoffs are always detethby the tail behavior, similar to a “last”
game with stakes that far exceed those of the preceding geongsined.

3.2 An Example

As an introduction to these games, let us consider an exaimgievas instrumental in the discovery of the
proof of equilibrium existence (for the first level of diffitty).

Example 1 There are three states of nature, labelled, and3. Due to a high degree of symmetry in the
definition of the game, the s¢tl, 2,3} is used to define the states and the moves of both playerserPlay
One has three moves, 2, and3, and Player Two also has three move<, and3. All statements are
respective to modulo 3. Nature chooses the state of nattineatj/3 probability for all three states.

Player Two’s payoff is very simple: no matter what Player @oes Player Two receives a payoffiof
if the state of nature matches his move, meaning that if tte stf nature ig and his move is alsothen
Player Two gets a payoff df, and otherwise Player Two receives a payoffof

The payoff for Player One is more complex. We describe it for state of nature.

Given that Player Two chooses the mave
if Player One chooses the mowv#hen she gets-4
if Player One chooses the move- 1 then she get8
if Player One chooses the move- 1 then she gets.

Given that Player Two chooses the mave 1
if Player One chooses the mowvéhen she gets-4
if Player One chooses the move- 1 then she get$
if Player One chooses the move- 1 then she get8.

Given that Player Two chooses the mave 1
if Player One chooses the movéhen she gets-4,
if Player One chooses the move- 1 then she gets,
if Player One chooses the move- 1 then she gets.

On the first level of analysis, Player Two wants his move toamé#te state, Player One wants to avoid
matching her move with the state.

How shall we understand the dilemma facing Player One? Sineef her moves is poisonous to her,
theith move if the state of natureiswe expect that long term behavior of avoiding the mowdl suggest
to Player Two that the state is The only way to reveal no information to Player Two concegthe state
of nature would be to perform all moves with almost equal piality. If Player: chose each move with
1/3 probability then no matter what Player Two does Player Oneldveeceive an expected payoff of no
more than-1/3.

On the other hand, let us assume that Player One always k&jlsrPwo (through her choice of moves)
what is the true state of nature. The natural way to do ththgistate of nature is would be for Player One
to spend the rest of the time playing the moves1 andi — 1, and Player Two will play. The expected
payoff for Player One would be, no matter what. Therefore it makes no sense for Player Onettas if
all states were equally likely. Have we now found an equitlitor?

The answer is no, because Player One has something muchtbeattethan this. Now we describe an
equilibrium. If the state of nature is then with one-half probability Player One will play onlyettmove
i + 1 in the future and with one-half probability Player One wilap only the move — 1 in the future.
What will result from such a strategy? Let us assume thate?l@®ne chose the movie By Bayesian
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analysis of conditional probability there isl&2 probability thati — 1 is the state of nature and there is a
1/2 probability thati + 1 is the state of nature. Now matter how Player Two respondatkeage payoff
will be 1 for Player One. However Player Two could give her a payoff &dr one of the two states and a
payoff of 2 for the other. Assuming that Player One chooses the maveeasonable response from Player
Two would be to play the moves— 1 andi + 1 with equal probability. The result would be a payoff of
exactlyl for Player One at both states ah for Player Two. Since Player One would do much worse if
she played the moviewhen the state wais we have described an equilibrium. But notice that the bielav
of Player Two is critical for the equilibrium property. If &er Two did not play + 1 andi — 1 with equal
probability then indeed Player One could have had a motiadt always choose one of the moves over the
other.

3.3 First Level of Difficulty

We keep notation of subsectibnR.5. For every A(K) we define the matri¥(p) = Y, ., p* 4%, and
the same foB(p). For any functionf on a convex set letav(f) (respectivelyvex(f)) be the smallest
concave function (largest convex function) larger or eqaaglsmaller or equal to) the functiofi When
multiplying a matrix on the right side by a vector, we assutra the vector is in vertical form. We define
the functiona™: A(K) — R by

= (7A T = (7A U
D* p = IIll.Il max o B p T = Inax IIll.Il o B p T.
( ) OGA(I) GA(") ( ) GA(‘])OGA(I) ( )

Assuming that the game is zero-sum, meaning ffat= — A* for all £ € K, Aumann and Maschler
determined in[[4] that the value of the un-discounted indilyitrepeated game is the function value of
cav(a*) applied to the initial probability. The most important pafthis proof, based ori[6], was to show
that for any vector: € R¥ such thatr - ¢ > a*(¢) for all ¢ € A(K) the second player has a strategy such
that with probability one for every state € K and every strategy of the first player the limit superior of
the first player's average payoff is no more thelh Such a vector: € R¥ we define to bendividually
rational for Player One. For any finite sétand functionf: A(L) — R a vectorz € R¥ dominatesf if
x-q> f(q) forallqg € A(L).

For everyy € A(I x J) defineyA € R¥ by (yA)* := 32, -/ ;7" A¥(i, j) and defineyB
likewise.

A joint plan is a cooperative agreement between the plaggpetform a prescribed sequence of moves
determined by a signal given by the informed player. Becdlusgame is non-cooperative by definition,
any cooperative agreement must be enforced by a threat adlpuent. For an initial probability, on the
states of nature a joint plan is generated by

1. a finite subset of (posterior) probabiliti®s C A(K) such that the convex hull df contains the
initial probability pg,

2. foreveryv € V a~, € A(I x J),

3. for some finiten a finite setS C I"™ of signals in bijective relation to the sétand a choice by lottery,
dependent on the state of nature and performed by PlayerdDagnember of5 in the firstn moves
such that the signal € .S implies by Bayes rule a conditional probability on the geequal to the
member ofl” corresponding bijectively te,

4. if the signals chosen corresponds toc V, an agreement between the players to play through the
rest of the game a deterministic sequence of pairs of m@iesj1), (2, j2), - .. ) such that in the
limit the distribution~, is obtained, and
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5. punishment strategies of the two players to be implenteintthe event that a player does not adhere
to the agreed upon sequence of moves. When the first playestmsthe second player, the second
player expects to receive no more thesx(b*)(v), wherev € V is the corresponding posteri or
probability. When the second player punishes the first pldtyis according to a individually rational
vectory € R¥, as described above.

A joint plan isnon-revealingif and only if V' = {py}, wherepy is the initial probability on the states
of nature.

The joint plan describes an equilibrium of the un-discodmen-zero-sum game if[{([4]) there is an
individually rationaly € R¥ such that for every € V the following holds:

1. (7xB) - v > vex(b*)(v),
2. Vk € K (7,A)F =yFif v >0,
3. Vk € K (7, A)* <yFif vk = 0.

The second and third are the conditiongnmientive compatibility and the first is the condition of individual
rationality for the second player.

When there are only two states of nature S. Sorin (f) provatidh equilibrium for the un-discounted
game exists. Sorin did this for a special kind of joint plamigigrium known as arindependent and two-
safejoint plan equilibrium. Independent means that everye A(Z x J) in the joint plan is generated
independently by the product of a memlagrof A(I) with a memberr, of A(J). Two-safe means that
for every posterior probability € V' the second player’s strategy guarantees to him his min-max payoff
b*(v) against any action of the first player in the zero-sum gameesgmted by the matrii(v).

In [L7] the present authors extended Sorin’s result to eaxbiy many states of nature. This had been
accomplished through the use of (some of) the topologiaatepts and results discussed here in Seflion 2.

3.4 Second level of difficulty

In the second level of difficulty one doesn’t assume perfeahitoring by either player concerning what
the other player has done, however one does assume thatteptien of the second player is independent
of the state of nature. The proof of equilibrium existencetfas level is due to J. Renaul{(J14]). It, too,
depended on the use of (modified) topological results filor), [And on the game-theoretic side involved
essential new concepts described below.

The most important contribution of Renault to the secontdilfand fourth levels of difficulty is his
solution to the problem of statistical control. Like the filsvel of difficulty, the players find a cooperative
agreement consisting of joint plans in which the first plagignals to the second player which joint plan
will be used. A joint plan equilibrium in this context is dedith similarly to the first level of difficulty,
except that the ability to perceive deviation must be worikgd the definition. Because the players have
only limited ability to communicate and perceive, there significant problems to any such cooperative
agreement. How does the uninformed player know which jdisw ghould be used? How does he know if
the informed player is performing according to the plan?

Renault’s solution involves an alternating sequences ayipy and communicating phases. In the
limit, the length of the communicating phases are insigaiftoccompared to the playing phases, but the
lengths of both phases goes toward infinity in the limit. la tommunicating phases the informed player
must convey to the uninformed player which joint plan will pperformed. During the playing phases the
uninformed player engages in random but increasingly rapet checks” to make sure that the informed
player is performing according to the plan. In the playinggds they perform the actions corresponding
to the joint plans (except for the occasional “spot checRgquired is punishment that lasts long enough
to be effective, yet always terminates to allow for the poitigy that it was an honest player who was
punished. The probability that an honest player will be phad infinitely many times must be zero, while
with probability one any attempt to gain a positivdrom deviation must be punished infinitely often.
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To make matters worse, there is always a residual posyiltiilét the uninformed player will punish the
informed player incorrectly simply because he misintetguie¢he message in the communicating phase.
While punishment is performed the second player must coatio listen to the first player during the
communication phases. Incorporating all of these goalsiéémeously was a significant achievement by
Renault, which set up the possibility of solving the thirdldourth level of difficulty.

3.5 The third and fourth levels of difficulty

The third level of difficulty involves no assumptions on thergeption of the players other than the ability
of the informed player to send two distinct messages to tleformed player that are non-revealing with
respect to the state of nature.

Now we present the signaling model of the third and fourttels\of difficulty. There are two sets of
finite signalsk andS, received by the first and second players, respectivelyrelisea stochastic signaling
function,A: K x I x J — A(R x S). After each stage in whiche I andj € J were played, and is the
state of nature, a member &fand a member of is determined by (k, 4, j) and communicated to Player
One and Player Two, respectively. The only knowledge thgestahave of the moves of their opponents
is through their observations of the sdtsand S, and the only knowledge Player Two has of the state of
nature is from the initial probability, and the received sequence of signal§'inNVe will assume that both
players can deduce their past behavior from the signalsrdesjve.

Foreveryj € JletA: (K x I) — A(S) be defined so that’(k, ) is the marginal probability on
the signalsS determined by the movese I, j € J, and the staté¢ € K. It represents the probability
with which Player Two receives a signak S if Player Two chooseg, Player One choosésand the state
of nature isk. A o € A(I)¥ represents a choice, dependent on the state of nature, ofed strategy by

Player One. For every € A(I)X with o = (o* | k € K) letA”: A(I)X — A(S)K be the| K |-tuple of
probabilities onS determined by’ (o)* := 3", _, 0¥ A7 (k, i). For everyL C K define
NR(L) = {0 € AD)X |VjVk,K € L X (o) =7 (o)¥ }.

N R(L) are those state dependent choices that yield the samévdigiri on the signal§ no matter what
Player Two does and no matter which statd.iwas chosen. For evepye A(K) definesupp(p) := {k €
K|pF>0}CK.
For everyo € A(I)X andr € A(J) definec AT € R¥ (respectivelyg Br € R¥X) as(cA7)F =
o* AFr, so that for every € A(K) we havep - 0 AT = Y, _ ;- p*(c"A¥7). 0 A7 is the payoff vector for
Player One, a payoff for each state, resulting from her ahofe combined with Player Two’s choice of
Define the functiorm™ (not necessarily continuous) by

a*(p) = max min p-cA7T = min

max p-oAT
oc€NR(supp(p)) T€A(J) T€A(J) c€NR(supp(p))

where we set*(p) = —oc if NR(supp(p)) = 0.

In the zero-sum context, these games were studied also byawirand Maschlei[4]. Aumann and
Maschler showed that the value of the game (in generalith@fourth level of difficulty) to the informed
playeris als@av(a*)(po), wherepy is the initial probability on the states of nature. (See {183 and [12].)

For a subsef. C K we will perceiveA(L) both as an independent simplex and as a sub-simplex of
A(K). ForeveryL C K with NR(L) # (), define the functiom} on A(L) by

1(p) = i -0AT = mi -0 AT.
ap(p)= Jex ) Bip,prodr= min, mex oA
We have that} is continuous and* = maxycx aj .

The difficulty in proving equilibrium existence for a statependent\ is the following. For every
L c K with NR(L) # 0, ¢ € A(L) andt € A(J), we know that there existsa € NR(L) such that
q- oAt > a’} (q). Butindividual rationality for the first player requiresatthe equilibrium payoff) € RX
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obeyy - ¢ > a*(q) for all ¢ € A(K). This problem was not encountered by Renaliltl([14]) becatate
independence of th&’ implied thata* = a.

We define a family of special subsets &fwe call the family ofnon-extendiblesets. A subsef of
K is extendible to a larger subsat if every member ofVR(L) can be extended to a membergR(N)
yielding for every movej € J the same distribution if\(S). A subsetl. C K is non-extendible if
NR(L) # 0 and there exits no strictly larger subgétwith L extendible taV.

The usefulness of the family of non-extendible sets is tald-fFirst, if nature chooses the stat@nd
k is in a non-extendible sdt then there will be a way for the first player to demonstratehi® $econd
player with certainty in the limit that the state of naturerideed inL without revealing any information
concerning which member df it might be. Second, though the functiahis defined to be the maximum
of thea; for all subsetd. C K, we obtaina™ also by restricting the maximum to only thosehat are non-
extendible. An important property of the family of non-extible sets is that it is closed under intersection.
For anyp € A(K) defineF(p) to be the minimal non-extendible set containimgp(p), with F(p) = K
if there is no such set.

For every non-extendible sétwe work with a concept of joint plan equilibrium relative fo Due to
the signaling structure, our definition of such joint plaruigria cannot be simple. First, because Player
Two has limited ability to observe her behavior, Player Oas much opportunity to cheat on any joint
plan. We must require of the players’ behavior that if Pla@ee is asked to perform somec A(I)X
then Player One is already choosing a strategy that maxifize payoff inside of. with respect to all
the other strategies il (1)% that produce for every movg of Player Two the same distribution on the
signalsS. (We assume that at random stages Player Two will performalles with equal probability, just
to make sure that Player One is performing according to tha.plOn the other hand, Player One is also
receiving signals iR and does not know exactly what Player Two is doing. The ebwsiag to introduce
this aspect of the game into the solution is require of Pldye’s strategies that they maximize his payoff
in response to what Player One is doing. This property, useBdnault, is calledwo-best-reply and
is a parallel to the two-safe property 0f [19]. Such combove of strategies, callegroto-joint-plans,
describe only the behavior on subsets of the playing stafjes.proto-joint-plans must be combined into
a way for the players to behave on all the playing stages ifesprobabilityp € A(L) is given. We call
these combinationson-revealing joint plans. Then for every initial probability, € A(L) a lottery will
be performed by Player One that determines one of possibtympasterior probabilities, for every such
posteriorp is associated a non-revealing joint plan that determingsthe players should act in the future
in the stages that will matter for their average payoffs.affinthese non-revealing joint plans for various
pinasetV C A(L) such that the initiap, is a convex combination of thE will define a joint plan for
po- Incentive compatibility and individual rationality arequired from the joint plan to make it a joint plan
equilibrium, just as with the first level of difficulty.

The main problem lies with a comparison of the joint plan éhtia coming from different non-
extendibleL. Domination of the functioru} is the natural individual rationality condition for eadh
and for which we can prove existence of joint plan equilibring the old methods. But we need our
payoff vectors to dominate the functief. How can we put together joint plan equilibria from the diéfat
non-extendibld. to create a joint plan equilibrium for the original game? Phting together of the solu-
tions from the different members @fis accomplished by Theordth 1. But notice that Thedibm 1 assum
that the inverse images of the appropriate correspondeaa@®avex. This convexity assumption is implied
by the ability of the first player to send distinct signalsttteveal nothing about the state, the property that
differentiates the third level from the fourth level of ddfilty.

4 Principal-Agent Contracts
Our topological results can be applied to economic situatliroader than that of repeated games of incom-

plete information, in particular to principal-agent sitioais. A typical principal-agent situation is that of
the relationship between the owner of a firm (the principaf) &s manager (the agent). The owner employs
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the manager, both are interested in the success of the fitnthdiuinterests do not coincide and the agent
has information on the firm that the owner does not have.

A mathematical abstraction of principal-agent situatifmlbows. There are two persons involved, a
principal and an agent. There is a finite 820f possibilities called states (of nature), a convex andpach
setX of joint actions, and a set of sighals. Nature chooses a istdteaccording to an initial probability
distributionpy in the interior of the simplex\(K') (meaning positive probability given to each state). Soon
after nature chooses sonmtec K the agent will learn of nature’s choice i but the principal is not
informed beyond the initial probability distributign,. After knowing the state of nature the agent sends a
signal to the principal. A contract is an assignment of atjaction to each signal sent by the agent along
with a state dependent stochastic rule for how that signalilshbe chosen. The payoffs to both players
are determined by the choice of joint action and by the sthteture. The principal can obtain additional
information concerning the state of nature (beyond théaindistributionp,) only through the signal sent
from the agent. The agent and principal are not bounded bydbetract to play the joint action untifter
the principal has received the signal from the agent. Giwnesreasonable assumptions on the structure
of the payoffs we will show that there exists a contract inikopium.

We make the assumption that there is a fandllpf subsets of the statds such thal J £ = K and,
moreover, if the chosen state does lie in a menibef the family £ then the agent has the ability poove
to the principal that the chosen state of nature does lie ig1ghbset without necessarily revealing any
additional information about the state of nature. This eg#iion only strengthens our result, as one could
always assume thdt is the singletor{ K'}. Any signal sent by the agent will have attached to it a subset
L € £ such that this signal can be sent from any state in this sbiogétom no state outside of this subset.

Caratheodory’s Theorem states that if a veetor n dimensional Euclidean space is in the convex hull
of a finite set then it is also in the convex hull of a subset aflicality no more tham + 1. Due to this
theorem, we assume without loss of generality that for every £ there is a finite subsef;, of signals
with |Sp| = |L|. LetS be the disjoint uniotJ, . - St

Every choice of a joint actiom € X corresponds to a set of payoffs for the agent. The same may be
true for the principal, but such a quantity will not be esg#rib defining equilibrium behavior. For the
agent we associate with everyc X a vector payoff-, € RX such that the agent will receive the quantity
r* if action z is taken and is the state of nature. We assume also that the vegtorsspect the convex
structure of the seX’, namely that ifc = Az; + (1 — X)a thenr, = Arg, + (1 — N)rg,.

A contractis an associated joint actiany € X foreachs € Sy, and a collectionv = (wy, € A(S) |k €
K) of state dependent distributions on the signals such that(§) > 0 ands € Sy, thenk € L. The
vectory € R¥ defined byy* = 3~ _o wi(s) rk_is called theexpectation vectorof the contract.

Given a contract define a signalto beusedif w*(s) > 0 for somek € K. For every contract and
signals € Sy, that is used there is a probability distributipnon A(L) defined byp, (k) : )

T e wm()
This is the conditional probability distribution dndefined by Bayes Rule. :

Acceptability conditions For any setl € L there is a correspondenég : A(L) — X. The inter-
pretation is that if the agent sends the signal Sy, andp;, is the conditional probability o induced by
the contract thed';, (p) are the joint actions that are acceptable to the principal.

ForanyL € £ andq € A(L) we assume that there is a valfigq) such that if the agent were informed
by nature only of thd. andq then the agent could demand the valugf pfq) for herself without the need
of any contract with the principal.

Because of the asymmetry of the information received by timejpal and the agent, the mathematical
conditions defining what is acceptable to the agent must be different from those defining what is
acceptable to the principal, (which is why we didn’t need taustify what is acceptable to the principal).
After a signal has been sent by the agent there is only ongbdibn on the states of nature that matters to
the principal, namely that calculated by Bayes rule. On thewchand, because the agent knows precisely
the state of nature all probability distributions (k) are relevant (not only th& extremal points of
A(K) giving all weight to a single state). Given any initial prdiilay distribution py in the interior of
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A(K) the agent can choose to receive its knowledge of the stateoisteps, first through membership in
any sefl” such thapy is in the convex hull of” with pg = >~ _\, A v forall A, positiveandy_ ., A\, =1
and then followed by the agent’s learning of the precise mambK. For anyq € A(K) there will be
such a seV that includesg;. Therefore any contract that is acceptable to the agentinawstan expectation
vectory that satisfieg - ¢“ > f1.(q) for all pairsL € £ andq € A(L).

Equilibrium:  There are three ways that a contract can fail to be in eqiulir First, after the signal is
sent by the agent the joint action suggested may be unattepdathe principal. Second, the expectation
vector of the contract may be unacceptable to the agent.dThirsome chosen statethe agent may
prefer the payoff associated with one signal over that agsatwith some other signal sent with positive
probability.

Definition 5 Given an initial probability distributiorp, in the interior of A(K') a contract is arequili-
brium if and only if

(1) zs € Fr(ps) for all useds € Sy,
(2) the expectation vectgr € R¥ satisfiesy” - ¢ > f1(q) for everyL € £ andq € A(L),
(3a) r¥ =y foralluseds € S andk € K with p* > 0, and

(8b) 7k < y* for alluseds € S andk € K.

s

Theorem 4 If every correspondencé}, is u.s.c., nhon-empty and convex valued, every funcfioiis
lower-semicontinuous, and for eveltye £ andp, ¢ € A(L) thereis anc € F,(p) suchthat,-¢ > fr(q),
then for every initial probability in the interior of A(K) there is a contract in equilibrium.

PROOF  For everyL € £ the correspondencg’;, (as defined in TheoreH 2) represents the contracts in
equilibrium with respect to the sédt, (meaning that only members 6f, and the correspondendég, are
usedy® - ¢ > fr.(q) is required for aly € A(L), and the equalities and inequalities of (3a) and (3b) apply
only to the states € L). By TheoreniR for every. € £ the correspondened’;, has the spanning property
for the setA(L). With Uy, defined to be y | y* - ¢ > f1(q) V ¢ € A(L) } andb € R a quantity larger than
any payoff defined in the game, TheorBIm 1 implies the existefian equilibrium (with:F, replacing the

Fy, of the theorem).

In connection with sections 2.6 and 3.5 we would like to ne@mnthat a further advance along the lines
discussed in Section 3.5 may depend on proving and beingaligse an appropriate parametric version
of Borsuk-Ulam theorem. A work in progress in this directisrundertaken by Thomas Schick and the
present authors. A part of it is contained in the preprint ‘skgmetrized version of Borsuk-Ulam theorem”
(available on arXiv). B
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