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Abstract. Some problems in differential equations evolve towards Topology from an analytical origin.
Two such problems will be discussed: the existence of solutions asymptotic to the equilibrium and the
stability of closed orbits of Hamiltonian systems. The theory of retracts and the fixed point index have
become useful tools in the study of these questions.

Retractos, ı́ndice de punto fijo y ecuaciones diferenciales

Resumen. Algunos problemas de las ecuaciones diferenciales evolucionan hacia la Topologı́a desde
un origen analı́tico. Se discutirán dos problemas de este tipo: la existencia de soluciones asintóticas al
equilibrio y la estabilidad de las órbitas cerradas de los sistemas Hamiltonianos. La teorı́a de retractos y
el ı́ndice de punto fijo se han convertido en herramientas muyútiles para el estudio de estas cuestiones.

1 Introduction

Many problems in the theory of differential equations were initially treated with analytic techniques and
later evolved towards more topological approaches. Perhaps the most paradigmatic case is found in the
study of nonlinear boundary value problems. The classical proofs based on successive approximations or in
the implicit function theorem were soon replaced by the use of fixed points and degree theory. The modern
point of view is already found in the famous paper by Leray andSchauder [15]. The same process has
been experienced by other branches of differential equations. The next pages are an attempt to illustrate
this evolution in two concrete problems.

First we will discuss the existence of asymptotic solutions. These are non-trivial solutions tending to
the origin as time increases to infinity and they appear in systems of differential equations having the trivial
solution. Asymptotic solutions have been studied since Poincaré’s times. The classical method for proving
their existence consists in the reduction of the problem to an integral equation. Once this equation has
been found one uses the method of successive approximationsor the contraction principle. This analy-
tical method leads to the Principle of Linearization and to the Stable Manifold Theorem for autonomous
equations (see [14] and [25]). Wazewski applied the theory of retracts and developed an alternative method
for constructing asymptotic solutions in his paper [28]. Wewill illustrate Wazewski’s ideas in a concrete
situation, and later we will discuss the connections with the analytical approach. In the process we will find
that other tools such as topological degree and global continuation are also applicable to this problem.

Presentado por Amable Liñán.
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The second part of the paper will deal with the stability properties of closed orbits in Hamiltonian
systems. This is a question of particular relevance in Celestial Mechanics and again we must refer to
Poincaré for the origins of the problem. He mainly considered systems with two degrees of freedom and
was lead to the study of the fixed points of area-preserving maps in the plane. This line of research was
continued by Birkhoff but the stability problem was not solved until the appearance of the KAM method,
which was fully developed in the sixties (see [2, 27]). In contrast, results on instability were already obtained
by Levi-Civita in 1901. The interesting paper [19] containsthe linearization principle due to Lyapunov and
more delicate instability criteria depending on higher order terms. We will present a topological approach to
the problem of instability treated by Levi-Civita. The maintools will be the fixed point index and the notion
of translation arc. These arcs are very useful in the study ofplanar homeomorphisms and they already
appeared in Brouwer’s work. It would have been desirable to present also a topological approach to the
problems of stability solved by KAM techniques. However these problems seems to be of a rather analytic
character and I do not know if this could be possible.

I would like to thank Rogerio Martins for his careful readingof a preliminary version of this paper. His
comments and questions have influenced the final form of the manuscript.

2 Asymptotic solutions and Wazewski’s principle

Given a continuous vector fieldX : [0,∞[×R
d → R

d, we can consider the system of differential equations

ẋ = X(t, x), t ≥ 0, x ∈ R
d. (1)

It will be always assumed that there is uniqueness for the associated initial value problem.
A solutionx(t) is calledasymptoticto x ≡ 0 if it is well defined in[0,∞[ and it satisfies

x(t) → 0 as t→ +∞.

To make the discussion more visual we assume from now on thatd = 3. The spaceR3 is decomposed as
R

2 × R, with coordinatesξ ∈ R
2 andz ∈ R. The notations〈· , ·〉 and‖·‖ refer to the dot product and the

euclidean norm inR2. The system (1) withd = 3 is rewritten as

ξ̇ = F (t, ξ, z), ż = G(t, ξ, z) (2)

and we can imagine a cylindrical region shrinking to the origin as time goes to infinity. More precisely, we
consider the set

Ωt = { (ξ, z) : ‖ξ‖ < ϕ(t), |z| < ψ(t) }

whereϕ, ψ : [0,∞[→ R areC1 decreasing functions withϕ(t) → 0, ψ(t) → 0 ast → +∞. The flow
associated to (2) will enter into the cylinder through the facesz = ψ(t) andz = −ψ(t) and will exit
through the lateral boundary‖ξ‖ = ϕ(t). In this setting our intuition says that some orbit should remain
inside the cylinder forever. For if all the orbits would escape from the moving cylinder, they would do it
through the lateral boundary. This process would define a retraction of the solid cylinder onto its lateral
boundary, which is impossible. Once we know of the existenceof orbits lying inΩt for eacht we observe
that they must produce asymptotic solutions. This is so because the cylinder is shrinking to the origin.

Precise statements can be produced from the above discussions. To this end it is convenient to consider
the set

Ω = { (t, ξ, z) ∈ [0,∞[×R
2 × R : (ξ, z) ∈ Ωt },

which can also be described by the inequalities

Vi(t, ξ, z) < 0 i = 1, 2, 3,

where
V1(t, ξ, z) = z − ψ(t), V2(t, ξ, z) = −z − ψ(t), V3(t, ξ, z) = ‖ξ‖2 − ϕ(t)2.
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The boundary ofΩ relative to[0,∞[×R
2 × R will be denoted byΓ and decomposed in five parts

Γ = E ∪ I+ ∪ I− ∪ B+ ∪ B−

with

E : ‖ξ‖ = ϕ(t), |z| < ψ(t)

I± : ‖ξ‖ < ϕ(t), z = ±ψ(t)

B± : ‖ξ‖ = ϕ(t), z = ±ψ(t).

The Lyapunov derivative of a functionV = V (t, ξ, z) along the solutions of (2) is defined as

V̇ :=
∂V

∂t
+

〈
∂V

∂ξ
, F

〉
+
∂V

∂z
G.

We assume

V̇1 < 0 onI+ ∪ B+, V̇2 < 0 onI− ∪ B−, V̇3 > 0 on E ∪ B+ ∪ B−.

This assumption is modelled after the previous qualitativediscussion. For later discussions we reformulate
it in the next result.

Theorem 1 Assume thatϕ(t) andψ(t) are admissible functions1 and that the two conditions below hold,

ψ̇(t) > max{G(t, ξ, ψ(t)),−G(t, ξ,−ψ(t))} if t ≥ 0, ‖ξ‖ ≤ ϕ(t), (3)

〈F (t, ξ, z), ξ〉 > ϕ(t)ϕ̇(t) if t ≥ 0, ‖ξ‖ = ϕ(t), |z| ≤ ψ(t). (4)

Then for eachz0 ∈ [−ψ(0), ψ(0)] there exists at least one asymptotic solution of(2) satisfying

‖ξ(0)‖ < ϕ(0), z(0) = z0.

PROOF. First of all we need to be more precise about the behavior of the flow onΓ. A point(τ, ξ0, z0) ∈ Γ
is called ofstrict entry if the solution of (2) with initial conditionsξ(τ) = ξ0, z(τ) = z0 satisfies
(t, ξ(t), z(t)) ∈ Ω if t ∈]τ, τ + ǫ] and(t, ξ(t), z(t)) 6∈ Ω if t ∈ [τ − ǫ, τ [ for someǫ > 0. Notice that
the second condition is empty ifτ = 0. A point of strict exit is defined in the same way excepting that
the roles of the past and the future are exchanged. Finally wesay that the point is ofexterior slidingif
(t, ξ(t), z(t)) 6∈ Ω if t ∈ [τ − ǫ, τ + ǫ], t 6= τ . As the reader probably suspects, the points onI+ ∪ I−
are of strict entry, while those onE are of strict exit. Finally the points inB+ ∪ B− are of exterior sliding.
This is the effect of the assumptions (3) and (4). For more information on this point the reader is referred
to Section X.3 of the book [16].

After classifying the points inΓ we are ready to complete the proof. We shall proceed by contradiction
and assume that, for somez⋆ ∈ [−ψ(0), ψ(0)], there are no asymptotic solutions satisfying

D = { p ∈ R
2 : ‖p‖ ≤ ϕ(0) }

and denote by(ξ(t, p), z(t, p)) the solution of (2) satisfying

ξ(0, p) = p, z(0, p) = z⋆.

Let τ = τ(p) ≥ 0 be the first instant when the graph of the solution touches theexit set, that is

τ(p) := min{ t ∈ [0,∞[: (t, ξ(t, p), z(t, p)) ∈ E ∪ B+ ∪ B− }.

1By an admissible function we understand aC1 functionϕ : [0,∞[→ R which is strictly decreasing and tends to0 ast → +∞.
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It is important to notice that this definition is meaningful thanks to the contradiction argument. Indeed,
we are assuming that for‖p‖ < ϕ(0) the solution is not asymptotic and so it must escape fromΩ. This
escape must occur throughE and soτ(p) ∈]0,∞[. The previous discussion also includes the extreme case
z⋆ = ±ψ(0) since the points(0, p,±ψ(0)) are of strict entry. Finally we observe that if‖p‖ = ϕ(0) then
τ(p) = 0. Once we know thatτ is well defined we are going to prove that it is continuous as a function from
D to R. The continuous dependence with respect to initial conditions says that the solution is continuous
as a function of(t, p) and this implies thatτ = τ(p) is lower semi-continuous. For a general differential
equation it would not be possible to prove the other semi-continuity but we have a convenient classification
of the points ofΓ at our disposal. The point(τ(p), ξ(τ(p), p), z(τ(p), p)) is of strict exit or of exterior
sliding and this is sufficient to prove the upper semi-continuity of τ . More details on this argument can be
found in Wazewski’s paper [28] or in Chapter II of Conley’s memoir [8]. The points of strict exit or exterior
sliding lie onE ∪ B+ ∪B− and so‖ξ(τ(p), p)‖ = ϕ(τ(p)). This observation allows us to consider the map

p ∈ D 7→
ϕ(0)

ϕ(τ(p))
ξ(τ(p), p) ∈ ∂D.

Sinceτ(p) = 0 whenp ∈ ∂D this map would be a retraction of the disk onto its boundary. This is of course
impossible and we have arrived at the searched contradiction. �

In the paper [28], Wazewski says that the first attempts to develop his method employed homology and
Kronecker index. Finally he found more convenient to attachhis method to the notion of retract. In an
exercise of history-fiction we will prove the previous result using degree (or Kronecker index).

ANOTHER PROOF OFTHEOREM 1. This time the proof will be direct andz⋆ will be an arbitrary number
in [−ψ(0), ψ(0)]. The notations for the diskD and the solution(ξ(t, p), z(t, p)) are preserved. Consider
the functionτ̂ : D → [0,∞] defined by

τ̂ (p) := sup{ s ≥ 0 : (t, ξ(t, p), z(t, p)) ∈ Ω for eacht ∈ [0, s] }

and observe that for those solutions getting out ofΩ this is equivalent to the definition ofτ(p) in the
previous proof. Once again the classification of the points on Γ has been used. The novelty is that we admit
the possibility of solutions remaining inΩ forever. In such caseŝτ(p) = ∞. We claim that̂τ is continuous.
Of course this is clear for those points withτ̂(p) = τ(p) < ∞. For points withτ̂ (p) = ∞ we proceed by
contradiction. Ifpn were a sequence inD converging top with τ̂ (pn) → T <∞, then(T, ξ(T, p), z(T, p))
would belong toE ∪ B+ ∪ B− . Sinceτ̂ (p) = ∞ > 0 we infer that(0, p, z⋆) cannot be in the exit set and
soT > 0. This would lead to the contradictory conclusionτ̂(p) ≤ T . Once we know that̂τ is continuous
we consider the mapΦ : D → R

2 given by

Φ(p) = e−τ̂(p)ξ(τ̂ (p), p) if τ̂ (p) <∞, Φ(p) = 0 if τ̂ (p) = ∞.

All points on the boundary ofD are fixed underΦ and so we can compute the Brouwer degree

deg(Φ, D) = deg(id, D) = 1.

This implies thatΦ has at least one zero contained in the interior ofD, but the zeros ofΦ correspond to the
solutions remaining inΩ and these solutions are asymptotic to the origin.�

Indeed the conclusion of the above proof can be sharpened with the Leray-Schauder continuation
principle [15, 10]. With the previous notations we interpret z⋆ as a parameter varying in the interval
I = [−ψ(0), ψ(0)]. The mapΦ = Φ(p, z⋆) now goes fromD × I into R

2. SinceΦ = id on∂D × I, there
are no zeros on this set anddeg(Φ(·, z⋆), D) 6= 0 for anyz⋆. Then there exists a continuumC contained in
D × I, joining the setsD × {−ψ(0)} andD × {ψ(0)}, and such that

Φ(p, z⋆) = 0 for each(p, z⋆) ∈ C.
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We can now state the following improvement of Theorem 1,

Assume that the conditions(3) and (4) hold. Then there exists a continuumC ⊂ Ω0, joining z = ψ(0) and
z = −ψ(0), such that every solution of(2) with (ξ(0), z(0)) ∈ C is asymptotic tox ≡ 0.

There are several topological versions of the stable manifold theorem [26, 18]. They deal with home-
omorphisms of the plane having the origin as an isolated invariant set. The previous proofs suggest that
Wazewski’s method could be useful to obtain related resultsin higher dimensions. There is another remark-
able feature in Wazewski’s method, it deals with a general non-autonomous differential equation. This is
very close to the topological notion of isotopy.

To finish this section on asymptotic solutions we discuss twoexamples which help to clarify the con-
nection with more classical analytical results. First we consider a system (2) with the semi-linear form

ξ̇ = Aξ +R1(t, ξ, z), ż = −λz +R2(t, ξ, z), (5)

whereA is a2 × 2 matrix satisfying

〈Aξ, ξ〉 ≥ 0 for eachξ ∈ R
2

andλ is a positive constant. The remaindersR1 andR2 are small; that is,

lim
‖ξ‖+|z|→0

‖R1(t, ξ, z)‖ + |R2(t, ξ, z)|

‖ξ‖ + |z|
= 0,

uniformly in t ∈ [0,∞[. In the unperturbed case,Ri = 0, i = 1, 2, the system is linear and has the
asymptotic solutionsξ(t) = 0, z(t) = z0e

−λt. The perturbed system (5) has also asymptotic solutions
and the reader is referred to Chapter X of Hartman’s book [16]for more general results on linearization
principles. Next we show how to prove the existence of asymptotic solutions using Theorem 1. Select two
numbersµ andǫ with

0 < 2ǫ < min{λ− µ, µ}

and find a positiveδ such that

‖R1(t, ξ, z)‖ + |R2(t, ξ, z)| ≤ ǫ(‖ξ‖ + |z|)

if ‖ξ‖ ≤ δ, |z| ≤ δ. A simple computation shows that the assumptions (3) and (4)hold withϕ(t) = ψ(t) =
δe−µt.

The second example is the system

ξ̇ = 0, ż = −2z3,

which is not of the type (5). Theorem 1 can be applied withϕ(t) = e−t andψ(t) = (1 + 3t)−1/2.

3 Instability criteria for periodic orbits

We start with a Hamiltonian system of two degrees of freedom.The phase spaceS is an open subset ofR4

and a generic point inS is denoted byξ = (q, p) with q, p ∈ R
2. The equations are

q̇ =
∂H

∂p
(q, p), ṗ = −

∂H

∂q
(q, p) (6)

with H : S → R smooth (the Hamiltonian function). This family of equations has many illustrious mem-
bers, including the Kepler problem and the circular restricted three body problem.

The functionH is a first integral of the system (6) and so the sets

Mc = { (q, p) ∈ S : H(q, p) = c }, c ∈ R,
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are invariant. Typically these sets are 3d manifolds and it seems natural to restrict the flow to them. Let us
now assume thatγ is a closed orbit of (6). The corresponding periodic solution is not constant and soγ
cannot contain critical points ofH . This implies thatMc, with c = H(γ), is a smooth manifold, at least
in some neighborhood aroundγ. The orbitγ is calledisoenergetically stableif it is orbitally stable (in the
future and in the past) with respect to the flow onMc. This means that for each neighborhoodU of γ there
exists another neighborhoodV such that any orbit passing throughV ∩Mc remains entirely inU ∩Mc. As
an example we consider the Kepler problem, whose Hamiltonian is

H(q, p) =
1

2
‖p‖2 −

1

‖q‖
, (q, p) ∈ S = (R2 \ {0})× R

2.

In this caseMc is homeomorphic toR × S
1 × S

1 if c ≥ 0 and toR
2 × S

1 if c < 0. The orbit associated to
the periodic solutionq(t) = (cos t, sin t), p(t) = q̇(t) has negative energy withH(γ) = −1/2. The reader
who has some familiarity with Celestial Mechanics can provethat this circular motion is stable, for all the
motions in a neighborhood are of elliptic type.

The method of transversal sections reduces the problem of isoenergetic stability to the study of a discrete
transformation in the plane. This is done as follows. We fix a pointξ⋆ ∈ γ and construct a transversal section
Σ ⊂ Mc passing throughξ⋆. By restricting the size ofΣ we can always assume thatΣ ∩ γ = {ξ⋆}. The
sectionΣ is diffeomorphic to a disk and, given a pointξ ∈ Σ which is close enough toξ⋆, sayξ ∈ Σ′, we
know that the orbit passing throughξ must crossΣ in the future. The first of these returns will be denoted by
h(ξ). The pointξ⋆ is fixed under the maph : Σ′ ⊂ Σ → Σ and the isoenergetic stability ofγ is equivalent
to the perpetual stability ofξ⋆ as a fixed point ofh. For future discussions we mention some properties of
h. It is a smooth and one-to-one map which preserves orientation. In addition there exists a measure on
Σ which is preserved byh, this measure is obtained as a pull-back of the Lebesgue measure in the plane.
More details can be found in sections 22 and 31 of the book by Siegel and Moser [27].

We are ready for a discussion with more topological flavor. Weshall work with the open disk

D = { ξ ∈ R
2 : ‖ξ‖ < 1 }.

The group of homeomorphism ofD will be denoted byH(D). We stress thatH(D) = D for eachH in
H(D). Let us assume that there is a regular measure on the disk, denoted byµ, which is invariant underH .
This means that

µ(H(B)) = µ(B) for each Borel setB ⊂ D.

The measureµ satisfies two extra conditions:

• the whole diskD has finite measure

• the measure of any non-empty open set is positive.

We summarize the above conditions by saying thatH is in the classH(D,µ). The following fixed point
theorem can be found in the papers by Montgomery [21] and Bourgin [4].

Theorem 2 Every orientation preserving map inH(D,µ) has a fixed point.

A similar result is false for open balls in higher dimensions. In [4] Bourgin constructed an orientation
preserving homeomorphism of the ballB = B135 = { x ∈ R

135 : ‖x‖ < 1 } which was fixed point free
and invariant under an admissible measure. Later Asimov found in [3] analogous examples inB3 using the
Hopf fibration. Even in the plane the theorem fails for orientation reversing maps, as was discovered by
Alpern in [1].

Next we improve the theorem in the plane by using the fixed point index. Following [10] the fixed point
index will be denoted byI(f, U), whereU is an open subset ofR2 andf : U → R

2 is continuous. This
notion makes sense when the set of fixed pointsFix(f) is compact. We also recall the connection with the
Brouwer degree,

I(f, U) = deg(id−f, U).
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Figure 1. A translation arc. (H ≡ h)

Theorem 3 Assume thatH ∈ H(D,µ) is orientation preserving. IfH is not the identity,H 6= id, then
there exists a Jordan curveΓ ⊂ D such that

I(H, Γ̂) = 1.

HereΓ̂ denotes the bounded component ofR
2 \ Γ.

The reader can find related results in the papers by Medvedev [20] and by Le Calvez [17].
To prove this theorem we shall employ the notion of translation arc, which goes back to Brouwer. An

oriented arcα = p̂q in D is called atranslation arcfor H ∈ H(D) if H(p) = q and

H(α \ {q}) ∩ (α \ {q}) = ∅.

The next result probably explains why this notion is so useful in the study of discrete dynamics in the plane.

Lemma 1 (Brouwer) Assume thatH ∈ H(D) is orientation preserving and there exists a translation arc
α with

Hn(α) ∩ α 6= ∅ for somen ≥ 2.

Then there exists a Jordan curveΓ ⊂ D such that

I(H, Γ̂) = 1.

This result has a long history and the proof is delicate. The reader is referred to [5, 11] for more details.

We need a second preliminary result on the existence of translation arcs.

Lemma 2 Assume thatH ∈ H(D) and∆ is a compact topological disk contained inD and such that∆
andH(∆) lie in the same component ofD \ Fix(H). In addition assume that

H(∆) ∩ ∆ = ∅.

Then, given pointsξ1, . . ., ξn ∈ ∆, there exists a translation arcα contained inD and passing through all
these points.
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This result is obtained by an adaptation of the ideas of Brownin his proof of Lemma 4.1 in [6]. The
details will appear in the monograph under construction [24]. After these two lemmas we are ready for the
proof.

PROOF OFTHEOREM3. Let{Uλ} be the family of connected components ofD \Fix(H). These sets
are open and invariant underH . The invariance follows from the result by Brown and Kister in [7] since
H preserves orientation. We fix one of the components, sayUλ, and a pointξ⋆ ∈ Uλ. This is possible for
anyH 6= id. The pointsξ⋆ andH(ξ⋆) are different and so we find a small disk∆ centered atξ⋆ which is
contained inUλ and is such thatH(∆)∩∆ = ∅. Next we apply Poincaré’s recurrence theorem as presented
in [22] and find a pointξ0 in the interior of∆ which is recurrent. For somen ≥ 2 the iterateHn(ξ0) will
enter again in the disk∆. Lemma 2 says that we can find a translation arc passing through ξ0 andHn(ξ0).
This last point belongs toHn(α) ∩ α and so we can apply Brouwer’s lemma to arrive at the conclusion.

�

In the next pages we explore the implications of Theorem 3 in stability theory. Assume thatU is an
open subset of the plane containing the origin and

h : U → R
2, h = h(ξ)

is a continuous and one-to-one map having a fixed point at the origin. This point is calledstable in the
future if every neighborhoodV contains another neighborhoodW such that the successive iterates ofW
remain inV ; that is

hn(W) ⊂ V for eachn ≥ 0.

The theorem of invariance of the domain implies thath is open and so its inverse is also continuous. This
fact allows a parallel definition ofstability in the past. Finally we say that there isperpetual stabilitywhen
the origin is stable for the future and the past.

The three notions of stability are equivalent for area-preserving maps2 This fact is well known in Hamil-
tonian dynamics. The reader can find a proof in [23, Lemma 2.5]. Next we present a result exploring the
implications of the stability in the fixed point index.

Theorem 4 Assume thath is orientation and area preserving andξ = 0 is stable. Then one of the
alternatives below holds,

(i). h = id in some neighborhood of the origin

(ii) . there exists a sequence of Jordan curves{Γn} converging to the origin and such that, for eachn,

Γn ∩ Fix(h) = ∅, I(h, Γ̂n) = 1.

When the fixed point is isolated this theorem is a consequenceof the results in [9]. The novelty is in the
case of non-isolated fixed points.
PROOF. Let us first recall that the stability of the origin guarantees the existence of a sequence of open
neighborhoods{Un} which are simply connected and satisfy

⋂

n

Un = {0}, h(Un) = Un.

See [27, section 25] or [23] for a proof. EachUn has finite area and is homeomorphic toD, sayψ : Un
∼= D.

The mapH = ψ ◦ h ◦ ψ−1 is in the classH(D,µ), whereµ is obtained as a transport of the Lebesgue
measure. Assuming that (i) does not hold it is possible to apply Theorem 3 and find a Jordan curveΓn in
Un such that

I(H, γ̂n) = I(h, Γ̂n) = 1

2For simplicity it is assumed thatµ is the Lebesgue measure but it will be clear how to extend the discussions to a large class of
measures.
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with γn = ψ(Γn). This is precisely the second alternative.�

Next we present a couple of examples showing that the preservation of orientation and area are essential
in the previous result.

Example 1 The symmetry with respect to thex-axis is area-preserving but it reverses orientation. Denote
this map byh1(x, y) = (x,−y). We observe thatFix(h1) = R × {0} and all the fixed points are stable. In
contrast to the theorem,I(h1, Γ̂) = 0 for any Jordan curveΓ ⊂ R

2 \ Fix(h1). Indeed any of these curves
lie in one of the half-planes{y > 0}, {y < 0}, and these regions do not contain fixed points.

Example 2 The maph2 is expressed in polar coordinates as

(θ, r) 7→ (θ + sin θ, r).

This time the map preserves the orientation but not the area.The set of fixed points is again thex-axis and
the origin is perpetually stable. To check this it is sufficient to notice that all disks centered at the origin are
invariant. As in the previous case one can prove thatI(h2, Γ̂) = 0 for any Jordan curveΓ ⊂ R

2 \Fix(h2).
In a preliminary version of the paper I constructed a more complicated example with similar properties. It
was R. Martins who suggested the use ofh2.

We are going to finish the paper with two applications of Theorem 4.

The index and an instability criterion by Levi-Civita. In [19, section 4] Levi-Civita considered
maps of the type

h(x, y) = (x+ f(x, y), y + x+ g(x, y))

wheref , g were smooth functions defined in a neighborhood of the originand satisfying

f(0, 0) = g(0, 0) = 0, ▽f(0, 0) = ▽g(0, 0) = 0. (7)

Assuming that the Taylor expansion off was

f(x, y) = a11x
2 + 2a12xy + a22y

2 + · · ·

he proved that the origin was not stable ifa22 6= 0.
We are going to present a topological version of this result for the area-preserving case. To this end we

assume thath is C1 and
deth′(x, y) = 1 for each(x, y).

This is sufficient to guarantee thath is in the conditions of Theorem 4. The special structure of the linear
part ofh allows to reduce the computation of the fixed point index to one-dimensional degree. This is done
following ideas from [12]. We first apply the implicit function theorem to solve the equation

x+ g(x, y) = 0 (8)

and obtainx as a function ofy, say thatx = ϕ(y) is the only solution in the rectangleR = [−δ, δ]× [−ǫ, ǫ].
Next we define the function

Φ(y) = f(ϕ(y), y),

and notice that the fixed points ofh in R satisfyx = ϕ(y) andΦ(y) = 0. Given a Jordan curve contained
in R and disjoint withFix(h), the index can be computed by the formula

I(h, Γ̂) = −deg
R
(Φ,Ω) (9)

whereΩ = { y ∈ [−ǫ, ǫ] : (ϕ(y), y) ∈ Γ̂ }. We will give a sketch of the proof of this formula later. The
index ofh will vanish at any Jordan domain ifΦ satisfies one of the conditions below,
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(i). Φ(y) ≥ 0 for eachy ∈ [−ǫ, ǫ],

or

(ii). Φ(y) ≤ 0 for eachy ∈ [−ǫ, ǫ].

It can take the values−1 or 0 if Φ satisfies

(iii). yΦ(y) ≥ 0 for eachy ∈ [−ǫ, ǫ].

In any of these cases there are no curves of index one and the origin cannot be stable.
We can recover from here the result by Levi-Civita. Assumingthath is C2 we notice that, from (8)

and (7),ϕ(y) = O(y2) and so

Φ(y) = a11ϕ(y)2 + 2a12ϕ(y)y + a22y
2 + · · · = a22y

2 + o(y2).

If a22 6= 0 we are in case (i) or (ii). The paper [19] also deals with the case when the linear part ofh is the
identity and an elegant variation can be found in [27, section 31]. The topological approach to this case was
presented in [9].

It remains to justify the formula (9). Define the map

F (x, y) = (Φ(y), x− ϕ(y)), (x, y) ∈ R,

and notice that, for eachλ ∈ [0, 1], the zeros ofλ(h− id) + (1 − λ)F are exactly the fixed points ofh. At
this point it is convenient to observe that the implicit function theorem implies thatx = ϕ(y) is the only
solution of

λ(x + g(x, y)) + (1 − λ)(x − ϕ(y)) = 0.

By homotopy invariance we must compute the degree ofF . To do this we perform the change of variables

ξ = x− ϕ(y), η = y.

The mapφ(x, y) = (ξ, η) is a diffeomorphism ofR onto its image and sodeg(F, Γ̂) = deg(F⋆, γ̂), where
F⋆ = ψ ◦F ◦ψ−1 andγ = ψ(Γ). The new map isF⋆(ξ, η) = (Φ(η), ξ) and the reduction to one dimension
follows.

Analytic area preserving maps. Assume now thath : U ⊂ R
2 → R

2, h = (h1, h2), is a real
analytic map defined on some open setU . The set of fixed points can be described by the equation

Fix(h) : (h1(x, y) − x)2 + (h2(x, y) − y)2 = 0.

Whenh is not the identity this is a proper analytic subset of the plane. The local structure of these sets
is well known (see [13]): they can contain isolated points and points with a finite number of branches
emanating from them. In the second case the branches are described by Puiseux series. In view of this
we consider a non-isolated fixed pointξ⋆ and a small diskD around it such thatFix(h) ∩ D is composed
by the branches emanating fromξ⋆. Moreover we can assume that all the branches touch the boundary of
the disk and each component ofD \ Fix(h) is simply connected. From this setting it is clear that ifΓ is
a Jordan curve inD without fixed points, then̂Γ does not contain fixed points either. In consequence the
indexI(h, Γ̂) vanishes. We are lead to a result already obtained in [23].

Corollary 1 Assume thath 6= id is real analytic and

det h′ ≡ 1.

Then every stable fixed point is isolated.
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To finish the paper we go back to the Hamiltonian system (6) andassume that the functionH is real
analytic. Assume also that we are given a closed orbitγ with c = H(γ) and a transversal sectionΣ ⊂ Mc

with Σ ∩ γ = {ξ⋆}. Any closed orbitγ′ ⊂ Mc which is close enough toγ will pass throughΣ only a
finite number of times. This is a consequence of the transversality of the section. The closed orbitγ′ will be
calledsimplewheneverγ′ ∩ Σ is a singleton. This notion is relative to the chosen sectionΣ but the initial
orbit γ is simple just by construction. The previous corollary can be rephrased in the following terms: if
γ is isoenergetically stable then there exists a neighborhoodU of γ such that one of the alternatives below
holds,

• every orbit contained inU ∩Mc is closed and simple

• γ is the only orbit inU ∩Mc which is closed and simple.

The circular orbit of the Kepler problem mentioned at the beginning of the section will be in the first
situation.
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