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Dynamical systems and shapes

J. J. Sanchez-Gabites

Abstract.  This survey is an introduction to some of the methods, tepkes and concepts from al-
gebraic topology and related areas (homotopy theory, sttegmry) which can be fruitfully applied to
study problems concerning continuous dynamical systemshi§ end two instances which exemplify
the interaction between topology and dynamics are corgiijeramely, Conley’s index theory and the
study of some properties of certain attractors.

Sistemas din amicos y formas

Resumen. Este articulo panoramico constituye una introducci@hgainos de los métodos, técnicas y

conceptos que, desde la topologia algebraica y otras afie@s (teoria de homotopia, teoria de la forma),
permiten abordar problemas gue se plantean en el marco destemas dinamicos continuos. Para ello
se presentan dos situaciones que ejemplifican esta inimagctre topologia y dinamica, como son la

construccion del indice de Conley y el estudio de algumagipdades de ciertos atractores.

Generally speaking, the task of applied sciences is to sbsetural phenomena and try to elaborate a
theory which explains them. Such a theory is frequently falined (at least in quantitative sciences) in a
mathematical language and can be used to produce simplesmaidbe phenomena, usually in the form
of a dynamical systeth Then a mathematical analysis of the latter can be perforameidmay provide
explanations for the basic features of the observed behavio

The study of dynamical systems involves many areas of maitiesn most notably analysis and topo-
logy. More specifically, algebraic topology entered thetynie through the pioneering work of Poincaré,
later continued by Morse, Smale and Conley, which showetdhieae exists a strong interaction between a
dynamical system and the shape (in an informal, intuitivessg of thephase spaci lives in.

Their methods can be considered landmarks in the study afrdical systems through thephase por-
traits which are objects of a geometrical nature. This approach gae to a whole new branch where tools
like homotopy theory, homology and cohomology theoriesl later on shape theory, played a prominent
role in the investigation of dynamical systems.

The aim of this survey is to present a (necessarily partidistirongly biased) illustration of two specific
instances which exemplify how the tools mentioned abovebesaght into the picture of dynamical sys-
tems. We construafonley’s indexn its shape theoretical version, present the subsedderge equations
(this is Sectiol?) and explore some results alaitractors(SectiorIB). The exposition is very unbalanced
in the sense that a great space is taken up by Sddtion 2, big fbist a natural consequence of the fact that
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it condenses nearly one hundred years of beautiful and gl@gplential mathematics and provides enough
background for an interested reader to explore more addhtogecs. Unfortunately we will not be able
even to mention the all important robustness feature of §mindex.

Only a general background in topology and in particular gehkraic topology is needed (for the latter,
the books|I3B],[[7/0] and_[/1] contain more than enough infation), although a mild acquaintance with
the theory of (at least linear) differential equations ismamended (as presentedlinl[31], for example). We
have chosen to recall the relevant notions or results asappgar along the text. This has the advantage of
presenting them in a motivated way, but on the other handdheynterrupt the discourse, so we introduce
these digressions by a short title in boldface and end thera hgrizontal line to allow the reader to
recognize when he is back to the main story.

1 Introduction

Before proceding further we will recall some elementary ecapts and fix notations. The basic reference
here, which we shall follow closely, is the book by Bhatia &zgol[8]. Besides its mathematical content,
a quick glance at its introductory pages will give the reaal@irly accurate picture of the most prominent
figures involved in the development of the theory of dynairsgatems until the 70’s, and this can provide
a head start in the arduous task of untangling the many aplpesavhich exist nowadays to this subject.
Another two very complete resources, with a stronger biastds phase portraits, afe [52] andI[53].

1.1 Basic definitions

Suppose we want to study the evolution in time of some phisysiem(S) whose state can be completely
described at any instante R by means of a vecta$(t) € D C R™. HereS(¢) can be thought of as a
“photograph” of(S) at timet¢, and D is the set of admissible states fd). Assuming that the system is
well behaved (it is deterministic both in the future and ie ffast), knowledge of () at any particular
instantt = t, completely determineS(¢) for everyt € R. Hence given any € D we can run(S) usingp

as its initial state (that is, lettin§(0) = p) to obtain a curve

¥» : R — D
t — S(t)

representing the evolution ¢5) in time. Collecting all these together yields a new mapping

o : DxR — D
(p,t)  — ()

which satisfiesp(p,0) = +,(0) = p for everyp € D. Furthermore, we shall assume that the system is
autonomous, this meaning that the laws which govern it dalepend on time. We shall not explore this
in detail, but it has the consequence that the evolutions
t+s
P e(p;t+s)

t S
o(p, t) —— ¢(e(p,t), )

p
must yield the same final result, thatd$p, t + s) = (¢(p, t), ).

Definition 1 A continuous dynamical systefar flow) in a topological spacé/ (called thephase spage
is a continuous mapping: M x R — M such that
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1 o(p,0)=p Vpe M,
2. p(o(p,t),s) =p(p,t+s) VpeM, s, t €R.

Although Definition[d is probably well known (simply pug is a continuous action of the additive
group(R, +) on the topological spac®/), we have given some motivation for it to draw attention oa th
fact that one could as well consider other situations whidfitet interest on their own. Let us present two
of them here:

o If (S) is deterministic only in the future, knowledge of stét&,) does not always determine tpast
history of (S) (prototypical examples being heating or diffusion phenna)eand the curves, are
defined only fort > 0. Therefore, it is natural to modify Definitidd 1 by requiritigat the domain of
¢ be onlyM x [0, +00), rather thanmM/ x R, and keeping axionis 1 afdl 2 from Definitidn 1 for
t > 0. The notion thus obtained is calledcantinuous semidynamical system

e (S) could evolve in a discrete fashion (for example, it couldrdeits state on a daily basis, instead
of continuously with time), and then it would be reasonablegplaceR by Z in Definition[l. These
are known agliscrete dynamical systems

This survey concentrates on continuous dynamical systeroause they are best suited to be studied
with geometric techniques, since many of the constructiomsresults described below rely on the simple
idea of using the flow to construct homotopies between adequappings. However, many of the forth-
coming concepts do have their discrete or semidynamicaitesparts which have also proved to be useful.

Let us fix some conventions. We shall always reserve the lefier flows, and abbreviate, as customary,
©(p,t) by p - t. The phase space/ will be assumed to be locally compact and metrizable (in faetwill
usually confine ourselves, for simplicity, to the case whirés a topological manifold). We would like to
remark here that the local compactness assumption pretestechniques from working straightforward
in infinite dimensional phase spaces, which may arise imgstrelated to partial differential equations or
guantum mechanics. Nevertheless, in many cases this iagusecsuccesfully fixed (sele 155]).

Definition 2 Thetrajectoryof a pointp is the setp - R. Theintegral curvehroughp is the parametrized
curvey,: R — M given byy,(t) := ¢(p, t) (thusv,(0) = p).

Definition 3 A setK C M is calledinvariantif K - R C K, that is, if the trajectory of every € K is
completely contained ik .

Since trajectories are connected sets (being the imadewfder a continuous mapping), every com-
ponent of an invariant set is again invariant. Morever therior, closure and boundary of an invariant
set is again invariant. So are their unions and intersestiofinally, if K is invariant, the restriction
vlrxr: K x R — K is well defined and trivially satisfies the conditions to beavfin K, which we
call therestriction flowy| k.

Example 1 The trajectoryp - R of a pointp is an invariant set, sincép-R) - R=p- (R+R) =p-R.
We shall single out two classical types of points whose liebalias a strong dynamical significance:

1. Apointp € M is afixed point(or an equilibrium, or a critical poin) if p - t = p for all t € R, that
is, if {p} is invariant. In this case the trajectory pfis just the singletodp}.

2. A pointp € M is periodicof (minimal) periodl’ > 0if p-T = pbutp -t # pforevery0 <t < T.
Inthiscasep -t = p-s < t = s mod T and the trajectory op is homeomorphic t&', the unit
circumference.

Letp: M xR — M andy: N x R — N be dynamical systems in possibly different phase spates
andN. As usual in mathematics, it will be convenient to have sowtéon of equivalence betweenand
1 which allows us to deem them as the same dynamical system.
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Definition 4 A homeomorphism: M — N is a conjugationbetweeny and v if w(h(p),t) =(ho
©)(p,t) for everyp € M andt € R. When such a homeomorphism exists, we shall shay:thatlv are
conjugate

Clearly conjugate systems are indistinguishable from dpelbgical point of view. However this rela-
tion is still too strict for our geometrical approach, and st&ll have occasion later on to slacken it a little.

Many questions concerning flows involve their long term védar or, intuitively speaking, the values
p(p,+00) = p - (+o0) of the flow at infinity. We shall devote a few lines to recall htvwis notion is
formalized under the name 6mit sets

Fix a pointp € M in the phase space. We want to extend the continuous magping — M to the
domainR U {40}, that is ascribe a value t9,(+c0) = p - (+00). If this is to be done in a continuous
fashion, taking any sequentg — +o0o we must havey,(t,) = p - t, — Yp(+00) = p - (+00), which in
principle determine® - (+o0). However different choices of the sequerngemight give rise to different
limits for p - ¢,,, or even to sequences having no limit whatsoever, so we dte link ofp - (+00), rather
than a single point, as the following set:

Definition 5 Thew-limit sef of a pointp € M is
w(p):={¢qe M :3t, — +oosuchthap-t, — ¢}.
Thew-limits are invariant sets, since

w(p) t=(p- (+00)) - t=p-(+00+1t) =p- (+00) = w(p)

(this “proof” should be taken as a shorthand for a longer one)s not difficult to see either that(p)
admits the alternative definition
w(p) = [\ p-[t,+0),

>0

which has the advantage of showing readily thgt) is closed. Also, it is prone to generalization, and for
any subsef C M we define itsv-limit as

w(P) = (P [t,+o0).

t>0

All the definitions above can be dualized to obtain the notibthe a-limit set of a pointp, which we
denote byx(p). It has properties completely analogous to those (@f).

1.2 Phase portraits

Let us recall that ghase portraibf a dynamical systemp: M x R — M is an informal drawing (so to
speak) of the phase spaté together with some oriented trajectories of the system wvhre of interest or
thought to be representative of the behaviour of the flow.id&estheir heuristic relevance, phase portraits
provide the link which allows geometry to enter the sceneyofainical systems.

Proposition 1 Lety be a continuous flow i/. Then every two trajectories gf either coincide or are
disjoint. In particular, the collection of all trajectoriofy is a partition of M .

PROOFE Assume that two trajectorigs- R andq - R meet. Then there exist timast € R such that
p-s=gq-t,50p-(s—t)=gq-(t—t) =¢q-0=gq. Henceg € p- R and consequently-R C p- R because
the latter is invariant (see Examilke 1). The same argumaier,changing the roles gfandgq, proves the
other inclusion. W

2Let us warn the reader that we exceptionally depart from titation in [8], where thev-limits are denoted b +.
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For us, the phase portrait of will be the particular partition of\/ induced by the trajectories of,
together with their orientation. It captures all the essgrtehaviour of the flow except for the specific
parametrization of its integral curves and, roughly spegkihe geometric theory of dynamical systems
proceeds by studying these phase portraits, rather thanigiaal flows which give rise to them. This shift
of our focus is best exemplified by the following notion of eglence of dynamical systems, coarser than
that of conjugation.

Definition6 Lety: M x R — M andy: N x R — N be two dynamical systems (probably defined
in different phase spaces). A homeomorphisnd/ — N is called anequivalencdetweeny and if it
takes oriented trajectories of the former onto orientedetctories of the latter.

Hence two flows are equivalent when there is a homeomorphistd — N taking the phase portrait
of one onto that of the other, and therefore they are indisishable for the geometric theory of dynamical
systems. Sometimes we shall also need a local version of ifdafifl and say thap and+) are locally
equivalentin setsU C M andV C N if there exists a homeomorphism U — V taking oriented
trajectory segments ity to oriented trajectory segments ¥ (the trajectory segmemf a pointp € U is
justthe sep - J, whereJ is the connected componentf € R : p - t € U } which containg).

DYNAMICAL SYSTEMS COMING FROM DIFFERENTIAL EQUATIONS . Many natural phenomena can be
modelized by means of a differential equation which can kg(imaybe after some manipulations) in the
form

(E) :p(t) = f(p(t)),
wheref is a tangent vector field on some manifdlfl. Under the assumption thgtbe locally lipschitzian
(for example, if it is of clasg’!), prescription of an initial conditiop(0) = ¢ uniquely determines a
maximal solutionp(t) for (E). However, the domain gf(t) does not need to be the whole real liRe
but only an open interval, which may depend on the initial conditian One can still collect all the
solutions to obtain docal flow : W — M, whereW = {J ., {q} x J, is an open subset af/ x R
containingM x {0} andy satisfies axiom§ 1 arid 2 in Definitibh 1 wherever it makes sgmsefs of this
facts are standard, see for examplée [13] o [31]). Despifeamnces, we can also deal with local flows in
our setting, since as far as phase portraits are concermest behave exactly like global flows (those of
Definition[). More precisely, one has the following result:

Proposition 2 Lety be alocal flow onV/. Then there exists a (global) flawin M such that the oriented
trajectories ofp and ¢ coincide. Consequently their phase portraits are the same.

We shall not give its proof, but it follows rather easily framversion of Theoredl1 below for local
flows and Whitney’s papel [73], where sufficient conditions given for a family of curves in a spadé
to be the integral curves of a global flow. It can also be irdive to see how the book by Bhatia and
Szegd deals with this issue in the particular case of looaldlcoming from differential equations, séé [8,
Chapter |, 2.2.]. In any case, whenever a flow defined by ardifiital equation is considered in the sequel,
no precaution about its domain of definition will be necegsar

Concerning the aspect of phase portraits, there are a pagsofts which the reader should be aware of.
The first one (whose proof can be found, for examplé,in [8Inds2]) shows that, away from fixed points,
phase portraits are locally trivial.

Theorem 1 (Rectification theorem)  If p is not an equilibrium forp, it possesses an open neighbour-
hood (called a flowbox) where the flow is parallel, that iseisembles Figul@

The second one concerns the topology of trajectories.
Theorem 2 The trajectories ofp can be classified according to Talflle

The proof is not difficult except for the last case, considerea paper by Aarts [1].
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Figure 1. A parallel flow.

Table 1. Dynamics versus topology of trajectories

| Dynamics ofp | Typeofp-R | Topology ofp - R |
Critical {p} A singleton
Periodic St Compact but not a singleton
Neither critical nor periodic R Locally compact but not compagt
Locally=Q x R Not locally compact

Example 2 Suppose a continuous flow is given in the unit circumferéicerhich has no fixed points.
Then every point € S! is periodic, and its orbit is the whole phase sp&ce

PROOF Observe first thap - R is a connected subset 8t, so it is an arc (either proper or the whole
circumference). In any case it is locally compact, so by @Hhit follows (since there do not exist fixed
points) thatp is either periodic orp - R is homeomorphic t&. If the latter were the case, then R would

be an open oriented ar@;, 62) andw(p) = {#2} would be an invariant singleton, thus a fixed point. This
contradicts the assumption that there are no fixed pointg,maoist be periodicang-R = S'. W

To close this section we present an example which is probablyknown by the reader, but looked
upon with geometrical techniques. Despite its simplictyh@ee it will transmit some of the flavour of our
subject.

Example 3 Consider a system comprised of a spring with one of its eneld &ird the other attached to a
massmn. The spring offers a forcg(z) against being displaced from its rest position by an amaurfhat
is, if the natural length of the spring 6 and it is pulled apart so that it attains lengfh+ z, it will show a
force g(z) pulling back to its rest position, and similarly if shorteht® lengthZ — z (see Figuré).

z=0
Figure 2. The set up for Example B

We claim that ifg is continuous in some intervédy, ) C R containingz = 0, then the spring exhibits
periodic behaviour when its rest position is slightly pebed.
PrRoOOFR We adopt the reference system of Fighré\pplying Newton’s second law to the above situation
(and neglecting friction), the positian(t) of the particlem is subject to the differential equation (¢) =
—g(a:(t)) which, under the standard transformation to a first ordertsys yields

(S):{ nfy - —gy(w)
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Since the effect of friction has been neglected, sy§f8nms conservative: the total energy

V(e,y) = G) + 5o

is a conserved quantity, whe€(z) := [, g(u) du. Indeed, ifp(t) = (x(t),y(t)) is a solution of(S),

(Vop) =V,V.-p= (G'(x)7my) < %z(x) ) =0
becausei’ = g. Hence the level setg€ ~!(c) are invariant for everyc € R. Moreover, the implicit
function theorem guarantees thiét ! (¢) is a closedl-manifold (without boundary) for every> 0, since
VV(z,y) = (9(z), my) does not vanish except ét,y) = (0,0), which corresponds t& = 0.

Observe thay(x) opposes the external force, so we ha(e) > 0 for x > 0, g(0) = 0 (rest position)
andg(z) < 0 whenz < 0. Thereforez, being a primitive ofj, is strictly decreasing for negative attains
its minimum at: = 0 and then increases strictly again for positive Thus for small enough > 0 the set
{z € (o, B) : G(z) < c}is aclosed intervalzy, x5]. Furthermore G > 0 so if (z,y) € V~(c), then

il

c=V(z,y) =G )+

V(e) C [, 2] [ \/% \/%]

which shows that’ ~*(c) is bounded and therefore compact. Thus if we denot& lany of its connected
componentsk is a circumferenc&! (being a connected, compagcmanifold). FurthermoreK is invari-
ant (because it is a component of an invariant set) and doesordain any critical points, since only the
origin is a critical point andV’(0,0) = 0 < ¢ = V(K ). Thus by Examp[it is a periodic orbit. W

and consequently

2 Local and global analysis of dynamics

One approach to dynamical systems, inaugurated by Painedris series of papers[58] and continued
by Morse [49], [50], Smal€167]/168] and Conley 14, [16hwd be roughly described as follows. First
of all, a finite family of invariant set¥(y, ..., K,,, C M is located such that the flow it — U;-n:1 K;

is especially simple. Then some kind of local analysis ifgrered around those sets (the term “local”
meaning that it involves only the flow in arbitrarily smalligebourhoods of the invariant sets), whose
outcome is an index (whatever that may be) which is assigmed¢h ofK, ..., K,,. Finally, this local
information is put together in some way to fit in a large pietinvolving some global topology of the phase
space, for example its Betti numbers.

I. POINCARE. Poincaré (around 1880) dealt with continuous flows in cochparfaces\/ with finitely
many fixed points{pi, ..., p.}, which play the role of the invariant sefsy, ..., K,, (in this case no
specific assumption is made about the flowbMn— {p1, . .., pm, }, Which accounts for the generality of the
resulting theory). He assigned an integg@r;) to each of them, it$oincaré-Hopf indexand went on to
prove the celebrated

Theorem 3 (Poincar é-Hopf for surfaces) Let ¢ be a continuous flow in a closed surfagé with
finitely many fixed pointgy, . . ., p.,,. Then

> ups) = x(M)

j=1
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TheorentB relates the local information provided by thedediwith a global feature of the phase space,
namely its Euler characteristic. This theory was later edéal to flows in higher dimensions by Hopf[35],
although reading Poincaré’s original paper is still erjole due to its strong geometric flavour. Modern
expositions of the topic can be found nearly in any book aldiftgrential topology, for example ir_[34]
or [44].

1. MORsSE. Although having a completely different departure poing thork of Morse proved to be of
crucial importance for the developments to come later ométheory of dynamical systems. He realized
that, if f: M — R is a differentiable function (with some mild restrictiordgfined on a compact rieman-
nian manifoldM, then the critical pointg, ..., p,, of f (that is, those where the gradievitf vanishes)
bore some relation to the topology 8f. More concretely, he assigned an integral index to eackcakit
pointp; (comprised betweedanddim (M), the dimension ofif) which could be computed from the hes-
sian of f atp; (thus being a local object) and went on to prove some inetigmlinow known adforse’s
inequalities These relate the amount of critical points having a ceitadexk and the Betti numbers dif .

To make this fit our context, one can consider the differéatiaation(E) : p(t) = —V, ) f (the minus
sign is included here for historical reasons), which indLeglobal flowy ¢ in M (due to its compactness)
whose fixed points are precisely the critical poipts ..., p,, of f. With an adequate choice of their
labeling one can prove (see Examigle 4 and Propodition 3)ithat p1, . . ., pm,

(P) : a(p) = ps andw(p) = p, for some equilibrigps andp,. such thatn > s > r > 1.

The fixed points play the role of the invariant séfs, . .., K,, and the “niceness” assumption on the
flow on M — U;."Zl K is precisely the above mentioned prope(fy) that the trajectories of non critical
points connect two equilibria. The local information prded by the indices of the critical points is put
together via Morse’s inequalities.

[1l. SMALE. Nearly thirty years later, Smale considered differentathbws in compact manifoldd/
with finitely many fixed pointgp1, ..., p.»} and periodic orbit{~1,...,v,} (these are the invariant sets
K; the flow in their complement is assumed to satisfy a stréogivard generalization of property?)
above and some extra transversality condition which wd slealdetail). An integral numerical index was
assigned to each of them and inequalities relating the nupftfexed points and periodic orbits with the
Betti numbers of\/, much in the fashion of Morse’s, were obtained. Thus Smalatrtdrom generalizing
Morse’s work, took the important step of placing it in the t®tt of dynamical systems.

IV. CoNLEY. It was finally Conley who dealt with the case of nearly comgliegeneral invariant sets
Ky, ..., Ky, (herequired them to bisolated in a compact spack/. His indexi (K ;) (theConley indeyis

a homotopy type of a pointed space, rather than a numeridekirand a theorem is obtained which relates
those indices with the Betti numbers bf whenevef K1, ..., K, } is aMorse decompositioof M. ___

The reader might be wondering to what extent the approactepted above is general eno@ﬁ)ne
of the many merits of Conley’s work is that he showed that thth fPoincaré had started to pave back in
the 1880's effectively led somewhere (his ideas about thiskie found in the monograpHhy ]14], although
they were already contained in a previous unpublished papés shall discuss this now, and to this end it
is most convenient to introduce the following notion:

Definition 7 Let K = {K,},c; be a family of disjoint compact invariant subsetsidf A Lyapunov
functionfor K is a continuous functiot’: M — R such that:

3At least the dichotomy between local and global analyssearnaturally since, for instance, it was already preseBkampldB,
if not very prominently. Indeed, the usageéfto locate K involved the globality of the flow (though the topology of thiease space
did not play an essential role here, apart from betagimensional), whereas the conclusion tliétis a periodic orbit was drawn
locally, from the knowledge that it did not contain fixed psin
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1. G is strictly decreasing on the trajectories of poiptg UJEJ K;,
2. G assumes a constant valugon eachk; € K, and all of them are different.
The real numbers; are called thecritical valueof G.

It is not easy to motivate Definitidd 7 without descendin@itgchnical details, and we shall not try to
do so. But, if only to give a slight clue of where it comes frdet,us present a prototypical example:

Example 4 Let f: M — R be a differentiable function defined on compact manifoldoareti with a
riemannian metric(-, -) (recall that this is Morse’s setting). Integration of theuadionp(t) = —V,) f
yields a flowp; on M whose fixed points are precisely the critical pointgoff p is not one of them,

d .

E(f o Yp)lt=0 = (Vpf,7(p)) = —(Vuf, Vu f) <0

so thatf is strictly decreasing along the trajectory pf Thus letting/C be the family of critical points of,
the functionf is a Lyapunov function fok.

A careful examination of the work of Morse, when considenamf the point of view of dynamical
systems, shows that the fact thfats a Lyapunov function was the key which enabled him to puétogr
the local information provided by the indices and relateittvthe Betti numbers of the ambient manifold.
This may provide an (admittedly, not very satisfactory)lex@tion of why it is interesting to single out the
notion of a Lyapunov function. Further justification comesi the Propositiohl3.

Proposition 3  Suppose thall = { K} ;c; admits a Lyapunov function and :=
Then:

e IS5 1s compact.

1. for everyp € M there existK'; and K. in K such thatx(p) C K andw(p) C K,
2. ifp ¢ K, thena(p) andw(p) are nonempty and|,,y > G(p) > Glu(p)-
In the second case,- R is called aconnecting orbitrom K, to K,..

PrROOF Inthe first place we shall prove thafp) C K for everyp € M. If not, there exist® € M such
thatw(p) € K;letq € w(p) — K. There exists a sequentg — +oo such thap - ¢, — ¢ and, maybe
after passing to a subsequence, we can assume,that- ¢,, > 1 for everyn € N. SinceK is closed and
q € K, itfollows thatp - t,, ¢ K for big enoughn so

Gp-ty) <GP (ta+1)) <G tnt1)

and passing to the limit and using the continuity@fwe get thatG(q) < G(g-1) < G(g). Hence
G(q) = G(q - 1), but this contradicts the fact thét decreases on trajectories of pointsii — K and
proves thatv(p) C K.

Let us observe now that(p) is connected. It is compact, because it is a closed subgét bforeover,
sincew(p) = ;o P - [t,+00) € K andM is locally compact, there must exist some> 0 such that

p - [t, +00) is compact for every > t,. Thereforew(p) is the intersection of the decreasing sequence of
compact setg - [t, +o0) (for t > t,), each of which is connected (being the closure of the caedeset
p-[t, +00)), Sow(p) is connected too (the same argument also proves, in pasisaig,(p) # (). Recalling
thatw(p) C K = UjeJ K; and everykK; is closedw(p) must be wholly contained in sond€, .

Now we prove the inequalit¢(p) > G|, forp ¢ K. Pick anyg € w(p) and lett,, — 4-oc be such
thatp - ¢, — ¢. We may as well suppose thigt > 1 for everyn, and then we havé&'(p) > G(p-1) >
G(p-tn), which on the limit gives7(p) > G(p-1) > G(q). SinceG is constant o (p) because the latter
is contained in some member of the famfly it follows thatG(p) > G|, (p)-

Finally, parallel arguments establish the dual afirmations(p). B
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Thus the dynamics in th&;’s may be unknown, but every poipt¢ | .. ; K; yields a connecting
trajectoryp - R between two of them. This in an exact analogue of prop(7 @rtymentioned above, when
discussing the work of Morse, but where more general inmhgats are allowed instead of only fixed points.
The situation we have arrived at is close (save for the faat we would like to have only finitely many
K’s) to the one we presented intuitively at the beginning & gection. To round off these considerations
let us cite the following theorem due to Conley (se€ [14, Géialp, 6.4]).

Theorem 4 Let the phase spac&/ be compact. Then there exists a unique fanfily= {K;};c; of
disjoint compact invariant sets which admits a Lyapunowxfiom G and is maximal with respect to this
property. The seK := |J._; K;, called thechain recurrent seis compact and thé(;’s are its compo-
nents.

jeJ

Theoren} pushes things to the limit. It proves the existericgefamily K which admits a Lyapunov
function but cannot be further refined, that is, it separatespletely the gradient-like part of the flow (that
on whichG decreases) from the possibly complicated invariant atrect This can be considered as the
ultimate justification to this approach to dynamical system

As a final outline let us recall the three steps we have to addxed present the tools involved:
1. Locate invariant structure. This will be done via Wazkigsmethod.

2. Analyze the flow near an invariant skt The outcome is Conley’s indéx K), or rather a shape-
theoretical version(K) of it.

3. Piece together the local information to obtain globalstaaints. This is accomplished through the
Morse equations.

2.1 Wazewski's method

In his paperi[72], Tadeusz Wazewski presented what wasidn, & new method to detect invariant structure
in a prescribed compact subg€tC M. Denote byinv(N) the maximal invariant subset af, that is

inv(N):={peN:p-RCN}

Clearly N contains a nonempty invariant subset if, and onlyrif,( V) # 0.
Intuitively speaking, Wazewski's method proceeds by carig how much of the “matter” iV exits
it when time goes by. Let us begin with a very simple exampile gxtreme case when nothing exifs

Example 5 Suppose that every poipte N remains inN in forward time, thatisV - [0, +00) C N (such
a set is callegpositively invariany. Then we assert thanv(N) # (.

To see this, pick any € IV and observe that - [t, +00) is a closed subset df, so it is compact. Con-
sequentlyu(p) = (,~, P - [t, +00) is an intersection of decreasing (with increasit)ygionempty compact
sets, so it is nonempty. But sineép) is invariant,) # w(p) C inv(N). ThusN contains some invariant
structure.

Using similar arguments it is not difficult to check that(N) = w(N). R

Observe that the compactnessiplayed an essential role in Example 5. If this conditionnvere
omitted, it could very well happen that the flow lines justsipated” over infinity, without giving birth to
any invariant structure iV (consider a translation flow(x, t) = « + ¢ in the real line andV = R).

For later reference, and to aid intuition, let us keep in nthenext FigurEl3. It shows four possible ways
for the trajectory of a poink € 9N to meetN (it is not an exhaustive classification, but only represirea
enough). The bounda@N is the thick horizontal line, and the gray part is the intedd N. In casesd)
and p) we shall say thap is a transverse exifrespectivelyentrancé point. In casesd) and () we talk
about arexterior(respectivelyinterior) tangency.
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(a) / <b>\ <c)\/ @
7 D 7 /\

Figure 3. Possible phase portraits near a point p € ON.

The usage of the words “transverse” or “tangent” here doégmualy any differentiability assumptions,
and in fact the cases depicted in Figlile 3 can be completelsacterized topologically. For example,
p is a transverse exit point if, and only if, there exists same 0 such thatp - (—¢,0) C int(N) and
p-(0,e) € M — N. Similarly, p is an exterior tangency if, and only if, there exists same 0 such that
p-(—¢,00C M —Nandp-(0,e) C M — N.

Now to be able to state Wazewski’s principle we need to mha&ddllowing definition:

Definition 8 A pointp € N is an (inmediatepxit pointif, for everye > 0, we havep - [0,¢] £ N. The
set of all exit points ofV will be denoted by..

Thus in FigurdB both in casea)(and €) the pointp is an exit point.
Observe that any poinpte N which exitsN (thatis,p - [0, +o0) € N) does so througli. Indeed, let
7(p) :==sup {t>0:p-[0,t] C N},
which is finite becausp- [0, +00) € N. We claim thap - 7(p) € L. If not, for somes > 0 we would have
(p-7(p)) - [0,e] C N,

or equivalentlyp - [7(p), 7(p) + €] € N. However, since - [0,7(p)] C N becauseV is closed and is
continuous, it would follow that

p-[0,7(p) +el=p- 0,7 Up- 7)., 7(p) +] € N,
contradicting the definition of (p). Hencep - 7(p) € L.

Theorem 5 Assuménv(NN) = (. If L is closed inV, thenL is a deformation retraction aiv.

PROOF By the argument of Exampld 5, evepye N must exitN, because if somg € N did not,
) # w(p) C inv(NN). Thus the mapping described above is defined on all 8t The hypothesis that is
closed guarantees thatis continuous (we leave this as an exercise) and, s\Még compact, there exists
some constarif’ > 0 such that) < 7(p) < T for everyp € N. Consider the mapping

H : Nx[0,T] — N
(p,t) +— p-min{t,7(p)}

The effect ofH on a pointp € N ast moves fronm0 to 7' is to push it along its trajectory until it reaches the
exit setL, and thereafter leave it fixed. Clearly is continuous and, sincgp) < T, we haveH (p,T) =
p-T(p) € Lforeveryp € N. ThusH is a deformation retraction o ontoL. M

Of course it is the following Corollary the result we are tgahterested in:

Corollary 1 Let N be a compact set and suppose that the inmediate exit setclosed inN. If the
inclusionj: L — N is not a homotopy equivalence, ther (N) # (.
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PROOF If inv(IV) = 0, let H be the deformation retraction provided by Theofdm 5. If wie'leN — L
be defined by-(p) := H(p,T) we obtain a retraction oV onto L, and H provides a homotopy between
the identityidy = H(-,0) andr. Hencer is a homotopy inverse for the inclusign L — N and the latter
is a homotopy equivalence, which contradicts the hyposhesll

Corollaryl and Theorefl 5 show how a dynamical question (adrethere exists invariant structure
in V) can be answered by means of a homotopy-theoretical enitennd introduce a technique which is
prototypical in the geometric theory of dynamical systenanely using the flow to construct homotopies.
In fact Corollany[1 can be slightly reinforced by observihgtthe homotopyf constructed in TheoreRd 5
leaves every poinp € L fixed because (p) = 0 for them, so it induces a continuous mapping in the
quotientN/ L which provides a strong deformation retractiondf L onto L /L. Thus

Corollary 2 Let N be a compact set and suppose that the inmediate exit etlosed inN. If the pair
(N/L, L/L) does not have the homotopy type of the trivial gair«), theninv(N) # 0.

COMPUTING THE EXIT SET. Wazewski's method requires the computation of the exit/seiVe will
devote a few lines to show how this can be done in the frequeessg whenV is a manifold with boundary
and the flow is defined by a differential equation

(E) : p(t) = f(p(t)),

where f is of classC*. For simplicity the phase spadd will be assumed to b&”, but the argument
carries over with minor changes to any other differentiabémnifold.

First observe that C ON. Indeed, ifpy belongs tdnt(N), the interior of N (which is an open set), the
fact thatpy - 0 = po € int(N) and the continuity of the flow imply thak - [0, ¢] C int(N) for sufficiently
smallt > 0 sop, does not belong to the exit set. Thus we only need a critedaetide whether a given
pointpg € ON belongs taL or not.

Since N is a manifold with boundary, it is defined (at least in someghbourhood ofpy) by the
inequalityh(p) < C, whereh is a smooth function. It is a well known fact from differentgeometry
that V,,, h is normal toON at py, and points in the direction of faster growth bf which in our case is
outwards ofN. Hence ifV, h - f(po) > 0, the vectorf(po) points outwards ofV too and consequently
po €Xits N throughp,. Reciprocally, wherv,,, - f(po) < 0 the curvey,, entersN throughp,. If the
product is zero then,, is tangent taV atp, and we have to determine what the nature of the tangency is.

Let us present this in a formal way. Denotingy, (¢) the integral curve throughy, for (E), we want
to study the behaviour df along,, (t), whent approaches zero. Begin by expandipg aroundt = 0 up
to second order, obtaining

Tpo (t) = VTpo (O) + '7170 (O) t+ ;ypo (O) 2+ O(tQ)'

Since,, satisfie E) with initial condition~y,, (0) = po, it follows thatsy, (0) = f (v, (0)) = f(po) and,
differentiating once more iGE), 4, (0) = D,, f - f(po). Hence

Yoo (t) = Po + f(Po) -t + Dy f - f(po) - * + o(t?).

Now expandh aroundpg thus

1
h(p) = C + Vp,h - (p—po) + 5(1) —po)" - Hpoh - (p — po) + o(llp — pol|?),

whereH,,, h denotes the Hessian matrix ot py and the superscrigt means transposition (we adopt the
convention that vectors are columns). Plugging the exjeser -, (¢) in place ofp and collecting terms
we get

(h © 7?0)@) =C+ vpoh ! f(pO) “t+ (vpoh : Dpof : f(po) + %f(pO)T : Hpoh : f(Po)) 't2 + O(tz)'

This gives inmediately the following criterion:
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Proposition 4 Letp, € N and assume thaV is defined by.(p) < C nearpy.
1 If6y = V,,Oh : f(po) #0, thenpo elLsl;>0.
2. If ¢ =0butly := Vpoh : Dpof : f(p()) + %f(IO)T : Hpnh : f(po) 75 0, thenpy € L < 45 > 0.

PROOF  Observe thap is an exit point if, and only ifg(t) := (ho~,,)(t) > C fort > 0 and sufficiently
small. When¢; # 0, the first order term dominates in the expansiory@f obtained above, sg(t) ~

C + 1t andg(t) > C fort > 0 if, and only if, ¢; > 0. When{; = 0 but the second order terfa does
not vanishg(t) ~ C + ¢>t? resembles a parabola g@) > C for ¢t > 0 (in fact, fort # 0) if, and only if,

ly > 0. [ |

Higher order criteria can be obtained similarly, but we khat need them

Example 6 Consider the system of differential equationsRih given by

-8
|

(z+y)(@®+y?) —y

i = (z—ycos %)(wg—l—yg)—m
IR

Since the right hand sidg(z, y, 2) is smooth in all ofR?, this gives rise to a well defined global flow.

Let V be the solid torus obtained by rotating around thaxis a disk of radiug = \/Li centered at

(1,0,0) and contained in the:z plane. To see whethéyY contains some invariant structure we draw its
exit setL using a computer progrdirand the criterion given by Propositi@ If ON is represented as a
square with opposite sides identified, theis the black set depicted in Figu# and turns out to be closed.

Figure 4. Exit set (in black) L for the torus N.

SinceL has two path components wheredshas just one, and the number of path components is a
homotopy invariant, it follows that: . — N cannot be a homotopy equivalence. Hence byaneki's
criterion inv(N) # 0.

To finish this section let us introduce two notions. First ibfiawill be convenient to deal exclusively
with setsN which are neighbourhoods afv(V). These deserve a special name.

Definition 9 A compact invariant sek’ is calledisolatedf it has a compact neighbourhoadd such that
K = inv(N). Such a neighbourhod¥ is called anisolating neighbourhooir K.

4Figureld was done with Mathematica 5.2.
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Another definition is in order, concerning the hypothesigheorenb thaf. be closed. Although it
may seem just an auxiliary condition to be able to carry oetgfoof of the theorem, it is indeed a crucial
requirement since it is easy to find examples whieis not closed and Wazewski’s criterion fails. Thus we
single out those well behaved séfs

Definition 10 An isolating neighbourhood is callgatoperif its inmediate exit set is closed.

Intuitively speaking, a proper isolating neighbourh@éds one which does not have interior tangencies
such as that shown in casd) (of Figure[3 (indeed, points to the left pfwould belong to the exit set,
whereasp itself would not, soL could not be closed). We shall comment more on this notiorhén t
following section.

2.2 Conley’'s index of an isolated invariant set

Our approach to Conley’s index will take Wazewski’'s metlasdleparture point. In the last section we saw
how the latter could be used to detecting invariant strgchuside a compact regiaN of the phase space
having a closed exit set; under the assumption thatv(N) = () a homotopyH was produced which
provided a deformation retraction @f/L onto L/L. Now we would like to examine this same situation
but removing the hypothesis thiatv (V) be empty.

The main reference for this section is Conley’s monogradiy,[and the condensed exposition|[ofl[59].
However since we have thought it best to develop the shapedtieal version of Conley’s index, because it
is more straightforward and intuitively appealing, the @eg]56] and[[66] should also be taken into account
as they contain the essentials of our approach.

To begin with, a little detour to introduce shape theory isider.

A BRIEF REVIEW OF SHAPE THEORY. We have already seen how homotopy theory enters the scene
of dynamical systems in a quite straightforward way, sinoe$l provide a natural means of constructing
homotopy equivalences. However, and in a spirit similarhtat tvhich motivated our discussion of limit
sets, we would like to be able to “pass to the limit”, in somesse

Example 7 Suppose thalVv is a positively invariant compact set. The flow induces atomsr;: N —
N -t given byry(p) := p - t, and homotopiegl |, Tt fOreveryt > 0. In particular the assertion

(HE); : theinclusiorny,: N -t — N is a homotopy equivalence
is true for everyt > 0. Now the question is whether the same still holds on lettirg+oo, that is whether
(HE)o : theinclusiory : w(N) = N - (+00) — N is a homotopy equivalence

istrue. N

Let Cpt denote the category of compact metrizable spaces and coomrmappings between them. If
(Pr)ren is a decreasing (that i$)+1 C Py for everyk € N) sequence of compact spaces, let us call (in
close analogy with the limit of a decreasing sequence ofrmeaibers, which is their greatest lower bound)
P := mkeN P the limit of (Pk)keN-

Definition 11 Let F': Cpt — C be a functor. We say thdf is continuousf, whenever Py)ken IS @
decreasing sequence of compact spaces with the propetty tha

(E)i : theinclusionyy: P, — P; transforms into an equivalence under
for everyk € N, then the same holds for the limit inclusion:

(E) : theinclusionj: P — P, transforms into an equivalence under
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Example 8 The continuity theorem faCech cohomology theory (sg&]] or [[/1]) shows that the latter is
a continuous functof : Cpt — Ab with values in the category of graded abelian group<l

If we denote byHHCpt the category of compact spaces and homotopy classes ofiaon mappings
between them, and |#: Cpt — HCpt be the functor taking each space to itself and each contsuou
mapping to its homotopy class, it turns out tihis not continuous. This issue can be overcome replacing
homotopy theory byshape theoryintroduced by K. Borsuk in his papér]11]), which can be thlotof as
some kind of continuous ((fiech type) homotopy theory.

The objects of theshape category of compact spa8&3pt are the same as thoseHiCpt andCpt,
just compact metrizable spaces. The morphisms are, hoyeestr more complicated. Every continuous
mappingf: X — Y induces a shape morphisth(f): X — Y which depends only on the homotopy
class off, butin general there may exist shape morphism& — Y that do not come from any continuous
mapping. ThuSCpt contains representatives of all the morphismHi@pt plus some extra ones which
account for its flexibility when it comes to comparing its etis.

Example 9 To provide the interested reader with some intuitive idealoére the extra morphisms in the
shape category come from, let us describe the notion afsmnoximative mapetween two metric compacta
X andY. Begin by assuming thaf is embedded in some normed spéréthis can always be done by
invoking a theorem of Kuratowski and Wojdyslawski, see thpeadices tg41]). An approximative map
fromX toY, denotedf = { f,,: X — Y }, is a sequence of continuous mappings

o X —Q
with the property that for every neighbourhobdof Y in ) there exists some, such that
fn = fminV forn,m > ng.

This definition (due to Borsuk) is quite appealing from theitive point of view, for it shows a strong
resemblance with some kind of “limit” in the sense of homgtophe reader can try his hand, in turn, at
providing a suitable definition of “homotopy” between appimative maps, g: X — Y.

The reason for introducing approximative mappings is thatytprovide a convenient way to describe
shape morphisms. Namely, the shape morphisms betWeamY are in correspondence with the homo-
topy classes of approximative maps betw&eandY (one can check that the only arbitrary element in this
construction, the embedding &f in @, is immaterial.) W

We shall say that two spacés andY have the same shape, and represent iflbyX ) = Sh(Y), if
there exist two shape morphisms X — Y andv: Y — X which are inverses to each other, that is
vowu = Sh(idyx) andu o v = Sh(idy ). Bothw andv are calledshape equivalences

The following theorem collects some properties of shaperheelevant to us.

Theorem 6 LetSh: Cpt — SCpt denote the functor which takes every compact space to @gellf
every continuous mapping to the shape morphism it induces.

1. If u: X — Y is a shape morphism between two spa&eandY having the homotopy type of finite
simplicial complexes (in particular i andY are compact manifolds), there exists a continuous
mappingf: X — Y such thaSh(f) = w.

2. The shape functd$h is continuous.

3. TheCech cohomology functor factors throu@h. In particular, two spaces with the same shape
have isomorphi€ech cohomology groups.

141



J. J. Sanchez-Gabites

The first assertion in Theordih 6 means that homotopy and shapey are equivalent when the under-
lying spaces have the homotopy type of finite simplicial cterps. Thus shape theory, while yielding a
coarser classification of spaces than homotopy theonyilligstgood as it in distinguishing well behaved
spaces but also enjoys the important continuity property.

The second and third parts of TheorElm 6 provide a proof of Epteli.

Example 10 For the setting described in Examjiethe inclusiory: w(N) — N is a shape equivalence.
In particular j induces isomorphismg : H*(N) — H* (w(N)) in Cech cohomology.

PROOFE Consider the sequence of spa¢8s. k),cn. EveryN - k is compact because it is homeomorphic
to N. The positive invariance @¥ implies thatV - k = (N- [0, +oo)) -k = N - [k, +00) and consequently

k>l=N-k=N-[k,4+00) CN-[l,+00) =N -1,

which shows thatN - k);cn is a decreasing sequence. Furthermore, its limit is

(VN -k=[)N-[k+)=w(N).

keN keN

We already stated in Examgdithat every inclusionj,: N - £ — N is a homotopy equivalence,
hence a shape equivalence too. The continuity propertyedtiape functor implies then that the inclusion
j: w(N) — N is also a shape equivalence.

Alternatively, one can find a shape inverse for the inclugiow(N) — N. In the present case this
turns out to be an easy task, for it is not difficult to check the approximative map = {r,, : n € N}
(recall from Exampl@& thatr, denotes the flow induced retraction at timgprovides such an inverse.

It is a well known fact that the classical tools of algebraipdlogy, and in particular those allowing
the passage from algebraic to homotopy theoretic infolmnafivVhitehead’s theorem to the effect that a
weak homotopy equivalence is a homotopy equivalence mayhbsidered a cornerstone in this sense)
work best on the class of polyhedra (simplicial complexesymre generally, on the class of spaces having
the homotopy type of polyhedra. Analogously, in shape théloe class of spaces having the shape of
polyhedra (and specifically, of finite polyhedra) plays aidguished role. It may be convenientto mention
here that finite polyhedra have finitely generaﬂi&th cohomology groups, and only finitely many of them
are nontrivial, so they also have a well defined Euler chargstic. This will be of relevance later (see, for
example, Theore12, Theorém 15 or Corol@ry 5).

Further information about shape theory, from many difféneoints of view, can be found iri_[12],
[21] and [41]. We have chosen an approach which is somewkatiediate between Borsuk’s original
definition, more geometrical in nature, and that of ANR sysgintroduced by S. Mardesi¢ and J. Segal
([39]). Their equivalence is shown in_[4Q]

Let us come back to our original question, that of explormgvhat extent the technique developed for
Wazewski’'s method is informative in casev(N) # (. Observe that, if we agree to lefp) = +oo for
pointsp € N such thap- [0, +oc) C N, the expression defining the homotafiyof the proof of Theorerfl5
still makes sense. However, since (V) might not be emptyr does not need to have an upper bodhd
and it is reasonable to consider

H : Nx[0,400) — N
(p,t) +— p-min{t,7(p)}
It is not difficult to check thatH is still continuous, because is indeed continuous with the new,
extended definition. As in the proof of TheorEn 5, for every 0 the mapping7 ||y, provides a homotopy

betweendy andr:(p) := H(p,t). Consequently, denoting by (r;) the image of-; (which is a compact
subset ofV, decreasing with increasing, the inclusions

Ji rim(ry) = N
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are homotopy equivalences with homotopy inverseNow the continuity property of the shape functor
guarantees that the inclusion

J: mim(m) — N

t>0

is a shape equivalence. A moment of thought will make it dleatp € (-, im(r;) if, and only if, either
p € Lorp-sc N foreverys < 0. Thus if we introduce the notation

N™={peN:p-(-00,0]C N},

the intersectioff),~., im(r;) = N~ |J L. The following Proposition (se& [66]) states, finally, whappens
after quotienting byL..

Proposition 5 Let N be a proper isolating neighbourhood. Then the inclusion

. N~ n~ N L
I N — =) —\ 77
<n_ n_) (L L>
is a shape equivalence, where := N~ (ON.

PROOF We keep the notation of the argument above. SiEideeeps points irL fixed (because(p) = 0
whenp € L), the pair inclusion

(N~ JL,L) — (N, L)

is a shape equivalence, and on passing to the quotiehtviy get that

N-UL L N L
il I (e
L 'L L’L
is a shape equivalence too.

Now observe that collapsingto a pointinN — | L is the same as collapsiig— () L to a pointinN —.
Furthermore, we assert thdt (| L = n~. Indeed, forany € N~ NIN we havep-(—o0,0] C N, and if
p did not belong tdl then for some > 0 the inclusiorp - [0,¢] € N would hold. Thug - (—o, ¢) would
be a trajectory segment containedihbut meeting) N atp, that is,p would be an interior tangency point
for N, which contradicts the hypothesis thtis a proper isolating neighbourhood. Henée (N ON C L
and consequentlly - L =N"[ON =n", so

(D)= (ar) - G- F)

and the proofis finished. &

A fundamental consequence of Proposifibn 5 is thabiiEV/L, L/ L) does not depend aN, but only
on K := inv(N).

Corollary 3 Let N; and N» be proper isolating neighbourhoods féf. Then

Sh(Ny",ny) = Sh(Ny , ny)

Sh (ﬂﬁ) —Sh (ﬁﬁ) .
ny oy Ny Ty

and consequently
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PROOFR Observe that bottv,” and N, are negatively invariant sets such thdtV, ) = a(N; ) = K,

so by Exampl&70 (or rather a dual version of it) the inclusigin X — N; andj,: K — N, are shape

equivalences. Thush(N; ) = Sh(N; ). We leave it to the reader to modify the argument in Exargle10

obtain the shape equality of pairs stated in the proposifitue assertion on the quotients follows frdmli[38].
[ |

The following definition is now justified:

Definition 12 Let K be anisolated invariant set. Ttehape indexf K is the shape

i = (2. 1).

whereN is any proper isolating neighbourhood fé¢.

Conley defined the homotopy indéx k) of an isolated invariant sek” as thehomotopy typeof the
pair(N/L, L/L), whereN is any proper isolating neighbourhood f&r. Thus our definition is just a shape
theoretical version of Conley’s. However, the proof thak() does not depend on the particul¥iris a bit
involved, and this is one of the reasons why we chose thisogghrto present Conley’s index.

Neither the homotopy nor the shape index are very well sd@gedomputational purposes, where either
the cohomological Conley indegr the homological Conley indeare preferred instead. For example, the
former is defined as théech cohomology module ¢V/L, L/ L), thatisCH (K ) := H(N/L, L/L), and
the latter is defined similarly. The cohomological index ks advantage that, due to the continuity of
Cech cohomology theor; H(K) = H(N, L).

There is a theorem of Mrozek [51] to the effect that, if the ghapacel/ is a manifold (or more
generally if it has the homotopy type of a finite polyhedraee $10], [36] or [41]), the pai{(N/L,L/L)
has finitely generateéech cohomology groups, and only finitely many of them aretmoal. Hence one
can also define th€onley-Eulerindex of K, denoted by (K), asxs(K) := x(N, L).

Now let us carry out some calculations.

Example 11 Observe that Wigewski's criterion inmediately implies thaf)) = Sh(x, ) because ifV
is an proper isolating neighbourhood for the empty set, byoCary 2 the pair (N/L, L/L) is homotopy
equivalent (hence shape equivalent, tooj:tpx).

Example 12 Coming back to Exampl, we can easily compute the Conley indexfof:= inv(N).
Indeed,N is a solid torus and. is the disjoint union of two annuli contained é1V, so N/ L is homotopy
equivalent to the wedge sugh v S' v §2 v S2.

To be able to compute the shape index of a fixed point for aréiffiéal equation we need to recall some
relevant notions.

A BRIEF REVIEW OF HYPERBOLIC FIXED POINTS. Let

(E) = p(t) = f(p(t))

be a differential equation in some manifald, which we shall assume for simplicity to . Suppose
thatpy is a fixed point for(E), thatis f(po) = 0. Thenf(p) = Dy, f - (p — po) + o(|lp — pol|) and it is
reasonable to ask to what extent the linearized equation

(LE) : p(t) = Dy, f - (p(t) — po)

provides a good aproximation {@&) nearp.
It turns out that the key notion here is thattgfperbolicity
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Definition 13 The fixed poinp, for equation(E) is hyperbolicif the matrix D,,, f has no eigenvalues
with zero real part.

It is not easy to justify this definition in a few words, and weh not attempt to do it. However, the
significance of this notion can be ascertained by the folhgwiery important result.

Theorem 7 (Hartman-Grobman) Let py be a hyperbolic fixed point fof£). Then, in a sufficiently
small neighbourhood o, the flow generated byF) is equivalent to that generated by the linearized
equation(LE).

Thus in the proximities of a hyperbolic fixed point the phasetqait for (E) looks like that of(LE)
which, being a linear system, can be solved explicitly witngentary means and is well understood.

Proposition 6 Letpy be a hyperbolic fixed point fofE). Possibly after a change of coordinates, there
exist two closed disk®* C py+R*x {0} andD* C py+{0} x R*~*, where/ is the number of eigenvalues
of Dy, f with negative real part, such that

1. N := D*® x D" is a compact neighbourhood p§.
2. p € N belongstaD® < p- [0,4+00) C N,
3. p € N belongstaD" < p - (—o0,0] C N.

The disksD*® and D are called thelocal stableand local unstablenanifolds ofpy. Observe that if a point
p € NisnotinD?|J D%, then its trajectory exitsV both in the future and in the past.

PROOF Use the Hartman-Grobman theorem to obtain a neighbourbioafp, where(E) is equivalent
o (LFE). Now show that there exist disks®* and E* for (LE) which satisfy all three conditions in the
statement of the proposition together wiii x E* CU. R

Figurel® depicts three phase portraits, correspondingéztinear systems for which the origip = 0
is a fixed point. In caseaj D°* = N can be taken to be a ball centered at the origin, Bd= {po};
whereas inlf) we have marked* and D, both of dimension one. The system showndndoes not have
the origin as a hyperbolic point.

Propositiob can be strenghtened to prove fhaandD* are differentiable manifolds (a result known
as thestable manifold theorejof the same class g5 However this is quite involved and we will not need
it (see [31], [69] or[74])

Example 13 Let py be a hyperbolic equilibrium for the differential equati¢®) : p(t) = f(p(t)).
The neighbourhoodv of p, whose existence was proved in Proposif@is in fact a proper isolating
neighbourhood (this is easy to see from the way it was coctet). Now partfl and@ of the same
proposition imply thatv— = D" is a k-dimensional disk, wherg is the number of positive eigenvalues
of D,, f, andn~ = 9D" = S*¥~1 is its boundary, &-dimensional sphere. Hendé~ /n~ has the shape
(and the homotopy type) ofiadimensional sphere and consequeatl{p,}) = Sh(S*, ).

This last example may shed some light about the interpogtaif N~ and its positive counterpart
Nt :={pe N :p-[0,+00) C N}. They can be thought of as the analogues of the local unstable
and stable manifold®* and D* respectively, wherV is a proper isolating neighbourhood for a compact
invariant setk. Poincaré, Smale and Conley’s indices all measure, in s#nse, the size of these local
unstable manifolds.

The shape index is defined only for invariant sets having @grdsolating neighbourhood, and it is
therefore natural to ask what invariant sets satisfy thimitrement. The following definition and theorem
provide the answer (proofs can be foundlinl[15] &nd [17]).

Definition 14 Anisolating blockfor a compact invariant sek is an isolating neighbourhood such that
everyp € ON is of one the types (a), (b) or (c) shown in Fig[@&e
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Figure 5. Phase portrait of three linear systems.

Every isolating block is a proper isolating neighbourholgt, the converse is not true. However, the
existence of a single isolating neighbourhoodfbguarantees that plenty of isolating blocks exist:

Theorem 8 Let K be anisolated invariant set. Théti has a neighbourhood basis comprised of isolating
blocks. Furthermore, if the flow is differentiable, thosalaging blocks can be chosen to be differentiable
manifolds which contaiti. as a submanifold of their boundaries.

In practice, checking whether a compactdeis an isolating neighbourhood would require to ascertain
if the trajectory of everyp € 9N exits N either in the future or in the past, which can be extremely
complicated. On the other hand, it is an easy matter (at iedbe case of flows coming from differential
equations) to see if there are no interior tangencie81tg using criteria similar to those developed in
Propositiod#, and in that cagé is not only an isolating neighbourhood, but also an isotabtock (this
is what we did in ExamplEl6). Hence the importance of ThedigsBore of a theoretical nature, and in
view of this we shall not examine its interesting proof.

CONLEY’S INDEX IN SURFACES. We stated above that Conley’s work could be inscribed in @ tif
thought dating back to Poincaré and his works about flowsioiases, and the following lines are devoted
to a short exploration of this relation. Thus for this digiies we shall concentrate on continuous flows
on surfaces, where asurfacemeans &-manifold (either compact or not, with boundary or not) and a
closed surfaceneans a compaetmanifold without boundary. The following result, known@stierrez’s
smoothing theorem (sele 130]), will be very useful:

Theorem 9 Every continuous flow on a closed surfaekis conjugate to a differentiable flow.
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As a corollary we have

Corollary 4 Let K be an isolated invariant set for a continuous flgwn a surfaceM. ThenK has a
neighbourhood basis of isolating blocRé which are compac?2-manifolds with boundarg N and such
that their exit setd, are compact-submanifolds o V.

Proor If the surfaceM were closed, then the result would follow inmediately fromedreniB and
Theoren®. In the general case, it is clear that is sufficestoeel K, together with a neighbourhood of it
and the flow it carries, into some closed surface and theryapplsmoothing theorem there. To this end,
let P be a compac2-manifold with boundary) P such thainv(P) = K (just let P be a compact manifold
containingK in its interior and contained in any isolating neighbourti@eé K). By an easy modification
of a theorem of Beck 5] a new floy can be obtained id/ which leaves every point id P fixed and is
locally equivalent tap onint(P). It only remains to collapse every componentd? to a single point to
obtain a closed surfadé and a fIOWzZ which contain an embedded copygfand its open neighbourhood
int(P), together with the trajectory segments it carriesll

From now on we shall assume that all isolating blocks are@mts be of the form described in Corol-
lary[d. Thus ifK is an isolated invariant set arid is an isolating block foi, its exit setl is the disjoint
union of a finite number of intervalg,, . . ., J,, and circumference§, ..., C,,. With this notation,

n

Xs(K) = x(N, L) = x(N) = > x(Jx) = Y x(Ce) = x(N) —m
k=1 =1

and consequently we can discard the compon€nts . ., C,,, which do not contribute ta s(K), to con-

centrate on/y, ..., J,,. Observe that the endpoints of each of these must be extarigency points, so
every consecutive pair of those determines precisely otlgeofomponentd;.. Hence
1
xs(V) = x(N) - B,

whereFE is the number of exterior tangenciesita

Poincaré assigned to eveisolated fixed poina numerical index(p) (now called itsPoincaré-Hopf
index). A fixed point isisolatedif it has a neighbourhood which does not contain any more fpadts.
An isolated fixed point need not be an isolated invariantthatk for example of the origin in Figuld £

Definition 15 Letp be an isolated fixed point and I&1 be a closed disk which contaipgno other fixed
points) and satisfies the property that every poindin is of one of the four types described in Figlite
ThePoincaré indexf p is the integer

1
tp):=1+ 5(] - FE),
wherel and E denote the number of interior and exterior tangencie®t¢cases (d) and (c) of Figui@
respectively).

Poincaré shows that the definition is independent of thie Bihosen and assumes that it is always
possible to find such B (itindeed is). Then he continues on to state and prove tiedraied Poincaré-Hopf
which we already saw above (TheorEIn 3). With these tools weaompare the Poincaré and Conley-Euler
indices as follows.

Theorem 10 Let K be an isolated invariant set for a flow inzamanifold M. Suppose thak contains
finitely many fixed pointgy, . . ., p.,,. Then

> ulpr) = xs(K).

k=1
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PrROOFR By Corollary[4,K has an isolating block/’ which is a compac2-manifold with boundary. We
shall denote the boundary components (a finite number oficiferences) by’;, ..., C/,. Let N be the
result of enlargingV’ by attaching a small closed external collar to it. Here “dtmaleans sufficiently
small so thatV is still an isolating neighbourhood df (in fact, if the choice of the collar is made in a
sensible way)N will also be an isolating block fof, but we do not need this). We denote the boundary
components oN by C1, ..., C,, eachC, corresponding t@;.

Using the same trick as in Corolldd 4 the flow/ii can be substituted by another apavhich is locally
equivalent to the former iimt(N) andM — N but leaves all points i@ N fixed. Thus we can collapse, in
N, every componenﬁ’r]k of ON to a single pointy, to obtain a close@- manifold N which carries a well
defined floww The latter is locally equivalent tp in N — {c1,...,¢cn} = int(N) and leavesy, ..., ¢,
fixed.

Applying the Poincaré-Hopf theorem &)and having in mind that its fixed points are precisgly. . .,
pm andey, .. ., ¢, we get the equality

n

Do ulor) + ) uler) =

k=1 {=1

To determinq(ﬁ) observe that the net result of collapsing eaclvef. . ., C,, to a single point, .. ., ¢,
is equivalent to capping them off with disks, 6V) = x(N) + n and consequently(N) = x(N') + n,
because the inclusioN’ — N is a homotopy equivalence. Hence

> upk) + > eled) = x(N') + n.

k=1 =1

It only remains to compute the indiceg;). If A, denotes the annulus comprised betwégrand the
corresponding boundary componéfjtof N', its projection ontaV gives a diskD, which isolates the fixed
pointc, from the remaining ones and, moreover, the interior (resgerar) tangencies td D, are precisely
the exterior (resp. interior) tangencies €. Since N’ is an isolating block, it does not have interior
tangencies, so denotirig the number of exterior tangenciesAd on C; it follows that.(q;) = 1 + 3 Ej.
Substituting this in the formula above we get

prk +n+ = ZEf X(N') + n,
k=1 24

and observing that",_, E; is the total numbeE’ of exterior tangencies t&/ it follows that
m
> i) = x(V) - 3 E
k=1

which finishes the proof since we already argued at the beggrof this discussion that the right hand side
of the formula above equajss(K). W

Example 14 From Theorenfld follows inmediately that ifX” is an isolated invariant set for a flow in a
2-manifold andys(K) # 0, thenK contains at least one fixed point.

Theoren{ID is also true in higher dimensions provided the #odifferentiable. See143] for further
references
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2.3 Morse decompositions and the Morse equations

Once the Conley index (in its shape theoretical versionjdeas developed, we are in conditions to present
the Morse equations, which relate the local dynamical miation captured by the shape indices of some
family IC of disjoint compact invariant sets and the global topolofyf. For the rest of this discussion,
the phasé/ will be assumed to be compact. Under this assumption, ane Want the members & to be
isolated, we are led to consider only famili€svhich are finite (otherwise the setsfihwould accumulate).

Definition 16 A Morse decompositioaf M is a family M = {My, ..., M,,} of disjoint compact inva-
riant sets which admits a Lyapunov functiéh The labeling of théMorse sets\/; will always be chosen
in such a way that the values that G assumes on them are increasing,< - - - < ¢yp,.

The compactness dff and Propositiofil]3 above guarantee that\ifis a Morse decomposition d¥f,
everyp ¢ U;.”:l M; has( # «a(p) € M, andd # w(p) C M, for some indiced < r < s < m.
In fact it can be proved (see for examplel[141.1[59]) that aapily of compact disjoint invariant set$t
which satisfies the properties we have just mentioned is sstdecomposition oM/ (that is, there is
a Lyapunov function forM). Thus one can define what a Morse decomposition is withourttior@ng
Lyapunov functions at all, and this is in fact the standanoreach.

Example 15 If, in Exampled, each critical point off is assumed to be isolated, then there exist only
finitely many of themp, ..., p,, and M = {p1,...,pn} is @ Morse decomposition dff (maybe after a
suitable relabeling of the critical points) becaugés a Lyapunov function foM.

Example 16 A celebrated theorem of Peixofad] implies that every flow in a closed orientable surface
M can be approximated as closely as desired (in some sensk whiwill not be precise about) by another
flow for which the chain recurrent set (see TheoBrhas finitely many connected components (these being
hyperbolic fixed points and periodic orbits), the colleatiof which constitutes a Morse decomposition of
M. Since it is generally agreed that the interesting behavada dynamical system is that which survives
under small perturbations (although this is quite convitgty questioned ifi2g]), this would imply that
flows having a Morse decomposition are enough to understantdreious dynamical systems in closed
orientable surfaces.

The following result shows that Morse sets are indeed isdlago that they can be assigned their shape
index.

Proposition 7 Every Morse set in a Morse decompositid = {M, ..., M,,} is an isolated invariant
set.

PRoOOFR  With the notations of DefinitioR16, pick far < k& < m a number; > 0 sufficiently small
such thafcy, — €, ¢ + €] does not contain any other critical value@fand letVy, := G~1[cx, — &, ¢k, + €].
Since M, is compact andV/ is locally compact N is compact ifs;, > 0 is chosen small enough. Now
supposer € My, satisfiesp - R C N, and observe that then its andw-limits are nonempty subsets of
Ny, (see ExamplEl5). Singe¢ U;":l M; (otherwisep € Mj,, but we assumed the contrary) it follows by
PropositioriB that), = G|u,) > G(p) > Glu(p) = ¢k, Which is a contradiction. Thud, isolatesi, (in
fact it is straightforward to see thét; := G~ 1(ci + ¢) is the exit set forV,, which is closed, SAV; is an
isolating block ford;). B

An analogue of the Poincaré-Hopf theorem is very easilpioled in this context.

Proposition 8 Let M = {M;,..., M,,} be a Morse decomposition such that evédy has a well
defined Conley-Euler index (for example)ifis a manifold or, more generally, has the homotopy type of a
compact polyhedron). Then

> xs(M;) = x().
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PROOF LetG be aLyapunovfunction faf. We can assume, without loss of generality, théd/;) = j
for1 < j < m. EachN; := G~'[j — 1,/ + 4] is an isolating block fors; with exit setL; = G~1[j + 1]
(see Propositiofl 7). Observe that the pairwise intersesf\y (| NV, are empty unlesk = j + 1 (or vice-
versa), and in that cas¥; (| Ny = L;, and that the intersection of any three distingts is empty. Thus,

sinceM = {Jj_, N;, we have

m m m m

X(M) = x(|J Nj) =D x(V) = D> x(Ly) =Y x(N;, L) = Y xs(K).

j=1 j=1 j=1 j=1 j=1

This completes the proof. B

Example 17 Let M = {pi,...,pm} be a Morse decomposition of the closed surfA¢evhose Morse
sets are all hyperbolic fixed points. Theévl contains preciselyy attractors or repellers angi saddle
points, where
o= MAXA) oy m = X (M)

2 2
Furthermore;m has the same parity of(M) andm > x(M).
PROOF  Letk; be the dimension of the unstable manifolghafit was shown in ExampEdthats(p;) =
Sh(S*i, %), soxs(M;) = (—1)* and by Propositiowe must have

> (=18 = x(M).

Jj=1

Now observe that casdg = 0,2 correspond to attractors and repellers respectively, @i = 1

corresponds to saddle points. Therefore substitutingénfthmula above we gets3 + (m — 8) = x (M),
org = %(M) anda =m — 8 = %(M) The lower bound forn and the assertion about its parity
follow from the fact thaff is a non negative integer. B

Propositio B shows a specific instance of a much more gefwralla relating the shape indices of
the Morse sets to the Betti numbers/idgf. To state it we need to introduce some notation: we put

p(s(M;);t) ==Y vk H¥(N;, L) - t*,
k=0
which is a formal polynomial whosk-th coefficient is just the rank of thie-th cohomology group of the
pair s(M;) (it may be infinite), and similarly we let

p(M;t) = Zrkﬁk(M) -tk
k=0
Theorem 11 (Morse equations) If M = {M,..., M,,} is a Morse decomposition of the compact

phase spacé/, then

> p(s(My);t) = p(M;t) + (1 + )q(t),
j=1

wheregq(t) is a polynomial with nonnegative integer coefficidhts.

For a proof of Theorerfi11 see, for examlel[16]. We will notegone here because it is basically
a moderately difficult exercise in algebraic topology bueslmot involve any relevant constructions with
flows whatsoever, and therefore is uninteresting for us.

51t is known that the polynomiaj(t) measures, in some sense, the amount of connecting orbitedsethe Morse sets, although
a completely satisfactory dynamical interpretation fondis not been yet found. This subject is too complex to give evsimple
description here, but the papersi[22].1[24].1[42] and [6Qjtain relevant information.

150



Dynamical systems and shapes

MORSE THEORY. Let us come back briefly, as a particular case of Thedrém 1Mdise theory. We
shall keep the notations of Examfle 4 and Exarfiple 1/ i$ such a critical point foy and the hessian of
f atpg is nondegenerate, the second order approximation

F®) = fPo) + (p—po)" - Hpy f - (0 = po) + o(llp — pol?)

is good enough to be able to describe the local aspe¢tmdarp, (this is done via a result known as
Morse’s lemma) and in particular allows one to conclude thatdimension of the local unstable manifold
of po (see Propositiofll 6) is precisely the number of negativdéesnin the canonical diagonal form of the
nondegenerate quadratic fotH),, f (which is an invariant ofd,,, f by Sylvester’s law of inertia).

Definition 17 f is a Morse functionif its hessian is nondegenerate at every critical point. Tuherse
indexm(p) of such a critical poinp is the number of negative entries in the canonical diagoaahfof

H,f.

If fis a Morse function, then there exist only finitely many eitpuié {p1, . . ., p }, Which are hyper-
bolic fixed points, and they constitute a Morse decompasitio)/ (this is Examplé€ll5). By Examplell3
and the discussion above we hax(e(pk); t) = t™(®;) for everyl < k < m and consequently

m

> ) = p(M;t) + (1+ t)q(t)

j=1

with ¢ a non negative polynomial. Denoting [, the number of fixed pointg; with Morse index
m(p;) = k we can collect terms in the summation above toldetse’s equation

S Btk = (M) + (14 alt)
k=1

(recall thatn is the dimension of/). Morse’s inequalities follow by expanding the polynomdgntity and
using the nonnegativeness of ).

Let us present a pair of examples to illustrate how the abqualéy can be put into use.

Example 18 Let M be connected and orientable, and suppose there exist jodixed pointg; andps.
Our assumptions o/ imply thatp(M;t) = 1+ ait + - - - + a,_1t" "1 + t". Now in Morse’s equation

P g P2) = gt a4 4 (14 )g(t)

the left hand side has exactly two nonzero terms, and theiyisof ¢ implies that the right hand side has
at least two nonzero terms, namely the lowest and highesteemes. Hence; = --- = a,,_; = 0 and
m(p1) = 0, m(p2) = n (or viceversa). In particulap; is an attracting pointp, is a repelling point and
M is a homology sphere (it can be shown tiidtis indeed a sphere, s¢é€3]).

Example 19 Now suppose thal/ is the2-torus. Then Morse’s equation reads
Bo + it + Bot? = 14+ 2t +t* + (1 + t)q(t),

and lettingq(t) = ¢o + q1t (observe that; cannot have higher degree terms because then the right hand
side of the equality above would have degree three or higitereas the left hand side is of degree at most
two) one readily calculates that

Bo =1+ qo, Br=2+qo+ qi, B2=14+q

with ¢g, g1 > 0, or in other terms

50217 62211 ﬁlzﬁO+5222
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Expositions of Morse theory can be found in][34] ahdl[45]. B®theory has also been exceedingly
relevant in the realm of differential topology, providing alternative approach to the all-important tool of
handle theory (see, for example, Milnor's bodkl[47])

A natural enough idea which may have occurred to the readerrspresent a Morse decomposition
M :={M,..., M,} by agraph having a vertay for each Morse set/; and a directed edge from to
v, whenever there exist connecting orbits frdm, to M.,.. This idea was formalized in a somewhat refined
version by Frankd 23] (see aldo]19]) and subsequentlgked by decorating the graph with homological
information concerning the indices of the Morse sets. Ttied&ersion and some applications can be found
in [6] and references therein.

To finish this section let us remark that the homologicaltrelebetween the indices of the Morse sets
and the Betti numbers of the phase spafesummarized in Theorel1 can be strenghtened. Assuming
that M is a manifold, the paperSI[7]._[1L8],_[20] include severalgadures which, under appropriate cir-
cumstances, can lead to the recovery of the topological ¢fpe using the Conley indices of a Morse
decomposition of\/

3 An example: the topology of attractors

This final section presents some results about attractoicvaan be inscribed in the line of thought des-
cribed in this survey. Since we feel that the essentials @fggometric theory of dynamical systems have
probably been already grasped by the reader, we shall ne¢praearly any proofs. If the preceding section
contained a finished theory, this one is of a more sketchyreatod does not intend to be complete by any
means.

Let K be a compact invariant set. A poipte M is said to beattracted byK if p - ¢ approacheg<
whent — +oo (that is, for every neighbourhodd of K there exists som& such thap - t € U for every
t > tg). This can alternatively be expressed in terms ofahlémit of p, since it is equivalent to requiring
thatd) # w(p) C K.

Definition 18 A compact invariant sek’ is an attractoiif its basin of attraction
A(K) :={pe M :pis attracted byK }
is a neighbourhood of.

In Figurel®.4), the pointg is an attractor with basiR? — {p} (this famous example is due to Mendel-
son [44]) whereas ind) the whole periodic orbit is an attractor with basiR? — {p}. Figurel®.@) depicts a
flow where the origin is @lobal attractorthis meaning that its basin of attraction is the whole plspsee.

Observe thatd(K) is invariant, sinces(p - t) = (p-t) - (+00) =p - (t + o0) = p- (+0) = w(p) for
everyp € M andt € R. Moreover, it is an open set. To see this, suppose not andspitiep € 0.A(K)
such thap € A(K), sol) # w(p) C K. Howeverd A(K) is invariant (being the boundary of an invariant
set) and closed so(p) C A.A(K ), which implies tha) # w(p) C K Nd.A(K), contradicting the fact that
A(K) is a neighbourhood ok’

Since every initial condition close enough to an attradiomwill eventually approach it/ can be
considered as representative of the long term behaviodneofiow. However it may very well happen that
points in its basin of attraction, even arbitrarily closeio take a very long time to get anywhere near the
attractor (for instance, in Figufd @)(there are points iny which start very near the attractgrbut have
to traverse the whole unit circumference before coming backpproachy). This is a more important

51t may be appropriate to mention here that the same is tres ®va higher degree, for Morse theory. There exist tighhections
between the indices of the critical points and the diffegphsm type of M, which are best expressed using handle theory. This
turns Morse theory into a powerful tool to construct and déscmanifolds and places it in a salient position among ffferéntial
topologists’ resources.
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(0)

Figure 6. Examples of attractors in the plane.

issue than it may seem at first sight since it cuts down theigireel power of K, because it is difficult to
decide whether the observed behaviour (for example, n@algricomputed) of a certain point is transient
or representative of its long term evolution. From the matagcal point of view,K lacks the property of
stability.

Definition 19 An attractor K is stableif, for every neighbourhood’ of K, there exists another neigh-
bourhoodV” such thaip - [0, +00) C U for everyp € V (thatis,V - [0, +00) C U). Anunstableattractor
is an attractor which is not stable.

Definition[I® conveys the idea that trajectories startimgelenough td remain close ever aftHr.

Example 20 The attractors shown in Figu@ (b) and Figurdd (a) are stable. On the other hand that of
Figureld (a) is not stable.

Example 21 Let M = {M;,..., M, } be a Morse decomposition of the compact phase spac@hen
M, is a stable attractor. Indeed, l&t be a Lyapunov function fat1 as in DefinitiorfI8 and observe that
the familyP. = G~!([c1,c1 + €]), fore > 0, is a neighbourhood basis df; comprised of compact,
positively invariant sets. Hencelif is any neighbourhood dk; there existg > 0 such thatP. C U, and
anyp € P. satisfiep - [0, +00) C P. C U, which proves thak is stable according to Definitidhd

"The notion of stability appears in many guises in the realmyofamical systems, and is given different definitions dejemnon
the authors or the particular case being considered. Hawthere is always a common feeling underlying them, namiedy tlose
enough initial conditions will experiment close evolutiowhent — +oco.
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Some sort of converse can be given to Exarfiple 21. Indeed,

Proposition 9 If K is a stable attractorx(p) C 0A(K) foreveryp € A(K)—K. ThusifM is compad,
M={K,M — A(K)} is a Morse decomposition af .

PrROOF SinceA(K) is an invariant open set, it will be enough to show that) () . A(K) = () for every
p € A(K). Thus assume that there exist& «(p) which is attracted td< and choose a sequenge—
—oo such thap-t,, — ¢. Given a neighourhool of K, use Definitiof I to find another neighbourhdod
of K such thaf/ - [0, +00) C U. Observe thaP := V - [0, +c0) is a positively invariant (by construction)
neighbourhood (because it contaiigof /. The hypothesis thatis attracted by implies thatg - ¢t € P
for big enought and consequently - (¢ + ¢,,) € P forlargen. Butt + ¢,, — —o0, so takingn sufficiently
bigt +¢, < 0Oandp € p- [t + t,,+00) C P. SinceK has a arbitrarily small positively invariant
neighbourhoodgi ¢ K. N

It can be proved (see for example [8]) that for every attraéfathere exists a uniquely defined stable
attractorK, which we shall call thestabilizationof K, such thatk’ C K, A(K) = A(K) andK is the
smallest stable attractor with these properties. Inféct {p € A(K) : a(p) K # 0}, although we
shall not prove this.

Stable attractors have been studied from many points of Wetva thorough understading of their
(possibly very complicated) geometrical properties hadad until a shape-theoretical approach was taken
by Hastings[[32]. In our parlance, he proved that the inclngi: KX — P in any positively invariant
neighbourhood® C A(K) of K is a shape equivalence (this is Exaniplk 10). Later work bgraghthors
[@], [29], [64] showed tha® could be chosen to have the homotopy type of a finite polyhedrbus:

Theorem 12 Every stable attractoK in a manifold)M has the shape of a finite polyhedron.

By considering shape theory of non-compact spaces (whicthath not present here, but has the same
formal properties aSCpt), Kapitanski and RodniansKiL[B7] proved the following:

Theorem 13 For every stable attractoK the inclusionj: K — A(K) is a shape equivalence.

Theorem§T2 arid1 3, together with the invarianc€eth cohomology under shape equivalences, yield
the following

Corollary 5 Let K be a stable attractor in a manifold/. Then all its cohomology group§*(K) are
finitely generated and the inclusign K — A(K) induces isomorphisms in cohomology. Furthermore,
x(K) andx (A(K)) are well defined and agree.

Regarding the shape index of a stable attractor, the foligwesult is as complete as one could desire:

Proposition 10 If K is a stable attractor, it is an isolated set an@K’) = Sh(K | *, *). Consequently
xs(K) = x(K).

PROOF Let N be any compact neighbourhood &f contained inA(K). If p € N—, then # a(p) C
N C A(K) (by Exampld®) and, by Propositith §,€ K. ThusN~ = K, soN isolatesK, and we
may as well assume by Theordih 8 thdtis an isolating block fork. Sincen™ = N~ (N = 0,
we gets(K) = Sh(N~/n~,n"/n~) = Sh(K |Jx*,*). The equalityys(K) = x(N—,n~) = x(K) is
straightforward. B

All these results imply that stable attractors are fairlfivk@own from the shape-theoretical point of
view (see alsd [25][127] and [65] to abound in this obseom)j and explains the prominent role they play
in the realm of dynamical systems. Hence it is clear thatdlegiwhether a given attractdyt is stable is
of considerable practical interest. Regarding this pang has for example the following result (s2el [48]
or [61] for more general statements).

8 The compactness assumption is included because Morse gesitions are defined for compact phase spaces, but it isnitiee
immaterial. Indeed)M (being locally compact) admits a one-point compactificatdd ., obtained by adjoining td/ the pointoo,
and the flowp can be extended to a new flaw, in M, letting co be a fixed point. Hence in the general cd$¢é, Mo, — A(K)}
is a Morse decomposition o/ .
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Theorem 14 An isolated fixed point € R? is stable if, and only ify (A(p)) = 1.

PROOF Let p be the stabilization op. Clearly the only critical point inA(p) is p, so bothp andp
are isolated invariant sets which contain the same unigeel fpointp. Thus by TheoreriZ10 we have
xs(p) = «(p) = xs(p), and the latter equalg(p) = x(A(p)) = 1 by Propositior IO, Theorem1.3 and
hypothesis. Consequentiy(p) = 1.

Let p be an isolating block foK in the form given by Corollar{l4. TheV has the homotopy type of
a bouquet of: circumferences, and its exit set is a uniortdfitervals together with some circumferences,
soxs(p) = x(N) = x(L)=1—k—¢=1withk, ¢ > 0. Thusk = 0 (soN is a disk) and = 0 (soL
is a union of circumferences). i were nonempty, it would have to be the whole boundarywofwhich
is impossible because then no point could efeio approacty, contradicting the assumption thats an
attractor. Hencd, = () andN is a positively invariant neighbourhood pf SinceN can be chosen as small
as needed is stable. W

The boundanD of the region of attractiopd(K') of some attracto (not necessarily stable, although
we are mainly thinking of them here) is a closed invariantg@th shows great dynamical interest. Naively
speaking, points ned® may either approack” asymptotically (if they belong tol(K')) or may always
remain apart froni (if they do not). These considerations stand at the dooodtepaos theory and fractal
sets, because the latter frequently arise as boundarieasiridof attraction (see for example[54] and
references therein). One may also wonder whether certaipepties of the attractak” can be extended
beyond its region of attraction, and in this contéxtplays an important role because it is a dynamical
barrier betweermd(K') and its complementary set itf.

In a similar fashion to what happened with attractors, it asunal to study sets liké with shape-
theoretical tools, but the picture now is not as easy. Evapparently simple situationg) can be strongly
complicated, as shown in FigUrk 7.

Figure 7. pis a stable attractor, its basin A(p) is a disk with infinitely many holes.

Still, mild assumptions on the shape indextofprovide strong results like the following (see62]).

Theorem 15 Let K be a stable attractor in a manifoldi/ and assume that the boundalyof its basin of
attraction is an isolated set. f H'(D) = 0, thenD has the shape of a finite polyhedron.

Recall that@'H’“(D) stands for thé:-dimensional cohomological index éf, which is nothing but the
k-dimensionalCech cohomology group of the pdiv —, n~), whereN is an isolating block foD.

Theorem 16 Let K be a stable attractor in a comp&phase spacé/ and assume that the boundary
D of its basin of attraction is an isolated set. 0fi/' (D) = 0, then there exists a compact invariant set
K’ C M suchthatM = {K, D, K'} is a Morse decomposition @f .

Moreover, ifM = S™ and K has trivial shape, thedl*(K’) = CH™*~(D).

A related question to that we have just mentioned regardgriygerties of the boundayK of a stable
attractork, rather than of its basin of attraction. Here one cannot eiie dynamics to be very exciting,

9See footnotEls.
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but the nature of K’ may be extremely complicated from the shape-theoreticmdiview. This is explored
in [63], where the shapes 6fK andd P, the latter being a positively invariant compact neightbhamad of
the former, are related. For example, one has the followasglt:

Theorem 17 Let K be a stable attractor ifR™ contained in the interior of a positively invariami-
ballD™. If int(K) # (), thenSh(0K) > Sh(S"~1).

(If int(K) were empty, thedl’ = 0K and we know by Examp[e0 thah(K) = Sh(D™) = ).

Having dealt with stable attractors so far, it is natural $& 0 what extent the results above can be
extended to more general classes of attractors. These warerbught into the picture and put on par with
stable ones ir]4] and 44], at least at the general topoleggl! Regarding their geometric properties, like
those described above in the stable case, not much is knoswnteday. We already mentioned that any
attractorK™ uniquely determines a minimal stable attrackowhich contains it and has the same region of
attraction agy, so one could think that a good approach would be to explerediation betwee” and K
and then use what we know about stable attractors to dedinggsthbout. HoweverK and K are, so to
speak, dynamically entangled. More precisely, the maiiicdity here is that they cannot be distinguished
by Lyapunov functions (this is basically due to recurrersseies, a generalization of Morse decompositions
which may be of interest here is containedlinl [26]).

Proposition 11  If K is an attractor and is a Lyapunov function which is constant ain thenG is also
constant or¥.

PROOF We mentioned above thdt = {p € A(K) : a(p)\K # 0}. Thusifp € K we have
a(p) VK # 0 andl # w(p) C K so, since by Propositidd 3 the functiéhis constant om(p) andw(p),
it must be the case thél|,(,) = G|k = G|, (). HenceG is constantor’. W

Thus the Morse theory presented earlier in this paper isegseh this context. Still, some classes of
unstable attractors are suitable for a deep examinatidm tofiological tools. In particular, K. Athanas-
sopoulos introduced inJ2] andl[3] the class of attractorhwio external explosions, which we shall not
define but which encompasses stable attractors and a wiste @fainstable ones. Later work on these at-
tractors, prompted by the cited papers, was presentédjjiof481]]. From these let us present the following
results.

Theorem 18 Every attractorK with no external explosions in a manifold has the shape of a finite
polyhedron.

Theorem 19 For every attractorK with no external explosions in an even-dimensional masifdl the
equalityx (K) = x(A(K)) holds.

Theorem 20 Let K be an unstable attractor with no external explosions in a ifiedeh M. If K has
the shape o§?, thenM is homeomorphic either t§2 x S! or to S? x, S!, the latter being the result of
identifyingS? x {0} andS? x {1} in S? x [0, 1] by means of an orientation reversing homeomorphism.

One can easily observe the similarities between thesetsesull the ones presented earlier concerning
stable attractors. Theorelnl20, in particular, presentsra steong connection between dynamics (the
hypothesis thak( is an unstable attractor with no external explosions) aotal properties of the phase
space.
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