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Abstract. Some problems in differential equations evolve towardsolagy from an analytical origin.
Two such problems will be discussed: the existence of smistasymptotic to the equilibrium and the
stability of closed orbits of Hamiltonian systems. The ttyeaof retracts and the fixed point index have
become useful tools in the study of these questions.

Retractos, indice de punto fijo y ecuaciones diferenciales

Resumen. Algunos problemas de las ecuaciones diferenciales ewrlani hacia la Topologia desde
un origen analitico. Se discutiran dos problemas de @ste ka existencia de soluciones asintéticas al
equilibrio y la estabilidad de las orbitas cerradas de istesias Hamiltonianos. La teoria de retractos y
el indice de punto fijo se han convertido en herramientas iiilgs para el estudio de estas cuestiones.

1 Introduction

Many problems in the theory of differential equations wanriially treated with analytic techniques and
later evolved towards more topological approaches. Perkiag most paradigmatic case is found in the
study of nonlinear boundary value problems. The classicalfs based on successive approximations or in
the implicit function theorem were soon replaced by the ddixed points and degree theory. The modern
point of view is already found in the famous paper by Leray &etiauder[15]. The same process has
been experienced by other branches of differential equstidhe next pages are an attempt to illustrate
this evolution in two concrete problems.

First we will discuss the existence of asymptotic solutiombese are non-trivial solutions tending to
the origin as time increases to infinity and they appear itesys of differential equations having the trivial
solution. Asymptotic solutions have been studied sinca€®g’s times. The classical method for proving
their existence consists in the reduction of the problemntonéegral equation. Once this equation has
been found one uses the method of successive approximatiche contraction principle. This analy-
tical method leads to the Principle of Linearization andhie Stable Manifold Theorem for autonomous
equations (seé&[14] and 25]). Wazewski applied the thebrgtoacts and developed an alternative method
for constructing asymptotic solutions in his pager[28]. Wi illustrate Wazewski's ideas in a concrete
situation, and later we will discuss the connections withdhalytical approach. In the process we will find
that other tools such as topological degree and globalwoation are also applicable to this problem.
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The second part of the paper will deal with the stability pdjes of closed orbits in Hamiltonian
systems. This is a question of particular relevance in @aleBlechanics and again we must refer to
Poincaré for the origins of the problem. He mainly considiesystems with two degrees of freedom and
was lead to the study of the fixed points of area-preservingsnia the plane. This line of research was
continued by Birkhoff but the stability problem was not sedwuntil the appearance of the KAM method,
which was fully developed in the sixties (s€&l[2), 27]). Intzast, results on instability were already obtained
by Levi-Civitain 1901. The interesting pap€r[19] contdihs linearization principle due to Lyapunov and
more delicate instability criteria depending on higheresrgérms. We will present a topological approach to
the problem of instability treated by Levi-Civita. The madols will be the fixed point index and the notion
of translation arc. These arcs are very useful in the studglafiar homeomorphisms and they already
appeared in Brouwer’s work. It would have been desirablerésgnt also a topological approach to the
problems of stability solved by KAM techniques. Howeverdh@roblems seems to be of a rather analytic
character and | do not know if this could be possible.

I would like to thank Rogerio Martins for his careful readiofja preliminary version of this paper. His
comments and questions have influenced the final form of theusaipt.

2 Asymptotic solutions and Wazewski’s principle

Given a continuous vector field : [0, co[xR? — R<, we can consider the system of differential equations
= X(t,x), t>0, xR (1)

It will be always assumed that there is uniqueness for thecéest®d initial value problem.
A solutionz(t) is calledasymptotido = = 0 if it is well defined in[0, co[ and it satisfies

x(t) — 0 ast — +oo.

To make the discussion more visual we assume from now onitkas. The spac®? is decomposed as
R? x R, with coordinateg € R? andz € R. The notationg-, -) and||-|| refer to the dot product and the
euclidean norm iR2. The system{]1) withl = 3 is rewritten as

é = F(ta§72)7 zZ= G(t7§,z) ()

and we can imagine a cylindrical region shrinking to the iorigs time goes to infinity. More precisely, we
consider the set

Q ={(52): [lEll <o), [2| <v(t)}

wherey, 1 : [0,00[— R areC! decreasing functions witlp(t) — 0, 1 (t) — 0 ast — +oo. The flow
associated td]2) will enter into the cylinder through theefsz = (¢) andz = —(t) and will exit
through the lateral boundat¢|| = ¢(¢). In this setting our intuition says that some orbit shoulchaén
inside the cylinder forever. For if all the orbits would epearom the moving cylinder, they would do it
through the lateral boundary. This process would defineragton of the solid cylinder onto its lateral
boundary, which is impossible. Once we know of the existexfagbits lying in 2, for eacht we observe
that they must produce asymptotic solutions. This is solmethe cylinder is shrinking to the origin.

Precise statements can be produced from the above disess$mthis end it is convenient to consider
the set

Q={(t,&2)€[0,00[xR*xR: (£2) €},

which can also be described by the inequalities
‘/,L(t,E,Z)<O 7;:172737
where

Vl(tvé.az) :z_w(t)v VQ(tvé.az) = _Z_d}(t)v %(t,g,z): HgHQ_QO(t)Q'
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The boundary of? relative to[0, oo[ xR? x R will be denoted byl and decomposed in five parts
r=6Uz,UzZ_UBLUB_

with
£ lEll = (@), 2] <9(t)

Te: |lEll < p(t), 2= F9(t)
Bi: €]l = ¢(t), z=F(t).

The Lyapunov derivative of a functiori = V (¢, &, z) along the solutions of12) is defined as
ov ov ov
= —,F —G.
ot +<a§’ >+ 5:¢
We assume

Vi<0 onZ,UB,, Va<0 onZ_UB_, Vs3>0 onEUBLUB_.

This assumption is modelled after the previous qualitadigeussion. For later discussions we reformulate
it in the next result.

Theorem 1 Assume thap(t) and«(t) are admissible functioflsand that the two conditions below hold,

P(t) > max{G(t,&,9(t), =G, §, =)} if £ =0, [I§] < o), ©)

(F(t,€,2),8) > p(t)(t) it t >0, [|€]l = @(t), [2] < (). (4)
Then for eachy, € [—(0), ¥(0)] there exists at least one asymptotic solutiorf@fsatisfying

[1€0O)] < ¢(0),  2(0) = zo.

PrROOF First of all we need to be more precise about the behavidrefibw onl™. A point(r, &y, z0) € T
is called ofstrict entryif the solution of [2) with initial conditions(7) = &, z(r) = 2o satisfies
(t,&(t),2(t)) € Qif t €)1, 7 + €] and (t,£(t), 2(t)) & Qif t € [t — ¢, 7[ for somee > 0. Notice that
the second condition is empty if = 0. A point of strict exitis defined in the same way excepting that
the roles of the past and the future are exchanged. Finallgayethat the point is oéxterior slidingif
(t,&(t),2(t) € Qif t € [T —e, 7 +¢], t # 7. As the reader probably suspects, the point€on Z_
are of strict entry, while those afi are of strict exit. Finally the points i, U B_ are of exterior sliding.
This is the effect of the assumptiohs (3) abH (4). For morerinftion on this point the reader is referred
to Section X.3 of the bool[16].

After classifying the points ii" we are ready to complete the proof. We shall proceed by cdictian
and assume that, for some € [—(0), ¢(0)], there are no asymptotic solutions satisfying

D={peR*: |p| <¢(0)}
and denote by¢(¢, p), z(t, p)) the solution of[R) satisfying
g(oap) =D, Z(Oap) = Zx-
LetT = 7(p) > 0 be the first instant when the graph of the solution touchestiieset, that is

7(p) := min{t € [0,00[: (t,&(t,p),2(t,p)) €EUBLUB_}.

1By an admissible function we understand afunction: [0, co[— R which is strictly decreasing and tendstt@st — +oo.
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It is important to notice that this definition is meaningfbhhks to the contradiction argument. Indeed,
we are assuming that fdjp|| < ¢(0) the solution is not asymptotic and so it must escape ffonThis
escape must occur throughand sor(p) €]0, co[. The previous discussion also includes the extreme case
z, = +¢(0) since the points0, p, +1(0)) are of strict entry. Finally we observe thatlif|| = ¢(0) then
7(p) = 0. Once we know that is well defined we are going to prove that it is continuous asmation from

D to R. The continuous dependence with respect to initial comastisays that the solution is continuous
as a function oft, p) and this implies that = 7(p) is lower semi-continuous. For a general differential
equation it would not be possible to prove the other semtinaity but we have a convenient classification
of the points ofl" at our disposal. The poirtr(p), {(7(p),p), 2(7(p),p)) is of strict exit or of exterior
sliding and this is sufficient to prove the upper semi-cantinof 7. More details on this argument can be
found in Wazewski’'s paper[28] or in Chapter Il of Conley’smair [8]. The points of strict exit or exterior
sliding lie on€ U B U B_ and s|{(7(p), p)|| = ¢(7(p)). This observation allows us to consider the map

_,_#0)
PEE™ 000

Sincer(p) = 0 whenp € 9D this map would be a retraction of the disk onto its boundahys s of course
impossible and we have arrived at the searched contradictidll

£(7(p),p) € 9D.

In the paper[Z28], Wazewski says that the first attempts teldgvhis method employed homology and
Kronecker index. Finally he found more convenient to attashmethod to the notion of retract. In an
exercise of history-fiction we will prove the previous raauding degree (or Kronecker index).

ANOTHER PROOF OFTHEOREMI[. This time the proof will be direct and, will be an arbitrary number
in [—¥(0),4(0)]. The notations for the disk and the solutior{é (¢, p), z(t, p)) are preserved. Consider
the function? : D — [0, o] defined by

#(p) :=sup{s>0: (t,&(t,p),2(t,p)) € Q foreacht € [0,s]}

and observe that for those solutions getting outofhis is equivalent to the definition af(p) in the
previous proof. Once again the classification of the pointE bas been used. The novelty is that we admit
the possibility of solutions remaining i forever. In such casep) = co. We claim that* is continuous.
Of course this is clear for those points witllp) = 7(p) < co. For points with7(p) = oo we proceed by
contradiction. Ifp,, were a sequence i converging te with 7(p,,) — T < oo, then(T,&(T, p), 2(T, p))
would belong te€ U By U B_ . Since7(p) = co > 0 we infer that(0, p, z,) cannot be in the exit set and
soT > 0. This would lead to the contradictory conclusidfp) < T. Once we know that is continuous
we consider the mag : D — R? given by

O(p) = e TPE(7(p),p) fF(p) <00,  B(p) =0 if 7(p) = oo
All points on the boundary ob are fixed unde and so we can compute the Brouwer degree
deg(®, D) = deg(id, D) = 1.

This implies thatP has at least one zero contained in the interiobobut the zeros of correspond to the
solutions remaining if2 and these solutions are asymptotic to the origirll

Indeed the conclusion of the above proof can be sharpenddthét Leray-Schauder continuation
principle [15,[10]. With the previous notations we inteffpee as a parameter varying in the interval
I = [—(0),%(0)]. The map® = ®(p, z,) now goes fromD x I into R%. Since® = id ondD x I, there
are no zeros on this set addg(®(-, z,), D) # 0 for anyz,. Then there exists a continuuthcontained in
D x I, joining the setd) x {—(0)} andD x {¢(0)}, and such that

D(p,ze) =0 for each(p, z,) € C.
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We can now state the following improvement of Theofém 1,

Assume that the conditioi@) and @) hold. Then there exists a continudc Q, joining z = v(0) and
z = —1(0), such that every solution @) with (£(0), z(0)) € C is asymptotic ta: = 0.

There are several topological versions of the stable mihifeorem[[25[_18]. They deal with home-
omorphisms of the plane having the origin as an isolatedriamtiset. The previous proofs suggest that
Wazewski's method could be useful to obtain related resuldgher dimensions. There is another remark-
able feature in Wazewski’'s method, it deals with a generataatonomous differential equation. This is
very close to the topological notion of isotopy.

To finish this section on asymptotic solutions we discusséwamples which help to clarify the con-
nection with more classical analytical results. First wasider a systeni2) with the semi-linear form

E=AE+Ri(t,&,2), 2= z+Ro(t,&,2), (5)
whereA is a2 x 2 matrix satisfying
(Ag,6) >0  foreacht € R?
and) is a positive constant. The remaindé&sand R, are small; that is,

o B & 2+ [Ra(t, €, )
]|+l 2| —0 €1l + |2

:0’

uniformly in ¢ € [0,00[. In the unperturbed cas&; = 0, i = 1, 2, the system is linear and has the
asymptotic solutiong§(t) = 0, z(t) = zpe~*'. The perturbed systerfll(5) has also asymptotic solutions
and the reader is referred to Chapter X of Hartman’s bdak fa@6more general results on linearization
principles. Next we show how to prove the existence of aspiipsolutions using Theorehh 1. Select two
numbers: ande with

0 < 2e < min{\ — p, p}

and find a positivé such that
[Ra(t, &, 2)| + [Ra(t, &, 2)| < e(l[&]] + 12])
if ||£]| <4, |z| < J. Asimple computation shows that the assumptibhs (3) @nldal)with o(t) = o (t) =

JeHt,
The second example is the system

which is not of the type[{5). Theorelth 1 can be applied with) = e~* andy(t) = (1 + 3t)~ /2.

3 Instability criteria for periodic orbits

We start with a Hamiltonian system of two degrees of freeddhe phase spacgis an open subset &f*
and a generic point 8 is denoted by = (g, p) with ¢, p € R2. The equations are

_OH _ OH
q—a—p(qm), b= (¢,) (6)

with H: S — R smooth the Hamiltonian functiop This family of equations has many illustrious mem-
bers, including the Kepler problem and the circular restdchree body problem.
The functionH is a first integral of the systerfll(6) and so the sets

M. ={(¢;p) € S: H(q,p)=c}, ceR,
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are invariant. Typically these sets are 3d manifolds andétiss natural to restrict the flow to them. Let us
now assume that is a closed orbit off{6). The corresponding periodic soluti® not constant and sp
cannot contain critical points @ff. This implies thatMz, with ¢ = H(v), is a smooth manifold, at least
in some neighborhood around The orbity is calledisoenergetically stablé it is orbitally stable (in the
future and in the past) with respect to the flow k. This means that for each neighborh@odf  there
exists another neighborhodtsuch that any orbit passing througytn Mz remains entirely idd N Mz. As

an example we consider the Kepler problem, whose Hamiltoisia

Han) =3l =1 (a) €5 = (B {0)) x B2
In this caseM, is homeomorphic t® x S' x St if ¢ > 0 and toR? x S' if ¢ < 0. The orbit associated to
the periodic solutiog(t) = (cost,sint), p(t) = ¢(t) has negative energy witH () = —1/2. The reader
who has some familiarity with Celestial Mechanics can pritna this circular motion is stable, for all the
motions in a neighborhood are of elliptic type.

The method of transversal sections reduces the problern@férgetic stability to the study of a discrete
transformation in the plane. This is done as follows. We fiomft, € v and constructa transversal section
Y C Mz passing througli,. By restricting the size of we can always assume thatn v = {&,}. The
sectionX. is diffeomorphic to a disk and, given a poifite X which is close enough t§,, say¢ € ¥, we
know that the orbit passing througimust cros< in the future. The first of these returns will be denoted by
h(§). The pointg, is fixed under the map: ¥’ C ¥ — ¥ and the isoenergetic stability ofis equivalent
to the perpetual stability of, as a fixed point of.. For future discussions we mention some properties of
h. It is a smooth and one-to-one map which preserves orientatn addition there exists a measure on
> which is preserved by, this measure is obtained as a pull-back of the Lebesgueureeisthe plane.
More details can be found in sections 22 and 31 of the book égebiand Mosel [27].

We are ready for a discussion with more topological flavor.dhall work with the open disk

D={¢eRr?: [¢ <1},

The group of homeomorphism @ will be denoted by (D). We stress thatl (D) = D for eachH in
‘H(D). Let us assume that there is a regular measure on the disttetdEloy:, which is invariant undeH .
This means that

w(H(B)) = u(B) for each Borel seB C D.

The measure satisfies two extra conditions:

o the whole diskD has finite measure

e the measure of any non-empty open set is positive.

We summarize the above conditions by saying tHais in the classH(D, 11). The following fixed point
theorem can be found in the papers by Montgomlery [21] and d8oy4].

Theorem 2 Every orientation preserving map #(D, ) has a fixed point.

A similar result is false for open balls in higher dimensioria [4] Bourgin constructed an orientation
preserving homeomorphism of the baéll= B13®> = {z € R!3° : ||z|| < 1} which was fixed point free
and invariant under an admissible measure. Later Asimonddnl [3] analogous examples B® using the
Hopf fibration. Even in the plane the theorem fails for oraitn reversing maps, as was discovered by
Alpern in [1I].

Next we improve the theorem in the plane by using the fixedtpodex. Following[10] the fixed point
index will be denoted by (f,U), whereU is an open subset @2 andf: U — R? is continuous. This
notion makes sense when the set of fixed pditits /) is compact. We also recall the connection with the
Brouwer degree,

I(f,U) = deg(id — f, U).
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h(q)

Figure 1. A translation arc. (H = h)

Theorem 3 Assume that! € H(D, p) is orientation preserving. Iff is not the identityH # id, then
there exists a Jordan cunde C D such that

I(H,T)=1.
HereT denotes the bounded componenkaf\ T'.

The reader can find related results in the papers by Medv&iahd by Le CalveZ [17].
To prove this theorem we shall employ the notion of trangtatirc, which goes back to Brouwer. An
oriented arex = pg in D is called atranslation arcfor H € H(D) if H(p) = g and

H(a\{q}) N (e\{q}) = 0.
The next result probably explains why this notion is so ukiefthe study of discrete dynamics in the plane.

Lemma 1 (Brouwer) Assume thall € H (D) is orientation preserving and there exists a translatioa ar
a with

H'(a)Na#0 for somen > 2.

Then there exists a Jordan curi’eC D such that
I(H,T)=1.
This result has a long history and the proof is delicate. Hagler is referred ta[5, 11] for more details.
We need a second preliminary result on the existence ofl&ms arcs.

Lemma 2 Assume thall € H(D) andA is a compact topological disk containedihand such that
and H(A) lie in the same component 6f\ Fix(H ). In addition assume that

H(A)NA=0.

Then, given points§,, ..., &, € A, there exists a translation ake contained inD and passing through all
these points.
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This result is obtained by an adaptation of the ideas of Browhis proof of Lemma 4.1 in(|6]. The
details will appear in the monograph under constructiol).[2dter these two lemmas we are ready for the
proof.

ProOF OFTHEOREMI. Let{U,} be the family of connected componentdof Fix(H). These sets
are open and invariant undéf. The invariance follows from the result by Brown and Kistedr] since
H preserves orientation. We fix one of the components/ggyand a point, € U,. This is possible for
any H # id. The pointst, andH (&) are different and so we find a small digkcentered at, which is
contained inl/, and is such thalf (A) N A = (). Next we apply Poincaré’s recurrence theorem as presented
in [22] and find a point, in the interior of A which is recurrent. For some > 2 the iterateH™ (&) will
enter again in the disk. Lemmd® says that we can find a translation arc passing thiguand H" (&).
This last point belongs té7"(«) N a and so we can apply Brouwer’s lemma to arrive at the conatusio

[ |

In the next pages we explore the implications of Theoém 3abikty theory. Assume thay is an
open subset of the plane containing the origin and

h:U — R h = h(€)

is a continuous and one-to-one map having a fixed point at ttigtno This point is calledstable in the
future if every neighborhood’ contains another neighborhodtl such that the successive iterates/of
remain inV; that is

W) cVy  foreachn > 0.

The theorem of invariance of the domain implies thas open and so its inverse is also continuous. This
fact allows a parallel definition dftability in the pastFinally we say that there jgerpetual stabilitywhen
the origin is stable for the future and the past.

The three notions of stability are equivalent for area-preisig ma;ﬂThis fact is well known in Hamil-
tonian dynamics. The reader can find a proof.in [23, Lemma 2\&}xt we present a result exploring the
implications of the stability in the fixed point index.

Theorem 4 Assume that is orientation and area preserving ar{d = 0 is stable. Then one of the
alternatives below holds,

(). h = id in some neighborhood of the origin

(i) . there exists a sequence of Jordan cur{Bs} converging to the origin and such that, for each

I, NFix(h) =0,  I(h,I,)=1.

When the fixed point is isolated this theorem is a consequehtiee results in[[Q]. The novelty is in the
case of non-isolated fixed points.

PROOFE Let us first recall that the stability of the origin guaraggehe existence of a sequence of open
neighborhoods$i/,, } which are simply connected and satisfy

(o ={0},  hUn) =U.

Seel[2), section 25] ar[23] for a proof. Ealal) has finite area and is homeomorphid¥osayy : U,, = D.
The mapH = 1 o h o4~ !isin the classH (D, u), wherey is obtained as a transport of the Lebesgue
measure. Assuming thaf](i) does not hold it is possible tdyappeorenB and find a Jordan curi/g in

U,, such that

2For simplicity it is assumed that is the Lebesgue measure but it will be clear how to extend igrugsions to a large class of
measures.
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with ~,, = ¢(T,,). This is precisely the second alternativell

Next we present a couple of examples showing that the prasemof orientation and area are essential
in the previous result.

Example 1 The symmetry with respect to theaxis is area-preserving but it reverses orientation. Deno
this map by, (z,y) = (z, —y). We observe thdtix(h;) = R x {0} and all the fixed points are stable. In
contrast to the theorend,(h;,I') = 0 for any Jordan curv&@ c R? \ Fix(h,). Indeed any of these curves
lie in one of the half-plane§y > 0}, {y < 0}, and these regions do not contain fixed points.

Example 2 The maph, is expressed in polar coordinates as
(0,7) — (0 +sinb,r).

This time the map preserves the orientation but not the arba.set of fixed points is again theaxis and
the origin is perpetually stable. To check this it is suffiti® notice that all disks centered at the origin are
invariant. As in the previous case one can prove tHab, I') = 0 for any Jordan curv& c R? \ Fix(hs).

In a preliminary version of the paper | constructed a more pticated example with similar properties. It
was R. Martins who suggested the usépf

We are going to finish the paper with two applications of Tieadd.

The index and an instability criterion by Levi-Civita. In [19, section 4] Levi-Civita considered
maps of the type

h(z,y) = (@ + f(z,9),y + 2+ g(z,y))
wheref, g were smooth functions defined in a neighborhood of the odgith satisfying
£(0,0) = ¢(0,0) =0, vf(0,0) = vg(0,0) = 0. ©)
Assuming that the Taylor expansion pfvas
f(z,y) = annz® + 2a120y + agoy® + - -

he proved that the origin was not stableif # 0.
We are going to present a topological version of this resulttie area-preserving case. To this end we
assume that is C! and
deth/(z,y) =1  foreach(x,y).

This is sufficient to guarantee thatis in the conditions of Theorel 4. The special structure eflthear

part of h allows to reduce the computation of the fixed point index te-dimensional degree. This is done

following ideas from[[1R]. We first apply the implicit functih theorem to solve the equation
z+g(@,y)=0 8

and obtain: as a function ofj, say that: = ¢(y) is the only solution in the rectangle = [—6, 6] x [—¢, €].
Next we define the function

O(y) = fle(y): ),

and notice that the fixed points ffin R satisfyz = ¢(y) and®(y) = 0. Given a Jordan curve contained
in R and disjoint withFix(h), the index can be computed by the formula

I(h, f) = —degp(?, Q) 9)

whereQ = {y € [—€,¢] : (¢(y),y) € I'}. We will give a sketch of the proof of this formula later. The
index of h will vanish at any Jordan domaindf satisfies one of the conditions below,
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(). ®(y) > 0 foreachy € [—e, €],
or

(ii). ®(y) <0 foreachy € [—e, €].
It can take the values1 or 0 if ® satisfies
(iii). y®(y) > 0 foreachy € [—¢, €.

In any of these cases there are no curves of index one anditfie cannot be stable.
We can recover from here the result by Levi-Civita. Assumtingt /. is C? we notice that, from[{8)
and [1),0(y) = O(y?) and so

®(y) = a11p(y)? + 2a120(y)y + azy® + - -+ = axy® + o(y?).

If age # 0 we are in casg {i) dr (ii). The papér]19] also deals with theecahen the linear part dfis the
identity and an elegant variation can be found.n [27, sec?ib]. The topological approach to this case was
presented in]9].

It remains to justify the formuld9). Define the map

F(xvy) = (@(y),x - tp(y)), (Ivy) € R,

and notice that, for each € [0, 1], the zeros o\(h — id) + (1 — M) F are exactly the fixed points @f. At
this point it is convenient to observe that the implicit ftion theorem implies that = ¢(y) is the only
solution of

Az +g(z,y) + (1= M)z —¢(y)) = 0.

By homotopy invariance we must compute the degre€.ocfo do this we perform the change of variables

§=x—p(y), n=y.

The mapy(z,y) = (¢, 7) is a diffeomorphism of? onto its image and saeg(F,T') = deg(Fy, %), where
F, =1oFoy~tandy = (T'). The new map i¥’, (¢,7) = (®(n), &) and the reduction to one dimension
follows.

Analytic area preserving maps. Assume now that: U ¢ R? — R2, h = (hy, hs), is a real
analytic map defined on some openefThe set of fixed points can be described by the equation

Fix(h):  (hu(e.y) —2)2 + (hala,y) — y)? = 0.

Whenh is not the identity this is a proper analytic subset of thenplaThe local structure of these sets
is well known (seell1l3]): they can contain isolated pointd goints with a finite number of branches
emanating from them. In the second case the branches argbaesby Puiseux series. In view of this
we consider a non-isolated fixed pofitand a small diskD around it such thaFix(h) N D is composed

by the branches emanating frgfn. Moreover we can assume that all the branches touch the boyofl

the disk and each component®f\ Fix(h) is simply connected. From this setting it is clear thaf ifs

a Jordan curve itD without fixed points, thef' does not contain fixed points either. In consequence the
indexI(h, f) vanishes. We are lead to a result already obtained.in [23].

Corollary 1 Assume thak # id is real analytic and
deth' = 1.

Then every stable fixed point is isolated.
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To finish the paper we go back to the Hamiltonian systém (6)a@stime that the functioH is real
analytic. Assume also that we are given a closed orhitth ¢ = H(y) and a transversal sectidh C Mz
with ¥ Ny = {&}. Any closed orbity’ C Mz which is close enough te will pass through® only a
finite number of times. This is a consequence of the tranaligref the section. The closed orhit will be
calledsimplewhenevery’ N ¥ is a singleton. This notion is relative to the chosen secfidnut the initial
orbit ~ is simple just by construction. The previous corollary canréphrased in the following terms: if
~ is isoenergetically stable then there exists a neighbathbof + such that one of the alternatives below
holds,

e every orbit contained it¥ N Mz is closed and simple
e ~ is the only orbit i/ N Mz which is closed and simple.

The circular orbit of the Kepler problem mentioned at theibeipg of the section will be in the first
situation.
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