
RACSAM
Rev. R. Acad. Cien. Serie A. Mat.
VOL. 102(1), 2008, pp. 39–73
Geometrı́a y Topologı́a / Geometry and Topology
Artı́culo panorámico / Survey

Inverse Limits, Economics, and Backward Dynamics

Judy Kennedy

Abstract We survey recent papers on the problem of backward dynamics in economics, providing along
the way a glimpse at the economics perspective, a discussionof the economic models and mathematical
tools involved, and a list of applicable literature in both mathematics and economics.

Lı́mites inversos, Economı́a y Din ámica Regresiva

Resumen. Examinamos artı́culos recientes sobre el problema de la dinámica regresiva en Economı́a,
haciendo una breve incursión en la perspectiva económica, y presentando una discusión de los mo-
delos económicos y herramientas matemáticas involucrados, y una relación de literatura pertinente en
Matemáticas y en Economı́a.

1 Introduction

Our focus here is on introducing some problems from economics to mathematicians, showing how mathe-
matical problems arise from these economic problems, and then showing how tools from inverse limits,
topology, dynamics, and measure theory shed some light on the solution of the problems. There is no
claim that this survey is exhaustive; rather our goal is to describe how inverse limits have recently been
applied to the problem of “backward” dynamics in economics.We begin with a brief discussion of the
goals of economics, a glimpse at the economic perspective, and a list of some of the economics terms
encountered in our investigation of several models. Then wediscuss the particular models we have studied,
the results obtained, and what it all means for economics. Weassume the reader has more familiarity with
the mathematical tools involved than with modern economics. However, extensive references are given at
the end from both the economics and mathematics literature.

2 A Glimpse at Economics

Let’s start with a familiar example from economics that we all see in a first semester calculus course: If
C(x), thecost function, is the cost of producingx units of a certain product, then themarginal costis the
rate of change ofC with respect tox. That is, the marginal cost function is the derivativeC′(x) of the cost
function. The average cost functionc(x) = C(x)

x
represents the cost per unit whenx units are produced.
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Recibido: 27 de septiembre de 2007.Aceptado: 5 de diciembre de 2007.
Palabras clave / Keywords: inverse limits, applications to economics, backward dynamics, indecomposable continua, Knaster

bucket handle, chaos, entropy, measure, natural invariantmeasure, unimodal, chainable, invariant measure, simple dynamics, logistic
maps, tent maps, cash-in-advance model, overlapping generations model, period three, difference equation.

Mathematics Subject Classifications: primary 54H20, 39A05, 37N99; secondary 37N40, 37B45, 37E05, 54F15
c© 2008 Real Academia de Ciencias, España.

39



J. Kennedy

Figure 1. The average cost function

An example: A company estimates the cost (in dollars) of producingx items isC(x) = 2400 + 2x +

0.002x2. The average cost function is thenc(x) = C(x)
x

= 2400/x + 2 + 0.002x, and the marginal cost
function isC′(x) = 2 + 0.004x. If we graph the average cost function, we get Figure 1.

It appears that the average cost function has an absolute minimum, and we can find this minimum
by differentiatingc(x) and setting the derivative to0: c′(x) = −2400x−2 + 0.002 = 0, which givesx
approximately1095.4. Since it is not possible to produce0.4 units, it would appear that producing1095
units would give us a minimum average cost. We can check this by taking the second derivative ofc(x):
c′′(x) = 4800/x3. Thus, the second derivative is positive forx positive, so the function is concave up forx
positive, and sincex must be positive to make sense, this means that producing1095 units should give us
the minimum average cost possible.

This little example gives a glance at the mathematical toolseconomists use to make a decision as to
how best proceed. The model here is simple in that the cost function is a differentiable function of only one
variable. The example is a problem from microeconomics, rather than macroeconomics, and it is also an
example of an optimization problem.Microeconomicsis used to describe the decision making processes
of individuals and firms, whilemacroeconomicsapplies to the study of relations between broad economic
aggregates. Not surprisingly, optimization is fundamental in solving many problems in economics.

In economics,utility is a measure of the relative satisfaction or desiredness derived from the consump-
tion of goods. The idea is that one attempts to increase one’sutility. Economists actually sometimes call
this one’s happiness. Agood is an object (a physical or tangible product) or service thatincreases one’s
utility, directly or indirectly. (Yes, this is circular, asutility is defined in terms of goods and vice versa.)
Goods are usually modelled as having decreasing marginal utility. For example, the first car one purchases
is more useful than the fourth (especially when these purchases mean that four cars are now owned). Goods
arenormal if demand for them increases when income increases. The termnormal good does not necessa-
rily refer to the quality of the good. Anagentis an actor in a model that (generally) solves an optimization
problem. More recently, it has come to be interpreted more broadly as a persistent individual, social, bio-
logical, or physical entity interacting with other such entities within the context of a dynamic multi-agent
system. Anendowmentis the amount of something that a person, country, etc., simply has, rather than their
having to somehow acquire it.Consumptionrefers to the final use of goods and services to provide utility.
Themarket clearing conditionholds when supply equals demand in a model.Perfect foresightis said to
hold when an agent in a model has exact knowledge of the future(relative to the model). In an economics
modelexogenousrefers to an action or object coming from outside the system.An exogenous change is
one that comes from outside the model and is not explained by the model. On the other hand,endogenous
refers to something generated within the model and explained by the model.

Originally, anequilibrium in economics meant simply a state of the world where economicforces
are balanced and in the absence of external influences the equilibrium values of economic variables will
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not change. For example, in a free market and simple supply-demand model where the demand curve is
decreasing, the supply curve is increasing, and the curves intersect only at one point, an equilibrium occurs
at the price where the curves intersect. When the price is above the equilibrium point there is a surplus
of supply, and when the price is below the equilibrium point there is a shortage of supply. Excess supply
would lead to price cuts, and would lead to a decrease in supply (since there would be less incentive to
produce and sell the product), leading to an excess demand, which would then lead to price increases, thus
abolishing the surplus, and leading to an increase in supply, and the whole cycle starts again. In theory, over
time, this disequilibrium state (price too high, price too low) would tend to disappear, as the supply-demand
forces try to balance themselves.

Economists define models that represent the choices made by agents. The mathematics is representative
of the trade-offs inherent in decision making, and provides(hopefully) tractable methods for finding optimal
behavior. It also enables the derivation of testable hypotheses that should hold if the model accurately
reflects behavior. The universal assumption is that agents make choices that maximize returns (benefits). If
the set of feasible choices is unlimited, thenunconstrained maximizationis involved. If the set of choices
is limited by, say budgetary constraints, resource scarcity, or legal barriers, thenconstrained maximization
is involved.

As in setting up any model, the first step is to specify the variables and the parameters. The parameters
are constants in relation to the variables of the model, but in comparative studies (static or dynamic) we can
see what happens to the outcome when one or more parameters change. The next step is to formulate the
conditions we lay down for the operation of the model. These conditions are of three kinds:

Definitions and identities. These specify a relation that holds by definition. For example, total demand
could be defined as the sum of consumption and investment demand.

Functional relations. These are dependences assumed in the model. For example, we might assume that
production in periodt, Pt = f(Ct, Lt), whereCt denotes capital in periodt, andLt denotes labor in
periodt.

Conditions of the model. These come from assumptions about the equilibrium or disequilibrium operation
of the model. Such an assumption in the CIA model discussed below is that household may not use
the lump-sum transferθMt from the government at periodt to purchase cash goods(c1t) during that
same period.

Finally, the conditions of the model must be reduced as much as possible to make the model easier
to study. The final formulation of the model may be in either continuous or discrete form. In a discrete
analysis, the flow of time is divided into successive periodsof constant length, which is taken as the time
unit. If the model is dynamic, in the sense of involving variables at different time periods, the result is a
difference equation (or perhaps a system of difference equations). In a continuous analysis with a dynamic
model, the result is a differential equation (or system of differential equations). The models we discuss here
are dynamic, and involve a discrete analysis.

The simple example above involved unconstrained maximization (or rather unconstrained minimization)
of a functionf(x) of a single variable. In the example, average cost was being minimized. The function
f(x) could also, say, represent profits for a given quantity ofx produced, or it could represent utility, with
x being the quantity consumed. Iff(x) represented profits, then the object would be to determine what
quantityx to choose to maximize profits. Iff(x) represents utility, the object would be to determine how
much ofx to consume to maximize utility.

Models are rarely as simple as the one discussed above. They may well be multidimensional, and
require the tools of optimization theory for solution. Sucha multidimensional problem could arise, if, say,
profits are a functiong of capital, labor, and energy; or if utilityh is a function of food, water, and leisure.
If constrained maximization is involved, a tool widely usedby economists is the Lagrange multiplier.

A significant portion of the modern literature in economics is quite mathematical in nature. Indeed,
many papers are essentially mathematics papers with a theorem-proof-example format. (The Michener-
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Ravikumar paper [66] is an excellent example of such a paper.) Economists use tools from analysis, dif-
ferential equations, partial differential equations, anddynamical systems as needed. With the advent of
powerful computers, it has become possible to study ever more complicated models, so modern computa-
tion also plays an important role.

The dynamical systems resulting from dynamic models need not be differentiable, or even continuous;
indeed, they may not even be well defined functions! In this case, the usefulness of the usual tools from
calculus is somewhat limited, as we shall see. In fact, we focus here on several such models. The cash-in-
advance model and the overlapping generations model share the problem of “backward dynamics”. These
two models are represented by functions that arenot well defined forward in time. We also briefly discuss
the Christiano-Harrison model, which is not a function backward or forward in time. All three models
come from macroeconomics. The cash-in-advance model and overlapping generations model, in particular,
would be encountered in an introductory graduate text on macroeconomics.

For the discussion that follows, references to the economics literature are [3, 12, 15, 22, 24, 27, 28, 29,
30, 31, 33, 36, 48, 51, 53, 55, 56, 58, 61, 62, 63, 65, 66, 74, 76,78, 81, 82]. References to the mathematics
literature are [1, 2, 4, 5, 6, 7, 8, 9, 10, 13, 14, 16, 17, 18, 19,20, 21, 23, 25, 26, 32, 34, 35, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 49, 50, 52, 54, 57, 59, 60, 64, 66, 67,68, 69, 70, 71, 72, 73, 75, 77, 79, 80]. We
would like to thank David Stockman for his help and advice, and we would also like to thank Wikipedia.

3 The Cash-in-advance model

Cash-in-advance models are used to model monetary phenomena. Here we consider a particular cash-
in-advance model. The model is the standard endowment CIA model of Lucas and Stokey [58], and we
closely follow the exposition of R. Michener and B. Ravikumar [66]. The model gives rise to an implicitly
defined difference equation that has the unusual property that it is well-determined backward in time, but
not forward in time. We sketch the derivation of the model from the economics assumptions made. For
more details, see [66]. Note that, even in this quite idealized model, the process of going from the economic
assumptions to a simplified mathematical model takes a fair amount of work.

• In the model, households are choosing how much cash to hold over time.

• Households are representative, i.e., they are all “typical” households and behave the same way.

• Holding cash today allows the household to purchase certaingoods and services which we will call
cash goods.

• Other goods and services can be bought on credit and do not require cash which we will callcredit
goods.

• The implicit cost of holding cash is the interest income foregone if the household had instead held the
cash in the form of another asset, say bonds. The choice to hold cash involves a trade-off: the benefit
of being able to purchase cash goods and services against thecost of the foregone interest income. It
is assumed that the household makes this trade-off optimally, and so the household’s problem is best
set in the framework of a dynamic optimization problem.

• Consumption in the future is worth less to the household so the benefit from future consumption is
discounted. Accordingly, there is a parameterβ, called thediscount factor, which is strictly between
0 and1, and which quantifies exactly how future consumption is discounted.

• To purchase the cash goodc1t at timet the household must have cashmt. This cash is carried forward
from timet− 1 and in this sense the household is required to havecash in advanceof purchasing the
cash good.

• The credit goodc2t does not require cash, but can be bought on credit.
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• The household has an endowmenty each period that can be transformed into the cash and credit
goods.

• In equilibrium, all of the endowmenty is transformed into cash and credit goods so that the total of
cash goods and credit goods isy, i.e.,c1t + c2t = y.

• In equilibrium, this allows the cash good to be substituted for the credit good one-for-one, so both
goods must sell for the same pricept and the endowment must be worth this price per unit as well.

• The government in this economy transfers money to each household at each period withMt denoting
the total money holding of the household at each timet, and the government giving the household
the amountθMt, whereθ is another real-valued parameter. (Furthermore,θ is a parameter that the
government can control.)

• The sequence{Mt}
∞
t=0 is called themoney supply.

Both U andW represent utility functions:U denotes the utility gained from one choice of amount of
cash good and credit good, whileW represents the total utility gained from an entire sequenceof cash goods
and credit goods purchased over time. More specifically, thehousehold has preferences over sequences of
the cash good (c1t) and credit good (c2t) represented by a utility function (real-valued) of the form

W ({c1t, c2t}
∞
t=0) :=

∞∑

t=0

βtU(c1t, c2t). (1)

One sequence{c1t, c2t}
∞
t=0 is preferred over another sequence{c̃1t, c̃2t}

∞
t=0 if and only if

W ({c1t, c2t}
∞
t=0) > W ({c̃1t, c̃2t}

∞
t=0).

Now consider the household’s optimization problem: The household seeks to maximizeW by its choice
of {c1t, c2t, mt+1}

∞
t=0 subject to the constraintsc1t, c2t, mt+1 ≥ 0. The cash-in-advance constraint says

that the amount spent on the cash goodptc1t must be no more than cash on handmt. The budget constraint
on cash holdings for next period says that the cash carried over into next period (mt+1) can be no greater
than the income (pty) plus cash not spent (mt− ptc1t) plus the transfer of cash from the government (θMt)
minus the amount spent on the credit good (ptc2t). These two constraints translate into inequalities (2)
and (3) below. Thus,

ptc1t ≤ mt, (2)

mt+1 ≤ pty + (mt − ptc1t) + θMt − ptc2t, (3)

where we are taking as givenm0 and{pt, Mt}
∞
t=0. (The money supply{Mt} follows a constant growth

pathMt+1 = (1 + θ)Mt whereθ is the growth rate andM0 > 0 given.)
In [66] the authors make assumptions on the functionU so that the solution to this problem will be

interior and the solution to the first-order conditions and transversality condition will be necessary and
sufficient. (First order conditions refer to the first derivative conditions. Transversality conditions are a
bit more mysterious. Transversality conditions are terminal conditions and are necessary for optimization.
Since our model is an infinite horizon one, for us it is a condition on the tail of the sequence chosen, and
corresponds to condition (7) below.)

Assumption1[66, p. 1120]: The functionU : R
2
+ → R is increasing in both arguments, strictly concave,

andC2. Both c1t andc2t are assumed to be normal goods. Further, to guarantee interior solutions we will
assume

lim
c→0

U1(c, y − c) = lim
c→y

U2(c, y − c) =∞,

and thatU1(y, 0) <∞ andU2(0, y) <∞.
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The assumption thatU is increasing in both arguments embodies the notion that more is preferred to
less. Strict concavity implies (among other things) thatU11 < 0 andU22 < 0, which represents what
economists calldiminishing marginal utility. The extra enjoyment from more of each good is positive, but
diminishes as more of the good is consumed. Being anormal good simply means that, all else equal, if
the household has more income, more of the good will be consumed. The other assumptions on the partial
derivatives imply that if feasible, the household will choose0 < c1 < y and0 < c2 < y, i.e., the solution
will be interior. In the economics literature, these assumptions are fairly standard.

To solve the household’s constrained optimization problemthe Lagrangian method is used in [66]:

L =

∞∑

t=0

βt{U(c1t, c2t) + µt(mt − ptc1t) + λt[pt(y − c2t) + (mt − ptc1t)−mt+1 + θMt]}

where{µt, λt} are non-negative Lagrange multipliers. The first-order conditions and transversality condi-
tion for this problem are

U1(c1t, c2t) = pt(λt + µt), (4)

U2(c1t, c2t) = ptλt, (5)

λt = β(λt+1 + µt+1), (6)

0 = lim
t→∞

βtλtmt+1. (7)

Equations (4), (5) and (6) come from applying the method of Lagrange multipliers. Upon substituting
equations (4) and (5) into (6), we get

U2(c1t, c2t)/pt = βU1(c1t+1, c2t+1)/pt+1. (8)

This condition reflects that at the optimum, the household must be indifferent between spending a little more
on the credit good (giving a marginal benefitU2(c1t, c2t)/pt) versus savings the money and purchasing the
cash good in the next period (giving a marginal benefitβU2(c1t+1, c2t+1)/pt+1).

An equilibrium in the model is essentially a sequence of prices such that supply equals demand. More
formally, an equilibrium is by definition a collection of sequences{c1t, c2t, mt, Mt, pt}

∞
t=0 such that,

Mt+1 = (1 + θ)Mt (the money supply follows the stated policy rule),mt = Mt (demand for money
equals the supply of money) andc1t + c2t = y (demand for goods equals the supply of goods), and the
solution to the household optimization problem is given by{c1t, c2t, mt+1}

∞
t=0. Let xt := mt/pt. Then

using the conditions thatMt = mt andc2t = y − c1t, equation (8) implies

xtU2(c1t, y − c1t) =
β

1 + θ
xt+1U1(c1t+1, y − c1t+1). (9)

If the cash-in-advance constraint (2) holds, thenc1t = xt. If not, then the Lagrange multiplierµt = 0 and
c1t = c := arg maxx U(x, y − x). It then follows thatc1t = min[xt, c] for all t. Using this relationship we
can eliminatec1t andc1t+1 from (9) to get a difference equation inx alone:

xtU2(min[xt, c], y −min[xt, c]) =
β

1 + θ
xt+1U1(min[xt+1, c], y −min[xt+1, c])

or
B(xt) = A(xt+1), (10)

where

B(x) := xU2(min[x, c], y −min[x, c]),

A(x) :=
β

1 + θ
xU1(min[x, c], y −min[x, c]).
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Figure 2.

Figure 3.

See Figures 2 and 3 for illustrations of two possible configurations forA andB. There are three possible
configurations forA andB, which are called Type I, Type II, or Type III (respectively Case I, Case II,
Case III), depending on howA behaves. A Type I (Case I) configuration hasA(0) = 0, A increasing on
[0, b], decreasing on[b, c], and increasing on[c,∞). A Type II (Case II) configuration hasA(0) > 0, A
increasing on[0, b], decreasing on[b, c], and increasing on[c,∞). A Type III (Case III) configuration hasA
decreasing on(0, c], and increasing on[c,∞). For Case III, [66] takeb = 0; A may or may not be defined
at 0 in this case. One can show that there is a one-to-one mapping between equilibria in the model and
non-negative sequences{xt} that satisfy the difference equation (10) and transversality condition

lim
t→∞

βtU1(min[xt, c], y −min[xt, c])xt = 0.

Since the discount factorβ is assumed to be strictly between0 and1, any solution to the difference equa-
tion (10) that is bounded from above and from below by a strictly positive constant will satisfy the transver-
sality condition.
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Michener and Ravikumar use two more assumptions in their paper [66, p. 1125] which we give next
and briefly describe what they imply for the model.

Assumption2: There exists ab ∈ [0, c) such thatxU1(x, y − x) is increasing in the region[0, b) and
decreasing in the region(b, c].

This assumption is puts additional restriction on the utility function so that the functionA(·) is either
hump-shaped or monotonically decreasing on[0, c].

Assumption3: (a)(1 + θ) > β and (b)b < x∗.

These conditions guarantee the existence of a solutionx∗ > 0 to A(x∗) = B(x∗) and guarantee that
this intersection of the two functions occurs whenA(x) is decreasing.

Now we begin determining what all this means and reducing theproblem further. Consider the diffe-
rence equation

B(xt) = A(xt+1)

from above and recall that we are interested in the solutionsto the difference equation, which are sequences
x0, x1, x2, . . . of nonnegative real numbers satisfying the difference equation. BothA andB are continuous
functions from[0,∞) to [0,∞). The functionsA andB have the following properties:

1. WhileB is increasing and therefore one-to-one,A is not one-to-one.

2. For some positive numberc, bothA andB are linear on[c,∞) with positive slopes, and the slope of
A|[c,∞) is less than the slope ofB|[c,∞).

3. On some interval[0, b], (with b < c) the behavior ofA may be increasing withA(0) = 0 (case I), or
it may be increasing withA(0) > 0 (case II), orA may be decreasing on[0, c] (case III). For case III
we letb = 0.

4. On the interval(b, c], A is decreasing, withx ∈ (b, c) such thatA(x) = B(x).

Note that there are positive numbersx andx such that

B(x) = A(c),

B(x) = A(x)

and in case I and perhaps case II, there are positive numbersxb andxb such that

B(x̄b) = A(b),

B(xb) = A(x̄b).

Since the functionA is not one-to-one, the dynamics in the model given by the difference equation (10)
are not well-defined. However, sinceB is one-to-one,we can invertB and define the functionf(x) :=
B−1 ◦ A(x). This function gives the backward dynamicsxt = f(xt+1), maps[0,∞) to itself and inherits
the basic shape ofA. Consequently, even though the dynamics of (10) are not well-defined going forward
in time, the dynamics are well-defined goingbackward in time. In terms of thef function we have:

x := f(c),

x := f(x),

xb := f(b),

xb := f(x̄b).
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Figure 4. Case I

Remark 1 If b > 0, we haveA(x) ≤ A(b), which implies

B(x) = A(x) ≤ A(b) = B(xb).

SinceB is increasing, this impliesx ≤ xb.

Remark 2 If b > 0, we haveA(xb) ≥ A(c) (sincexb > b), which implies

B(x) = A(c) ≤ A(xb) = B(xb).

SinceB is increasing, this impliesx ≤ xb

In [66], it is shown that there are three generic possibilities forf in Case I where0 < b ≤ x:

I.A. x > c

I.B. x = c

I.C. x < c

See Figure 4 for an illustration of the three possibilities for Case I.
Michener and Ravikumar also show (see [66]) that there are three generic possibilities forf in Case II

wherex < b:

II.A. x ≤ xb < b < xb ≤ c.

II.B. x < b ≤ xb < xb ≤ c.

II.C. x < b < c < xb.

See Figure 5 for an illustration of these three possibilities for Case II.
The dynamics are not interesting in cases I.B, I.C, and II.B.The three-cycle proposition in [66, p. 1128]

assumes(1 + θ)c/β ≤ x̄. Since(1 + θ) > β (by assumption in [66]), these sufficient conditions for chaos
only cover cases I.A and II.C. [66] illustrate by an example that chaos is possible in case II.A.

Thus far, our work has dealt with caseI.A only. Cases I.B and II.B are the same and not interesting, and
case I.C is not interesting either. Case II.A is interestingand case II.C (sort of a combination of Cases I.A
and II.A) is interesting also. Cases II.A and II.C should be topics for future study.

Thus, we know quite a bit about the possible behavior ofA, B, andf . However, there is still much not
known: different choices ofA andB all satisfying the required conditions yield very different dynamical
behavior. Some choices lead to rather boring dynamical systems, and some lead to interesting ones.

47



J. Kennedy

Figure 5. Case II

One obvious equilibrium is the sequence(x∗, x∗, x∗, . . .), wherex∗ is the positive number such that
A(x∗) = B(x∗). We will call this thetrivial solution. There are many other solutions. For case I.A, note
that if a sufficiently largex0 is chosen, then the requirement thatA(x1) = B(x0) forcesx1 to be larger
thanx0, andx1 is unique. (See Figure 2.) Continuing, one sees that the solution (x0, x1, . . .) for that initial
condition is well-defined andlimt→∞ xt =∞. Likewise, if a sufficiently small positivex0 is chosen, then
x1 is smaller thanx0, and the solution(x0, x1, . . .) consists of a decreasing sequence of positive numbers
converging to0. We summarize the possibilities precisely in the followingpropositions.

As before, letx denote the unique positive number such thatB(x) = A(c). Let x denote the unique
positive number such thatB(x) = A(x). Then for the cases we consider,x < c < x.

Proposition 1 Consider caseI.A. If (x0, x1, . . .) is a solution toA(xt+1) = B(xt) such thatxbt < x for
somêt, then

[a] for t ≥ t̂, the choice ofxt+1 is unique, i.e.,xt+1 such thatA(xt+1) = B(xt) is unique;

[b] limt→∞ xt = 0; and

[c] xbt > xbt+1 > xbt+2 > · · · .

Proposition 2 For caseI.A, if (x0, x1, . . .) is a solution toA(xt+1) = B(xt) such thatxbt > x for some
t̂, then the choice ofxbt+1 may not be unique, but either

[a] limt→∞ xt =∞ and eventuallyxt < xt+1 < xt+2 < · · · , or

[b] limt→∞ xt = 0 and eventuallyxt > xt+1 > xt+2 > · · · .

It follows from the previous propositions that in case I.A solutions that contain members not in the
interval [x, x] exhibit simple behavior. Mathematically they are not very interesting. From an economics
perspective, they may not constitute an equilibrium (the transversality condition may be violated). If the
transversality condition is satisfied in these cases, then such equilibria are referred to as self-fulfilling in-
flations (xt → 0) and self-fulfilling deflations (xt → ∞). Moreover, a solution containing a member
not in [x, x] would be locked into one behavior-either its members would eventually increase without
bound, or they would eventually decrease to0. We can also conclude that solutions to (10) that satisfy
0 < x < xt < x̄ <∞ for all t will be an equilibrium in the model.

Note that the original model with its equilibria defined as a collection{c1t, c2t, mt, Mt, pt}
∞
t=0 of se-

quences that satisfy conditions (2)–(7) and Assumptions 1–3 has now been reduced to an implicitly defined
difference equation on an interval, and then to the functionf from the positive reals to the positive reals.
Althoughf has the “problem” of backward dynamics, the problem of understanding the model has certainly
been reduced. An equilibrium in the reduced model is now justa sequence of nonnegative numbers{xt}

∞
t=0
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such thatf(xt+1) = xt. Furthermore, since any equilibrium that contains a membernot in [x, x] behaves
in a simple and completely predictable manner dynamically,and is not good news economically (if it even
satisfies the transversality condition), we may as well restrict ourselves to the study of only those sequences
each member of which is in the interval[x, x]. We call the restricted version off , f , also. Thus, we are
down to studying interval dynamics (or are we?), although they are backward interval dynamics.

4 The Overlapping Generations model

The overlapping generations model (OLG model) is a type of economics model in which agents live a finite
amount of time and live long enough to endure into at least oneperiod of the next generations’ lives. The
concept of OLG was developed in 1947 by Maurice Allais and popularized by Paul Samuelson in 1958.
OLG models can have varying characteristics depending on the method of study but many models share
several key elements. (We thank Wikipedia for this nice list.)

• Individuals receive an endowment of goods at birth.

• Goods cannot endure for more than one time period.

• Money endures for more than one period.

• Individuals must consume in all periods and their lifetime utility is a function of consumption in all
periods.

• Individuals live for two periods—in the first period they arecalled the Young; in the second they are
the Old.

• A number of individuals is born in every period with the specific number born in a given periodt
denoted asNt. (Thus,N1 denotes the people born in period1.)

• The economy begins in period1, and in period1 there is a group of people who are already old. They
are the initial Old and are denoted asN0.

• There is only one good and it cannot endure for more than one period.

• Each individual receives a fixed endowment of the good at birth. This endowment is denoted asy.
It can also be thought of as an endowment of labor that the individual uses to work and create a real
income equal to the value of goody produced. Under this framework, individuals only work during
the young phase of their lives.

Next we sketch the OLG model derivation for the particular OLG model studied by Raines and Medio.
For more details, see [63].

In each generation, the young representative agent maximizes utility of consumption over the two-
period life, subject to the constraint that the total value of consumption must be no greater than the total
value of the endowments received. Also, the market clearingcondition holds, that is, the market for the
consumption good is always in equilibrium, which means herethat in each period the demand for the
consumption good from young and old is equal to the total supply, namely the total endowments, and that
perfect foresight holds, that is, agents’ expectations arealways fulfilled. Another assumption is that the
population is constant: for each period the number of Young is, say,N, which is also the number of Old,
and therefore the total population number is2N .

Let ct ≥ 0 be the young agent’s consumption at timet, and letdt ≥ 0 be the old agent’s consumption at
timet. Leteyng ≥ 0 be the young agent’s endowment andeold ≥ 0 be the old agent’s endowment. The basic
utility functions areu1 andu2, with u1 a function of the young agent’s consumptionct andu2 a function of
the old agent’s consumptiondt. Now define another utility functionU by U(ct, dt) = u1(ct) + u2(dt+1).
(Thus,U is formed by adding the respective basic utilities of the young and old agents.)
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Let pt ≥ 0 be theinterest factorat time t, that is, the exchange rate between present and future
consumption. Note thatdt andct must be nonnegative, because negative consumption makes nosense.
A mathematical formulation of the problem then is to maximize the functionu1(ct) + u2(dt+1) such
that dt+1 ≤ eold + pt(eyng − ct) and ct, dt+1 ≥ 0. The market clearing condition for all timet is
ct + dt = eyng + eold, that is, total consumption is equal to total income (endowment).

Economists are interested in studying the properties of infinite sequences ofct (or equivalently, ofdt,
satisfying the optimality conditions and market clearing condition. From the first order conditions of the
constrained maximization and the market clearing condition, it follows (some details are left out here—
see [63]) that the young agent’s optimal choice must satisfythe equationH(dt+1, ct) = U(dt+1)+V(ct) =
0 whereU(d) = u′

2(d)(eold − d) andV(c) = u′
1(c)(eyng − c).

Whether or not we can now derive a difference equation movingforward in time depends on whether
the functionU is invertible. Consider the following specific example:

u1(c) = ac− (b/2)c2; u2(d) = d

wherea andb are positive constants. In this case,U(d) = eold − d is of course invertible. For simplicity’s
sake and without loss of generality, we puteyng = 0 anda = b = µ. Theneold− dt+1 = ct+1 = Fµ(ct) =
µct(1 − ct), a much studied noninvertible map. Starting from an arbitrary initial conditionc0 ∈ [0, 1], this
equation determines sequences of young agents’ consumption forward in time. Applying the equilibrium
conditionct + dt = eyng + eold, the old agents’ consumption is determined as well.

The case on which Medio and Raines focus: Suppose that we now interchange the utility functions, so
thatu1(c) = c andu2(d) = ad − (b/2)d2 and then puteold = 0, eyng > 0. In this case, we can instead
write an equation

eyng − ct = dt = Fµ(dt+1) = µdt+1(1− dt+1)

so thatFµ now defines sequences of old agents’ consumption (and by implication, young agents’ consump-
tion) moving backward in time.

But now we have a problem. Economically, it means that to eachvalue of the young agent’s present
saving (endowment minus consumption) there may correspondtwo or more values of expected future con-
sumption that justify it—or, ifµ < 4, there may be none. (See Figure 6.) This problem will occur with
great generality whenever the functionU is noninvertible. Nor is it limited to this version of OLG butit
may also occur in two-dimensional models of OLG with production, i.e., models in which consumption is
produced by means of current labor and capital stock invested one period ago. In order to have a visual
insight of the nature of the problem wheneyng − ct = dt = Fµ(dt+1) holds, consider the figure (logistic
map), where we represent the curve of the functionFµ in the plane(dt+1, dt) and for simplicity’s sake
assume thatdmax = eyng.

Start at timet = 0, and suppose that our maximizing young agent considers the possibility of consum-
ing an amountc0 and thereby saving an amounteyng − c0 = d0. The preimage ofd0 ∈ [0, dmax = eyng],
F−1

µ (d0), consists of two points, the lesser of which we labeld0
1 and call low-level consumption and the

higher of which we labeld1
1 and call high-level consumption. Hence there are two levelsof future consump-

tion at time1 that would be allowed for the young agent at time0. This problem continues: At time2, there
are two levels of future consumption allowed for the young agent at time1, and so on. Ifd0 ∈ (eyng, 1],
then there is no preimage ofd0, that is,F−1

µ (d0) is empty.
Hence, not all sequences of consumption are admissible, that is, some choices lead to a sequence that

must at some point stop, because the preimage of the last member of the previously chosen finite sequence is
empty. Thus, we make the following definition: We say an infinite sequence{dt}

∞
t=0 is forward admissible

if dt ≥ 0 anddt = Fµ(dt+1) for all t ≥ 0.

5 Tools from mathematics

Both the CIA and OLG models studied have now been reduced to the study of a unimodal maph on an
interval J of the formh(xt+1) = xt for xt ∈ J . Both are thus well-defined backward in time, but not
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Figure 6. Backward moving mapFµ with µ < 4.

forward in time. In both cases, economists are not interested in one numberxt, but in entire sequences of
(x0, x1, . . .) such thath(xt+1) = xt for t a nonnegative integer, since these sequences form the equilibria
for both models. It occurred to all of us that the maph on the intervalJ was only part of the story: our
equilibria sit in the inverse limit spacelim

←−
(J, h). This is the space we should be studying: the dynamics on

it are intimately related to the dynamics ofh on J sinceh : J → J generateslim
←−

(J, h). Furthermore, we
have an induced homeomorphismh∗ on lim

←−
(J, h). And—a real bonus, topologists and dynamicists have

been studying these limit spaces for over 50 years, and thereis a vast literature we can just “plug into”. (See
references [6, 7, 8, 9, 10, 17, 18, 19, 23, 25, 38, 39, 40, 41, 42, 43, 45, 69, 71, 72, 73, 75] for a sampling.)

SupposeN denotes the positive integers andÑ denotes the nonnegative integers. Acontinuumis a
compact, connected metric space. IfX andY are continua, andY ⊂ X , thenY is asubcontinuumof X .
If Y is a subcontinuum ofX , butY 6= X , thenY is apropersubcontinuum ofX .

A chain is a finite sequenceG1, G2, . . ., Gn of open sets such thatGi intersectsGj if and only if
|i− j| ≤ 1. The open setsGi are thelinksof the chain. Themeshof the chain is the largest diameter of its
links. A continuum ischainableprovided for each positive integerǫ there is a chain cover ofM with mesh
less thanǫ. The unit interval is the most obvious example of a chainablecontinuum, but there are examples
that are much more interesting.

A continuum isdecomposableif it is the union of two of its proper subcontinua. If a continuum is
not decomposable, it isindecomposable. A reader not familiar with these objects might wonder whether
they exist. They do indeed, and are quite common occurrencesin chaotic dynamical systems. All in-
decomposable continua share certain structure. IfX is an indecomposable continuum andx ∈ X , then
Cps(x) = {y ∈ X : there is a proper subcontinuum ofX that contains bothx andy}; Cps(x) is called the
composantof x. The set of composants of an indecomposable continuum partitions the continuum into an
uncountable collection of mutually disjoint sets, each of which is dense in the continuum. Each composant
is like a “highway” in the continuum. The continuum is made from the collection of highways, each close
to any other but forever apart from the other.

A continuum with the property that every proper subcontinuum is an arc is called anarc continuum.
Note that a continuum can be both indecomposable and an arc continuum. A continuum can also be both
indecomposable and chainable. In the case of an indecomposable arc continuum, each composant of the
indecomposable arc continuum is an arc component. (IfX is an arc continuum, andx ∈ X , the arc
componentA(x) of the pointx is the set{z ∈ X : there is an arcPz in X that contains bothx andz}.) The
familiar Knaster bucket handle continuum, which is homeomorphic to the Smale horseshoe attractor, is a
chainable, indecomposable arc continuum. However, indecomposable arc continua need not be chainable—
the solenoids are indecomposable arc continua, but they arenot chainable. Likewise, indecomposable
chainable continua need not be arc continua. The pseudoarc is an indecomposable chainable continuum
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which contains no arcs. In fact, every proper subcontinuum of a pseudoarc is either a point or a copy of the
pseudoarc.

SupposeX is a compact metric space andf : X → X is continuous. The pointx in X is a peri-
odic point of periodn if fn(x) = x. If x is a periodic point of periodn, then itsorbit is O+(x) :=
{x, f(x), f2(x), . . . , fn−1(x)}. We can talk about the orbits of nonperiodic points, too: IfX is a met-
ric space andf : X → X is continuous, theorbit O+(x) of the pointx under the action off is the set
O+(x) = {x, f(x), f2(x), . . .}.

A subsetA of X is invariant underf if f(A) = A. (Hence the orbit of a periodic point is an invariant
subset ofX underf .)

Suppose thatX andY are metric spaces,f : X → X is continuous andg : Y → Y is continuous. If
there is a homeomorphismh : X → Y such thath ◦ f = g ◦ h, thenf andg are said to beconjugate.
Whenever two maps are conjugate, their dynamics are equivalent. A weaker condition is that of semi-
conjugacy: If there is a continuous onto maph : X → Y such thath ◦ f = g ◦h, thenf andg are said to be
semi-conjugate, andf factors overg. If two maps are semi-conjugate, their dynamics are related, but not
necessarily equivalent.

A subsetA of a a complete, separable metric spaceX is residualin X if A contains a denseGδ subset
of X . A subsetM of X is nowhere densein X provided the interior of the closure ofM in X is empty.M
is meagerin X if M is a countable union of nowhere dense subsets ofX . The complement of a meager set
in a complete separable metric space is a residual set of thatspace.

Suppose thatK is a compact, metric space, andh : K → K is continuous. If there is a pointp which
has a dense orbit inK under the action ofh, then there is a residual set of points inK each of which has
its orbit dense inK. We say thath is transitive if there is a pointp in K which has its orbit dense inK.
The maph is transitive if and only if it has the following property: ifu andv are nonempty open subsets
of K, then there is some integern such thathn(u) ∩ v 6= ∅. The maph hassensitive dependence on
initial conditionson the invariant closed subsetH of K if there is some positive numberr such that for
each pointx in H and for eachǫ > 0, there is a pointy in H with d(x, y) < ǫ and an integerk ≥ 0 such
thatd(hk(x), hk(y)) ≥ r. The maph is chaotic in the sense of Li and Yorkeif h has sensitive dependence
on initial conditions onK. The maph is chaotic in the sense of Devaneyif

1. there is a pointp in K which has its orbit dense inK,

2. the set of periodic points inK is dense inK, and

3. h is sensitive to initial conditions at each point ofK.

If X is a metric space andf : X → X is continuous,f is transitive, and the set of periodic points of
f is dense inX , thenf has sensitive dependence on initial conditions [5]. Thus, Devaney’s last condition
is redundant. Rob Roe [75] has shown that ifX is a finite tree andf : X → X is continuous and has
a dense orbit, thenf is chaotic in the sense of Devaney. (Note that Roe’s assumption thatX be a tree is
important: An irrational rotation on a circle forms a dynamical system in which every orbit is dense, but it is
not chaotic and it does not have any periodic points.) Thus, for a map from an interval to itself, condition 1
above implies that the map is chaotic in the sense of Devaney.

Suppose thatx is a fixed point off (i.e., f(x) = x). We say thaty is homoclinicto the fixed pointx
if there isy 6= x such thatfn(y)→ x and there is a choice of inverse imagesf−1(y), f−2(y), . . . with
f−n(y)→ x. If x is a periodic point of periodn underf , we say thaty is homoclinicto x if y is homoclinic
to x underfn.

Let f : I → I be a continuous map on an intervalI such thatI = [a, b]. We say thatf has a (one-
dimensional)horseshoeif there are disjoint subintervalsI0 andI1 of I andn0 ∈ N such thatI0 ∪ I1 ⊂
fn(I0) andI0 ∪ I1 ⊂ fn(I1).

The notion of topological entropy involves the concept of an(n, ǫ)-separated set. Letf be a continuous
map on a compact metric spaceX with metric d. Let A, E ⊂ X . We say thatE is (d, ǫ, A)-spanning
if E is finite and for everyy in A, there exists anx ∈ E such thatd(x, y) < ǫ. Givenf , for n ∈ Ñ,
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we define a new metricdf
n on X given bydf

n(x, y) := max0≤i≤n−1 d(f i(x), f i(y)). For n ∈ Ñ and
ǫ > 0, let S(df

n, ǫ, A) denote the minimum cardinality of all(df
n, ǫ, A)-spanning sets. Then define for

A ⊂ X , h(f, A, ǫ) = lim supn→∞(1/n)[logS(df
n, ǫ, A)]. Thetopological entropy off onA is defined by

h(f, A) = limǫ→0 h(f, A, ǫ). Thetopological entropy off is defined byh(f) = h(f, X).
A continuumX has thefixed point propertyif for every continuous functionh from X to itself, there is

a pointp in X such thath(p) = p.
A map of an interval onto itself is calledMarkov if there is a finite invariant setA containing the end

points of the interval such that ifp andq are consecutive members ofA, then the restriction of the map to
[p, q] is monotone.

A topological rayis a locally compact, connected metric spaceR containing a pointO such thatR\{O}
is connected, and ifp ∈ R, butp 6= O, thenR\{p} is the union of two disjoint connected sets.

Unfortunately, there is no commonly accepted definition of the word “attractor”, and to make matters
worse, Kennedy-Stockman-Yorke use the word one way and Medio-Raines use it another way. LetX be a
complete separable metric space andf : X → X be continuous. LetA ⊆ X such thatA is a closed invariant
set. We sayA is anattractor for X if there is an open setO such thatA ⊆ O and∩∞n=0f

n(O) = A. This
is how Kennedy-Stockman-Yorke use the word.

Now for the Medio-Raines version: Again, letf : X → X be a continuous map on the metric space
X . Theω-limit set of a pointx of X is defined to beωf (x) = ∩i≥0{fm(x) : m ≥ i}. If A is closed and
invariant underf , then thebasin of attraction ofA is defined to beB(A) = {x ∈ X : ωf (x) ⊆ A}, andA
is called atopological attractorprovidedB(A) contains a residual subset of an open subset ofX and there
is no closed invariant subsetA′ of A for whichB(A) andB(A′) coincide up to a meager set. However,A
is ametric attractorprovidedB(A) has positive measure and there is no closed invariant subsetA′ of A for
whichB(A) andB(A′) coincide up to a set of measure zero. An attractorA is Liapunov stableprovided
there are arbitrarily small neighborhoodsO of A such thatf(O) ⊆ O. If A is Liapunov stable and its basin
of attraction is open and nonempty, thenA is asymptotically stable.

A map of a continuum to itself ismonotoneprovided each point inverse is a continuum. A piecewise
monotone function on an interval[a, b] is expandingif wheneverx < y andf is monotone on[x, y], then

|f(y)− f(x)|

|y − x|
> 1.

If [a, b] = [r0, r1] ∪ [r1, r2] ∪ · · · ∪ [rn−1, rn] andf is strictly increasing or strictly decreasing on each
subinterval[ri−1, ri], let T = {J0, J1, . . . , J2n}, whereJ2i = {ri} for 0 ≤ i ≤ n, andJ2i+1 = (ri, ri+1)
for 0 ≤ i ≤ n− 1. We sayx andy havedifferent itinerariesif fn(x) andfn(y) are in different members
of T for somem ≥ 0. A piecewise monotone map on an interval[a, b] is weakly expandingif, whenever
x 6= y in [a, b], x andy have different itineraries.

A mapf of an interval[a, b] onto an interval[d, e] is unimodalprovidedf is not monotone, and there
is a pointc in (a, b) such thatf |[a,c] andf |[c,b] are both monotone. The pointc is called theturning point
for f . The mapf is aType (1)unimodal map iff(b) = a. Several families of tent maps (piecewise linear
unimodal maps) and logistic maps (of the formFµ(x) = µx(1 − x)—such as those associated with the
OLG model) have been extensively studied by a number of authors. (See [8, 6, 39, 43], for example.)

Type (1) unimodal maps go up and then come down; members of ourCIA family of maps go down and
then come up. This is not a problem: we can “flip” our map over soas to more easily use the results in the
literature. Also, translating to[0, 1] from the interval[x, x] ⊂ (0,∞) (via a conjugacy) is easy. Thus, our
CIA interval maps are all conjugate to type (1) unimodal maps.

In the OLG work, the following definitions are used: Letf be continuous with domain[0, 1]. Then we
say thatf is

(1) a type Aunimodal map providedf is unimodal on[0, 1] with turning pointc, f(0) = 0 andf(c) ≤ 1,

(2) a type Bunimodal map providedf is unimodal on[0, 1] with turning pointc, f(0) > 0 andf(c) ≤ 1,
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(3) a type Cunimodal map provided there is a pointc ∈ (0, 1) such thatf |[0,c] is strictly increasing,f |[c,1]

is strictly decreasing, andf(c) > 1.

Supposef : [a, b] → [a, b] is continuous and onto. We sayf hasfinitely many turning pointsif there
exists a finite set{a0, a1, . . . , an}, a = a0 < a1 < · · · < an = b such thatf is monotone on[ai−1, ai] for
i = 1, . . ., n, butf is not monotone on any interval in[a, b] properly containing some[ai−1, ai]. Members
of the set{a1, . . . , an−1} are theturning pointsfor f .

Let, for eachm ∈ Ñ, Xm be a nonempty metric space, andfm denote a continuous map fromXm+1 to
Xm. The pair(Xm, fm) is called aninverse sequenceor inverse system. The spacesXm are calledfactor
spaces, and the mappingsfm are calledbonding maps.

Suppose(Xm, fm) is an inverse sequence. Theinverse limitof the inverse sequence is denoted by
lim
←−

(Xm, fm) and is defined as the subset of the product space
∏

m∈N
Xm, to which the pointx (with

n-th coordinatexn) belongs if and only iffm(xm+1) = xm, for eachm ∈ N. If m ∈ N, the map
πm :

∏
n∈N

Xn → Xm defined byπm(x) = xm is called theprojection map(or, if specificity is required
them-th projection map).

We note that inverse systems and inverse limits can be definedfor a much broader class of spaces (here
we limit ourselves to metric spaces) and indexing sets (herewe use the nonnegative integers for indexing),
but the definitions above are sufficient for our purposes. In fact,except when we are talking about subsets
of inverse limits, our inverse limit spaces here are all generated with the space a closed intervalJ , and the
map a continuous mapf : J → J (so just one bonding map), so our inverse limit spaces are of the form
lim
←−

(J, f). Some useful background theorems we need about the properties of inverse limit spaces are given
below. The theorem statements and many of their proofs can befound in [38, 69], and other books. There
aremanymore such theorems.

Theorem 1 If (Xm, fm) is an inverse sequence and eachXm is compact, then its inverse limit is a
nonempty compact metric space contained in

∏
m∈N

Xm. If (Xm, fm) is an inverse sequence and for
eachm ∈ N, Xm is a continuum, then the inverse limit of the inverse sequence is a continuum. If(Xm, fm)
is an inverse sequence and eachXm is a chainable continuum, thenlim

←−
(Xm, fm) is a chainable continuum,

is of topological dimension 1, can be embedded in the plane, and has the fixed point property.

Theorem 2 If (Xm, fm) is an inverse sequence andX = lim
←−

(Xm, fm), thenπm|X : X → Xm is con-
tinuous.

Theorem 3 If (Xm, fm) is an inverse sequence, andX is the inverse limit of the inverse sequence, then
for eachm < n ∈ N, πm|X = fm ◦ fm+1 ◦ · · · ◦ fn−1 ◦ fn ◦ (πn|X). (Often the composition map
fm ◦fm+1 ◦ · · ·◦fn−1 ◦fn is denotedfn

m andfm
m is used to denote the identity onXm. The notation makes

bookkeeping easier.)

Theorem 4 If α1, α2, . . . is a sequence of arcs each of which is a proper subset of a continuumX such
thatα1 ⊂ α2 ⊂ α3 ⊂ · · · , the pointO is a common endpoint ofα1, α2, . . ., R = α1 ∪ α2 ∪ α3 ∪ · · · , and
no point ofαn belongs toR\αn+1, thenR is a ray.

Theorem 5 If (Xm, fm) is an inverse limit system such that for eachm, Xm is a compact metric space
andfm is a homeomorphism, then the inverse limit of the inverse system is a compact metric space homeo-
morphic to eachXm. Note that it follows that if eachXm is [0, 1] and eachfm is a homeomorphism from
[0, 1] onto[0, 1], then the inverse limit of the inverse system is an arc.

Theorem 6 (Subcontinua) Suppose(Xm, fm) is an inverse limit sequence. If, for eachm, Km is a
subcontinuum ofXm andfm(Km+1) = Km, thenlim

←−
(Km, fm|Km+1

) is a subcontinuum oflim
←−

(Xm, fm).

To repeat: IfX is a compact metric space, andf is a continuous map fromX to X , then(Xm, fm),
whereXm = X andfm = f for each positive integerm, is an inverse system. With the simpler counting
here, we can denote the corresponding inverse limit bylim

←−
(X, f) and not have problems with ambiguity.
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LetX∗ = lim
←−

(X, f). In this case, a natural map is induced on the inverse limit space by the bonding mapf :
for x = (x0, x1, . . .) ∈ X∗, definef∗(x) = f∗((x0, x1, . . .)) = (f(x0), f(x1), . . .) = (f(x0), x0, x1, . . .).
The induced mapf∗ is a homeomorphism fromX∗ ontoX∗. The inverseg := f∗−1

of f∗ is then defined
by g(x) = g((x0, x1, . . .)) = (x1, x2, . . .). Thus, the pair(X∗, f∗) forms a dynamical system, one that
runs both forward and backward. Both the induced mapf∗ and its inverse are traditionally called the
shift homeomorphisms. Note that we have, in a sense, “turned” a continuous mapf on a spaceX into a
homeomorphismf∗ on a possibly more complicated spaceX∗. Note also that the mapf onX determines
the inverse limit space itself. How complicated topologically the inverse limit space is, is a measure of the
complexity of the dynamics of the original map onX . Because we are concerned here with the problem of
backward dynamics, and(f∗)−1 := σ is the homeomorphism that takes us forward in time,we reserve the
use of the word “shift” in this paper to mean(f∗)−1 := σ.

A nice, well written introduction to inverse limits on an interval with one bonding map is given in [43],
along with an investigation of the relationship between thecomplexity of the topology of the inverse limit
space and the complexity of the dynamics on the resulting inverse space.

The theorems below are due to Tom Ingram.

Theorem 7 ([39]) Supposef is a Type(1) unimodal mapping of an interval[a, b] with critical point c
onto itself, andq is a point in(c, b] such thatf2(q) = q andf(a) = q. Then the inverse limit of the inverse
limit system([a, b], f) is the union of two Knaster bucket handle continua intersecting at a point or an arc.

Theorem 8 ([39]) Supposef is a Type(1) unimodal mapping of an interval[a, b] onto itself andq is the
first fixed point forf2 in [c, b]. Thenf has a periodic point of odd period greater than1 if and only if
f2(b) < q.

Theorem 9 ([39]) Supposef is a Type(1) unimodal mapping of an interval[a, b] onto itself andq is the
first fixed point forf2 in [c, b]. Thenlim

←−
([a, b], f) is indecomposable if and only iff(a) < q.

Theorem 10 ([ 39]) Supposef : X → X and g : X → X are conjugate. Then their inverse lim-
its lim
←−

(X, f) and lim
←−

(X, g) are homeomorphic. Furthermore, ifF is the induced homeomorphism on
lim
←−

(X, f) andG is the induced homeomorphism onlim
←−

(X, g), thenF andG are conjugate, as are their
respective shift maps.

Theorem 11 ([39]) If I denotes an interval and(I, f) is an inverse system such thatf is a homeomor-
phism, then the inverse limit of the inverse system is homeomorphic to an arc.

Theorem 12 ([40]) Supposef : [a, b] → [a, b] is a continuous mapping,a is periodic of periodn ≥ 3
underf andb is in O+(a). If k is an integer such thatfk(a) is the first member ofO+(a)\{a}, andn andk
are relatively prime, thenlim

←−
([a, b], f) is an indecomposable continuum. (Note:fk(a) is the first member

of O+(a)\{a}means first relative to the order on the interval[a, b].)

Theorem 13 ([41]) Supposef : [a, b]→ [a, b] is a continuous mapping and is a Markov map with Markov
partition a = a1 < a2 < · · · < an = b for n ≥ 3 andO+(a) = {a1, a2, . . . , an}. If k is an integer,k < n,
such thatfk(a) = a2, andn andk are relatively prime, thenlim

←−
([a, b], f) is an arc continuum.

Barge and Martin [11] show that if the dynamics off are complicated, then the inverse limit contains
indecomposable continua, and they give a partial converse under certain conditions onf .

Theorem 14 ([11]) Let I = [a, b], f : I → I be continuous,X = lim
←−

(I, f), and F be the induced
homeomorphism. Supposek andn are integers withk ≥ 0, n ≥ 1, and thatf has a periodic point of power
2k(2n + 1), i.e., not a power of2. ThenX contains an indecomposable continuum that is invariant under
F 2k+1

.

Theorem 15 ([11]) Supposef : I → I is continuous and onto with finitely many turning points. If
lim
←−

(I, f) is indecomposable, thenf has a periodic point whose period is not a power of2.
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Theorem 16 ([11]) Supposef : [a, b] → [a, b] is continuous andX = lim
←−

([a, b], f). If f has a point
homoclinic to a periodic point thenX contains an indecomposable continuum.

Barge and Diamond [7] prove the following:

Theorem 17 ([7]) Supposef : X → X is continuous with finitely many turning points, andX is a finite
graph (e.g.,X is an interval). Then the following are equivalent:

(a) The entropyh(f) > 0.

(b) The inverse limitlim
←−

(X, f) contains an indecomposable continuum.

(c) The functionf has a horseshoe.

(d) There existr, M ∈ N such that form ≥M , f has a periodic point of prime periodrm.

6 Results

6.1 CIA model—topology and dynamics

In their paper [66], the economists Michener and Ravikumar noted the Li-Yorke paper [60], show that the
mapf (from our discussion of the CIA model) can admit a period three point and also that it can admit a
period 6 point, and conclude that whenever a period three point is present, this means the presence of chaos
(in the sense of Li and Yorke). Michener and Ravikumar also cited the Sarkovskii Theorem and noted that
presence of a period three point forf meant that periodic points of all periods would be present. They
essentially left it at that.

We note that while Kennedy and Yorke are mathematicians, Stockman is an economist. We can sum-
marize our work in [54], [55], and [53] as follows: We show that the dynamical and topological behavior
of the family of case I.A CIA maps we study is quite rich. As faras we can see now, it is just as rich as that
of any of the extensively studied families of unimodal maps and inverse limits formed from those maps,
although there is certainly work left to be done here, if one is to fully characterize this family.A result that
economists found surprising was that the inverse limit space could be as simple as an arc, which would
mean that the induced homeomorphism would be a homeomorphism on that arc, and that therefore, even
though the map is not one-to-one, it would induce simple and completely understandable dynamics. One
thing that bothered us about the Michener-Ravikumar paper was that [66] tried to understand the forward
behavior of the system by looking exclusively at sequences of the form (. . . , x−2, x−1, x0), that is, they
looked backward in time (where the CIA map is well-defined). While one can obtain some information this
way, such as, for example, knowledge of the periodic points,is looking at only the backward sequences
going to fully reveal the properties of the system? In [53], we proved that, at least in the chaotic case, it
essentially is OK to do this, i.e., to just study the backwardsequences. We have also given a characterization
of the utility functionU in terms of the interval mapf . This makes it easy to use either the utility mapU
or the backward mapf to produce examples and results. We provide more specifics below.

We focus on the intervalJ = [x, x] (and case I.A) from now on, since any solutions that contain apoint
outside this interval behave in a simple way. Note thatf |J : J → J is surjective. We denotef |J as justf ,
since it should not lead to confusion.

If we consider the mapf : J → J and form the inverse limitX = lim
←−

(J, f), X is a chainable continuum
and can therefore be realized as a subset of the plane. The points ofX are precisely the solutions of the im-
plicitly defined difference equationA(xt+1) = B(xt) that stay inJ . Denote byF the homeomorphism in-
duced onX by f . Thus, forx = (x0, x1, . . .) ∈ X , F (x) = F (x0, x1, . . .) = (f(x0), f(x1), f(x2), . . .) =
(f(x0), x0, x1, . . .). Let σ = F−1, so thatσ is the shift map, and noting this, we denoteF−1 by σ.

The proofs can be found in [53], [54], and [55]. Since the proofs appear elsewhere, we do not include
them here. Note that in the theorem below, we are back to representingU as a function ofc1 andc2. Under
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equilibrium conditions, it is the case thatc1t + c2t = y for all t (that is, amount spent on cash goods plus
amount spent on credit goods is the total endowmenty), and it makes sense to writeU as a function of just
one variable.

Theorem 18 ([55]) In the CIA model,f is a typeI.A backward map generated by a utility function
U(c1, c2) satisfying Assumption1 (of [66]) with 0 < β̃ < 1 if and only if f is a typeI.A map satisfy-
ing

1. for x1 ≥ x2, f is linear with slope0 < β̃ < 1 with x2 = c/β̃,

2. f is C1 on [x, x]\{x1, c, x2}, wherex < x1 < c is the unique solution tof(x) = c,

3. for x ∈ {x1, c, x2}, f ′(x+) andf ′(x−) exist, are non-zero with

f ′(x−
1 )

f ′(x+
1 )

=
f ′(x+

2 )

f ′(x−
2 )

, and

4. xf ′(x) < f(x) for x ∈ [c, x2].

In [53], we give meaning tof−1 being chaotic, even thoughf−1 is not a function. We also define
what it means forf−1 to have positive entropy. Those definitions are long, technical, and given in the
inverse limit setting, and we do not include them here, but wenote that it follows from results of Li [59]
and Casanovas [21] that the induced homeomorphismF and shift mapσ on the inverse limit space must be
chaotic if and only iff is chaotic, andf has positive entropy if and only ifF andσ have positive entropy.

Theorem 19 ([53]) SupposeX is a compact metric space andf : X → X is continuous. Thenf−1 is
chaotic (in the sense of Devaney) if and only iff is chaotic onX .

Theorem 20 ([53]) SupposeX is a compact metric space andf : X → X is continuous. Thenh(f) =
h(f−1). Thus,f−1 has positive entropy if and only iff has positive entropy.

Applying the results discussed in the previous section, we see that if{x, x, c} forms a period three orbit
for f , X is an indecomposable continuum. Furthermore, it follows from Sarkovskii’s Theorem thatf has
periodic orbits of all periods; and therefore,σ : X → X admits periodic orbits of all periods. However,f
may be chaotic only on an invariant Cantor set contained in the interval, or it may have dense set of periodic
points (and thus be chaotic on the entire interval), or perhaps it could be something in between. We show
that the first two cases can occur.

Most likely f is contracting on[c, x], and we make that assumption in our examples. Iff is expanding
on [x, c], and that expansion is large enough to dominate the contraction on the rest of the interval, thenf2

is expanding on the entire interval, and it follows from results of Baldwin [4] that the set of periodic points
in the interval is dense, andf is conjugate to the piecewise unimodal mapG on [0, 1] such thatG(0) = 1/2,
G(1/2) = 1, andG(1) = 0.

Example 1 ([54], Indecomposable Inverse Limit with Period T hree Point and Dense Set of
Periodic Points) We give an example of a mapf in our allowed family of maps (for convenience we have
shifted the interval from[x, x] to [0, 1]) such that0 and1 are part of a period three orbit forf , andf has a
dense set of periodic points. Definef : [0, 1]→ [0, 1] as follows:

f(x) =






−20

9
x + 1 if 0 ≤ x ≤ 0.45

9

11
x−

(0.45)2

.55
if 0.45 ≤ x ≤ 1

Thenc := 0.45, f ′|[0,0.45] = −20
9 , f ′|[0.45,1] = 9

11 . Note thatf is continuous and{0, 0.45, 1} is a period3
point. Also,f is conjugate to the piecewise unimodal mapG on [0, 1] such thatG(0) = 1/2, G(1/2) = 1,
andG(1) = 0.
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Theorem 21 ([54]) Defineg : J → J as follows:g(x) = x, g(x) = x+x

2 , g(x+x

2 ) = x, g is decreasing

and linear on[x, x+x

2 ] andg is increasing and linear on[x+x

2 , x]. Let c = x+x

2 . h : J → J , x < c < x,
andh(x) = x, h(x) = c, andh(c) = x (so that{x, c, x} forms a period three orbit inK). Furthermore,
supposeh is strictly decreasing on[x, c] and strictly increasing on[c, x], andh2 is expanding on[x, x].
Thenh is weakly expanding on[x, x]. It follows thath is weakly expanding onK, h is conjugate tog, and
we may completely understand the dynamics ofh onK by considering the simpler piecewise linear mapg.
Furthermore, the orbit of some point inK (under the action ofh) is dense, and it must be the case that

1. there is a residual set of points inK each of which has an orbit dense inK,

2. the set of periodic points inK is dense inK, and

3. h is sensitive to initial conditions at each point ofK

Hence,h is chaotic in the sense of Devaney onK. Then if Y = lim
←−

(K, h), Y is an indecomposable
continuum and it is also an arc continuum. (ThusY is an indecomposable continuum, but it is rather
simple for this class of continua in that it contains no indecomposable proper subcontinua.) LetH denote
the homeomorphism induced byh onY , and letσ = H−1. It follows immediately that, under the action of
σ, the set of points inY that have dense orbits inY is a residual subset ofY , the set of periodic points in
Y form a dense subset ofY , andσ is sensitive to initial conditions inY . In other words,σ is chaotic in the
sense of Devaney onY .

It is not possible to picture completely an indecomposable continuum, and it is very difficult even
to picture pieces of more than one composant. The application of an algorithm developed by Beverly
Diamond and Karen Brucks [6] makes it possible to draw, with the help of a computer, accurate pictures of
the developing continuum (or at least one composant of such acontinuum) for an inverse limit space on an
interval with one bonding map. For a nice picture of this “period three” continuum, see Nadler’sContinuum
Theory[69, Fig. 1.10, page 8].

Now suppose that the expansion on[x, c) does not dominate the contraction on(c, x]: Suppose there
is an intervalL = [x, d] in [x, c) such thath3(L) ⊂ [x, d). (This might happen if, say, the maxx of h
corresponds to the local maximum value of the original (caseIA) h defined on[x, c).) In this case the
period three orbit{x, x, c} is attracting for an open set of points in the interval:

Theorem 22 ([54]) Supposef : [x, x]→ [x, x] is continuous and has the following properties:

1. f(x) = x, f(x) = c (wherex < c < x), andf(c) = x;

2. there isd ∈ (x, c) such thatf |[x,d] is linear with negative slope−m1 and0 < m1 < 1;

3. f |[d,c] is linear with negative slope−m2;

4. f |[c,x] is linear with positive slopem3 < 1; and

5. m2m3 > 1 andm1m2m3 < 1.

Then{x, c, x} is an attracting period3 point forh and the basinB of attraction of{x, c, x} is dense in the
interval [x, x] and contains[x, d]. Furthermore,C := [x, x]\B is a Cantor set,f(C) = C, andC contains
periodic points of all periods.

Example 2 ([54], Indecomposable Inverse Limit with Period T hree Attracting Orbit) The the-
orem above is not vacuous, i.e., such a mapf exists in our family of maps. Supposex = 0 andx = 1
(we can translate later to change the interval without changing the dynamics). Definef : [0, 1]→ [0, 1] as
follows:

f(x) =





1− (0.1)x, if 0 ≤ x ≤ 0.1
−99

35
x +

99(0.45)

35
if 0.1 ≤ x ≤ 0.45

9

11
x−

(0.45)2

.55
if 0.45 ≤ x ≤ 1
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Thend = 0.1, c = 0.45 ,m1 = 0.1, m2 = 99/35, m3 = 9/11. Note thatf is continuous and{0, 0.45, 1}
is a period3 point. Also,m2m3 = 81/35 > 1 andm1m2m3 = 81/350 < 1.

Corollary 1 ([ 54]) Supposef : [x, x] → [x, x] is continuous and satisfies the properties of the previous
theorem. (The notation used for the theorem also applies here.) Then there is a continuous maph : [x, x]→
[x, x] with the following properties:

1. h(x) = x, h(x) = c (wherex < c < x), andh(c) = x;

2. h(x) = f(x) for x ∈ [d, x];

3. h([x, d]) = f([x, d]); and

4. h|[x,c) is smooth and strictly decreasing.

Then{x, c, x} is an attracting period3 point and the basinBh of attraction of{x, c, x} is dense in the
interval [x, x] and contains[x, d]. Furthermore,Ch := [x, x]\Bh is a Cantor set,h(Ch) = Ch, andCh

contains periodic points of all periods.

Requiringh|[d,c] to be linear seems to be a strong requirement, but it could undoubtedly be weakened
and the result would still hold.

Next we show that the two Knaster bucket handle case can occur:

Example 3 ([55], Two Knaster Bucket Handle Inverse Limit ) Letf : I → I where

f(x) =





m1 + m2x if x ∈ [a, d]

n1 + n2x if x ∈ [d, c]

p1 + p2x if x ∈ [c, b]

,

with I = [a, b], a = 1, b = 2, c = a + (2/7)(b − a), d = (2/3)a + (1/3)c, n2 = −1, m2 = −(b − a −
c + d)/(d − a), m1 = b −m2a, n1 = a − n2c, p2 = a/(c + 24/5), p1 = (24/5)p2. This map satisfies
Ingram’s Theorem9 so that the resulting inverse limit space is two Knaster bucket handles joined at a point
or an arc. Sincelim

←−
(I, f) contains an indecomposable continuum, by Barge and Diamond’s Theorem19,

f must have positive topological entropy andf contains a horseshoe.

Figure 7 illustrates a map on an interval conjugate to a member of our family that has simple dynamics.
(It has been flipped and translated to the unit interval.) Theinverse limit space is an arc or a double
topologist’ssin(1/x) curve in this case (which of these we get depends on how[0, e] and[d, 1] interact for
the map under the action off ), and the dynamics are therefore simple, even though forward in time the
corresponding map from our family is not well defined. (See [43] for a picture of the double topologist’s
sin(1/x) curve.)

Theorem 23 ([54]) Suppose0 < e < c < a < b < d < 1, and supposef : [0, 1] → [0, 1] has the
following properties:

(a) f([a, b]) = [e, d],

(b) f |[c,1] : [c, 1]→ [0, 1] is one-to-one, onto, and decreasing,

(c) f |[0,c] is increasing, and

(d) f(c) = 1, f(0) = d = f(a), f(b) = e, f(1) = 0.

Thenlim
←−

([0, 1], f) is either an arc or a double topologist’ssin(1/x) curve.
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Figure 7.

Example 4 ([54], Inverse Limit an arc) A mapf satisfying the hypotheses of Theorem23 exists such
that the inverse limit spaceZ is an arc. The map is also conjugate to a member of our cash-in-advance
family of maps: Supposee = 0.2, c = 0.6, a = 0.7, b = 0.8, and d = 0.9. There is a function
g : [0.7, 0.8] → [0.2, 0.9] such that(i) g′(0.7) = g′(0.8) = −1, (ii) g′(x) < 0 for x ∈ (0.7, 0.8), and
(iii) g(0.7) = 0.9, g(0.8) = 0.2. Definef : [0, 1]→ [0, 1] as follows:

f(x) =






x

6
+ 0.9, if 0 ≤ x ≤ 0.6

−x + 1.6, if 0.6 ≤ x ≤ 0.7

g(x) if 0.7 ≤ x ≤ 0.8

−x + 1 if 0.8 ≤ x ≤ 1

Thenf is continuous on[0, 1] and satisfies the hypotheses of Theorem23. Note thatf2([0, 0.2]) =
f([0.9, 28/30]) = [1/15, 0.1] ⊂ [0, 0.2] and f2(x) = f(x/6 + 0.9) = 0.1 − x/6 for x ∈ [0, 0.2].
Also,f2([0.9, 1]) = f([0, 0.1]) = [0.9, 55/60] ⊂ [0.9, 1] and f2(x) = f(1 − x) = −x/6 + 64/60 for
x ∈ [0.9, 1]. Hence,I1 := ∩∞n=0f

2n([0, 0.2]) consists of one point, as doesI2 := ∩∞n=0f
2n([0.9, 1]) 6= ∅.

Example 5 ([54], Inverse Limit a Double Topologist’s Sin(1/x)) A mapf satisfying the hypothe-
ses of Theorem23exists such that the inverse limit spaceZ is a double topologist’ssin(1/x) curve. The map
is also conjugate to a member of our cash-in-advance family of maps: Supposee = 0.4, c = 0.5, a = 0.6,
b = 0.7, andd = 0.8. There is a functiong1 : [0.5, 0.85]→ [0.275, 1] such that(i) g1 is continuously differ-
entiable on[0.5, 0.85], (ii) g′1(x) < 0 for x ∈ [0.5, 0.85], (iii) g1(0.5) = 1, g1(0.6) = 0.8, g1(0.7) = 0.4,
g1(0.85) = 0.275, and(iv) g′1(0.85) = −2.5. There is a functiong2 : [0.95, 1]→ [0, 0.025] such that(i) g2

is continuously differentiable on[0.95, 1], (ii) g′2(x) < 0 for x ∈ [0.95, 1], (iii) g2(0.95) = .025, g2(1) = 0,
and(iv) g′2(0.95) = −2.5. Definef : [0, 1]→ [0, 1] as follows:

f(x) =





0.4x + 0.8, if 0 ≤ x ≤ 0.5

g1(x) if 0.5 ≤ x ≤ 0.85

−
5

2
x + 2.4 if 0.85 ≤ x ≤ 0.95

g2(x) if 0.95 ≤ x ≤ 1
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Thenf is continuous on[0, 1] and satisfies the hypotheses of Theorem23. Note thatf2(0.85) = 0.91
andf2(0.91) = 0.85. (In fact, each point in the interval[0.85, 0.91] is a period two point forf2.) Thus,
[0.85, 0.91] ⊂ ∩∞n=0f

2n([0.85, 0.95]) andI2 is an interval in this case. Hence,I1 := ∩∞n=0f
2n([0, 0.2])

must be an interval, too. Then the inverse limit space for this example is a double topologist’ssin(1/x)
curve.

We have shown that the inverse limit spaces from different members of our family of maps on an interval
can behave quite differently, both topologically and dynamically. There are many more possibilities and
we conjecture, although much remains to be done here, that all possibilities which follow from the body of
tools for inverse limits developed in the last fifty or so years can occur:

1. Tom Ingram’s theorems (Theorems 9–13) can all be satisfiedfor maps conjugate to many members
of the family of maps for our cash-in-advance model. Thus, the resulting inverse limit can be an
indecomposable continuum whether or not there are certain period points (Theorem 11 is satisfied).

2. If the map is a Markov map, then Ingram’s Theorem 13 gives sufficient conditions under which the
resulting inverse limit space is an arc continuum.

3. In [8], the authors proved that for a certain family{fλ} of tent maps and a residual set of parameters
(λ ∈ [1, 2]), the inverse limit spacelim

←−
([0, 1], fλ) is not only indecomposable, it also contains ho-

meomorphic copies of every inverse limit of a tent mapTβ for eachβ ∈ [1, 2]. (The collection
{Tβ} for β ∈ [1, 2] is another family of tent maps on[0, 1].) Thus, not only is this space complex,
it has “sublayers” that are themselves complex. This continuum must contain uncountably many
topologically different indecomposable proper subcontinua. We don’t know if this is true for at least
some member of our family of models, but we conjecture that itis.

There are many more questions one could ask, even about members of the family of maps we have
studied, not to mention cases II.A and II.C (which we did not consider at all).

What does all this mean to an economist? What does the presence of chaos itself mean to an economist?
The presence of chaos is interesting because it offers an alternative way of modeling fluctuations. The
standard method of modeling fluctuations in economics is to use a random (stochastic) dynamical system
where the fluctuations are due to exogenous random “shocks” to the system. However, a chaotic system
allows for (deterministic) endogenous fluctuations without the need to introduce exogenous randomness to
the model. Economists are also interested in knowing under what parametrization of the model is chaos
possible. This potentially allows one to make policy prescription (e.g., in the CIA model, the growth rate
of the money supplyθ) to eliminate the possibility of chaos (assuming this wouldbe consistent with the
central bank’s goals). The fact that the inverse limit tellsus something about the underlying dynamics is
important to an economist because it offers a new way to explore and detect complicated dynamics. For
example, the fact thatX can turn out to be an arc, andF a homeomorphism from an arc to itself, so that
the dynamics of the system are extremely simple,is significant to economists. It says that even thoughf
on J is not one-to-one, and the corresponding difference equation is not well-defined forward in time, the
behavior of the system can be predictable and simple rather than complicated and chaotic.

6.2 The OLG model—topological attractors

In [63] and [64], Medio (economist) and Raines (topologist)study the qualitative behavior of an OLG model
of the ‘Samuelson’ type. As with the CIA model studied by Kennedy, Stockman, and Yorke, the model has
the problem of backward dynamics. Medio and Raines identifythree canonical types of maps coming from
this OLG model, and describe the inverse limit space corresponding to each of them as well as the attractor
of the associated shift map.The goal of the papers is to understand the structure of attractors (under the
shift maps) that arise, because the forward admissible sequences that make up the attractors (metric or
topological) are the ones that can be ‘seen’, and thus are theones the implicitly defined system predicts.
Again, since the proofs appear elsewhere, we give only most of the main results.
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Theorem 24 ([64]) Let f : [0, 1] −→ [0, 1] be unimodal. LetÂ be a closed,σ-invariant subset of
lim
←−

([0, 1], f) with π1(Â) = A. Suppose thatf−1(A) 6= A. ThenÂ is not Liapunov stable, and there-

fore Â is not asymptotically stable.

Corollary 2 ([64]) Letf : [0, 1]→ [0, 1] be unimodal. LetA be a periodic orbit underf of periodn ≥ 3.
ThenA is a closed invariant subset of[0, 1] underf , and we definelim

←−
(A, f |A). ThenÂ is a closed,

σ-invariant subset oflim
←−

([0, 1], f), Â is not Liapunov stable, and thereforêA is not asymptotically stable.

Medio-Raines then move on to consider unimodal maps of type A, type B, and type C (since interval
maps coming from the OLG family can be any of these). They do not consider in detail the case in which
f(c) < c (wherec is the turning point for the unimodal mapf ), since in this case the inverse limit space
lim
←−

([0, 1], f) is simply an arc, and so the action ofσ on lim
←−

([0, 1], f) is just the action of a homeomorphism
on an arc.

Theorem 25 ([64]) Let f be a type A unimodal map on[0, 1] with turning pointc, and0̂ = (0, 0, . . .). If
f2(c) = f(1) > 0 andf ′(0) > 1, then0̂ is an asymptotically stable attractor. Moreover, iff(x) > x for
all x ∈ (0, c), then0̂ is the only topological attractor forσ on lim

←−
([0, 1], f).

If instead,f2(c) = f(1) = 0, then the usual unimodal maps (such as the tent or quadratic maps) on
[0, 1] are transitive and so contain no topological attractors forσ. The only topological attractor in this case
is the entire inverse limit space. For type B maps, the situation is not so simple.

Theorem 26 ([64]) Let f be a type B unimodal map on[0, 1] with unique fixed pointp ∈ [c, 1], that
is repelling on[c, 1], and supposef(0) > p. (Again,c is the turning point forf .) Then the point̂p =
(p, p, . . .) ∈ lim

←−
([0, 1], f) is an asymptotically stable attractor, and it is the only topological attractor in

lim
←−

([0, 1], f).

It is possible to have a type B map withf(0) > p andp not repelling on[c, 1]. It could even be possible
for f to have a period two orbit contained in[c, 1], that is repelling: this would generate a two-point set in
lim
←−

([0, 1], f) that is an asymptotically stable attractor.
Next supposef is a type B unimodal map withf(0) ≤ p. Now we have an incredibly rich family of

maps, and they generate many types of inverse limit spaces. All must contain indecomposable continua
and if f(0) < p, then the inverse limit space itself is an indecomposable continuum. Suppose then that
we restrict ourselves to the case wheref is a type B unimodal map andf(0) < p, and we further assume
thatf has a stable attractor. (This occurs for many unimodal maps with negative Schwarzian derivative.
See [44].) For such type B unimodal maps with stable attractor P , then from results in [44], there aren
open intervalsA0, A1, . . . , An−1 such thatf i(A0) ⊆ Ai and∪n−1

i∈0 Ai is the stable manifold ofP . Then
f(∪n−1

i∈0 Ai) ⊆ ∪
n−1
i∈0 Ai. Let Λ = {x ∈ [0, 1] : fn(x) /∈ ∪n−1

i∈0 Ai}. The restriction off to Λ is conjugate to
a subshift of finite typeσA on some sequence space

∑
A, and there is a decomposition ofΛ into a disjoint

union of Cantor setsΛi such thatf |Λi
is topologically transitive. For simplicity, we assume that f |Λ is

topologically transitive. Let̂Λ = lim
←−

(Λ, f |Λ).

Theorem 27 ([64]) Supposef is a type B unimodal map on[0, 1] with f(0) < p (wherep is the unique
fixed point forf ), f has a stable attractorP , andf is topologically transitive onΛ = {x ∈ [0, 1] : fn(x) /∈
∪n−1

i∈0 Ai} (with the setsAi defined as above). Then̂Λ = lim
←−

(Λ, f |Λ) is a topological attractor forσ on

lim
←−

([0, 1], f). Moreover,Λ̂ is the only topological attractor.

Finally, consider the familiar logistic mapFµ(x) = µx(1 − x) with µ > 4 playing the role of our
‘canonical model’ of a type C unimodal map. See Figure 8.

Let X1 = [0, 1], X2 = X1 ∩ F−1
µ (X1), and inductively defineXi = Xi−1 ∩ F−1

µ (Xi−1). Also define
fi = Fµ|Xi+1

, so thatfi mapsXi+1 into Xi. Then{Xi, fi} is a inverse sequence andlim
←−

(Xi, fi) is
the associated inverse limit space (note that we have left the one bonding map situation) consisting of all
forward admissible sequences permitted by the difference equation withxi ∈ [0, 1].
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Figure 8. The logistic mapFµ with µ > 4.

In this case,lim
←−

(Xi, fi) is homeomorphic to a product of a Cantor set and an arc [64]. Let
∑

2 denote the
Cantor set{(z0, z1, . . .) : zi ∈ {0, 1}for each nonnegative integern}. Let i denote the standard itinerary
mapping defined byi(x) = 0 if and only if x < 1/2 and i(x) = 1 otherwise forx ∈ [0, 1]. Let Λ =
∩n≥0F

−1
µ ([0, 1]), and letΛ̂ = lim

←−
(Λ, Fµ). Note thatΛ̂ is a homeomorphic embedding ofΛ in lim

←−
(Xi, fi).

Also, from [63],Λ̂ is closed and aσ-invariant subset oflim
←−

(Xi, fi).

Theorem 28 ([64]) Let µ > 4. Let K ⊆ [0, 1] such thatK is closed invariant and repelling underFµ.
Let K̂ = lim

←−
(K, Fµ|K). ThenK̂ is an attractor forlim

←−
(Xi, fi) if and only ifK = Λ, with Λ defined as

above. Furthermore,Λ is homeomorphic to the product of a Cantor set and an arc, and it is closed and
invariant underσ.

6.3 Quantitative behavior

While the work just described ([54, 55, 53, 63, 64]) gives a good start in applying inverse limits to the
problem of backward dynamics, the results in those papers are qualitative and, while economists have an
appreciation for qualitative results, they eventually like to get to quantitative results. So we felt we needed
to move in that direction, and we have. We needed to “measure”. Lebesgue measure just doesn’t work on
most inverse limit spaces. We needed to come up with a more appropriate and somehow “natural” measure.

We finally did that, and then discovered that it had almost been done long before (see [25]). But we
had what we needed, a “natural” invariant measure onlim

←−
(J, f) for one of our backward mapsf defined

on an intervalJ . While we applied all this to the type I. A CIA model example previously studied, our
techniques can be applied much more broadly to dynamic equilibrium models (DGE’s), and apply to direct
limits (which also come up in many economic models) as well asinverse limits (which we have used to turn
the original mapf taking us back in time, into a homeomorphism on the inverse limit space).

Specifically, suppose that an economic model’s equilibria correspond to orbits generated by a chaotic
dynamical systemf : X → X whereX is a compact metric space andf is continuous. The mapf could
represent the forward dynamicsxt+1 = f(xt) or the backward dynamicsxt = f(xt+1). If f represents the
forward/backward dynamics, the set of equilibria forms a direct/inverse limit space. We use anf -invariant
measure onX to induce a measure on the direct/inverse limit space and show that this induced measure is
σ-invariant whereσ is the shift operator. Moreover, we show that if thef -invariant measure is a so-called
natural invariant measure, then the induced measure on the direct/inverse limit space will also be a natural
invariant measure. (Note: since Lebesgue measure makes no sense on many inverse limit spaces, we must
give this term meaning. We cannot use the usual definition of natural measure, so we call these natural
invariant inverse limit measures.)
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This section describes work of Kennedy-Raines-Stockman that appears in [51] and [52]. Since the direct
limit results are quite easy to obtain and parallel the inverse limit results, and we haven’t focused on forward
dynamics anyway, we discuss only the inverse limit portion of the results. Again, we omit the proofs. At
the end of this section, we give an example showing how these results can be applied to chaotic CIA maps
and what it means for economics.

A contentis a nonnegative, finite, monotone, additive, and subadditive set function defined on the class
C of all compact sets of a locally compact metric spaceX . It is straightforward to generate a regular Borel
measure from a content on the compact subsets of a locally compact spaceX , see [34, Section 53, p 231].
Thus, if we can define a content onY := lim

←−
(X, f), we can generate a measure onY .

If X is a metric space,f : X → X is continuous, andµ is a measure onX with the property that
µ[f−1(S)] = µ[S] for every closed setS in X , thenµ is called aninvariant measure forf . Let n be a
nonnegative integer, and letB be a compact subset ofY . Define thetower setsBn for B as follows:

Bn := {x ∈ Y : πn(x) := xn ∈ πn(B)}.

Note thatπ−1
n (πn(B)) = π−1

n (πn(Bn)) = Bn, and thatB0 ⊇ B1 ⊇ · · · ⊇ B and that∩∞n=0Bn = B.
Suppose thatµ is anf -invariant measure onX . Now define the functionΓ on the compact subsets ofY

by first declaring thatΓ[Bn] = µ[πn(B)], whereBn is a tower set for the compact setB as defined above.
Then defineΓ[B] = limn→∞ Γ[Bn]. The functionΓ is a content on the compact sets ofY :

Lemma 1 ([52]) The set functionΓ is a content on the compact sets ofY := lim
←−

(X, f).

The contentΓ induces a Borel measure onY , which we callm. We also have the following useful
properties.

Lemma 2 ([52]) Let K ⊂ Y be Borel. Thenm[K] ≤ µ[πn(K)] for all nonnegative integersn such that
πn(K) is a Borel set inX .

Lemma 3 ([52]) LetK ⊂ X be a Borel set. Then, for any nonnegative integern, µ[K] = m[π−1
n (K)].

A measureν is nonatomicif ν({x}) = 0, for everyx ∈ X . We call a measurestrictly positiveif it
assigns every (nonempty) open set positive measure. Thesupportof ν is the set ofx ∈ X such that every
open set containingx has positive measure. A measureν hasfull support if the support ofν is all of X .
Being a strictly positive measure is equivalent to having full support. Then we have the following result:

Theorem 29 ([52]) SupposeX is a compact metric space,f : X → X is continuous,Y := lim(X, f),
µ is an invariant measure onX with respect tof such thatµ is regular and nonatomic withµ(O) > 0 for
each nonempty open setO in X , andm denotes the measure induced byµ. Then the induced measurem is
F -invariant (and thereforeσ-invariant).

Suppose we have a mapf : X → X that is continuous and chaotic, withX being a compact metric
space. We would like to choose a measureµ on X so thatµ is not only invariant relative tof , but is also,
in some sense “natural”. After all, ifX is the unit interval[0, 1], then there is a fixed pointp for f . We
could defineµ[A] = 1 if A ⊂ [0, 1] andp ∈ A, andµ[A] = 0 if A ⊂ [0, 1] andp /∈ A. Thenµ is an
invariant measure forf on [0, 1], but what is it doing for us? It picks up the presence of the fixed point, and
absolutely nothing else—including any chaos or total lack of it. It is not doing the job we want.

There is, fortunately, another approach—there is a large body of literature on what are called natural
invariant measures (which are related SRB measures or Sinai-Ruelle-Bowen measures, SLYRB measures,
and rain gauge measures). (See [1] for an introduction to these measures and [37] for a more in-depth
discussion, survey, and reference list.) These measures address how the trajectory of a typical initial point
is distributed asymptotically by the mapf . What makes natural invariant measures so nice is that, when
one exists, it really does measure the dynamics off in the sense that if almost all points have60% of
their respective orbits inS, then this measure assigns a value of0.6 to S. Figuring out whether the natural
invariant measure exists for a mapf can be difficult in general.
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SupposeX is a compact metric space,f : X → X is continuous,x0 is a point inX , andS is a Borel
subset ofX . Define thefraction of the orbit ofx0 lying in S by

Gf (x0, S) = lim
n→∞

#{f i(x0) ∈ S : 1 ≤ i ≤ n}

n
,

provided this limit exists.
SupposeX is a compact metric space,S is a subset ofX , andr is a positive number. DefineDr(S) =

{x ∈ X : d(x, y) < r for somey ∈ S}. Note thatDr(S) is an open set containingS and asr → 0, Dr(S)
shrinks down onS (although∩r>0Dr(S) may not be equal toS).

SupposeX is a Euclidean space with Lebesgue measureλ. Letf : X → X be continuous,x0 be a point
in X , andS be a compact subset ofX . Thenatural measure generated by the mapf (or thef -measure) is
defined by

µf (S) = lim
r→0

Gf (x0, Dr(S))

provided that forλ-almost everyx0 this limit exists and is the same.
We would like to have a similar notion for an inverse limit space. However, iff is chaotic, the inverse

limit space is topologically complicated and is not a Euclidean space (or even close to it). Thus we give the
following definition:

SupposeX is a compact metric space,f : X → X is continuous,Y := lim(X, f). If x0 is a point in
Y , S is a closed subset ofY , andF is the induced homeomorphism onY , then thenatural inverse limit
measuregenerated byF is defined by

µF (S) = lim
r→0

GF (x0, Dr(S))

provided that for allx0 /∈ Z this limit exists and is the same, whereZ is some set of the formZ = ∪∞i=1Zi

with λ(πi(Zi)) = 0 for all i ≥ 0.
There is at most one natural inverse limit measure forF . We have already used an invariant measureµ

on X to induce an invariant measurem on Y . We can then show that the measurem on the inverse limit
space is the natural inverse limit measure induced byF provided thatµ is the natural measure induced byf .

Theorem 30 ([ 52]) SupposeX is a compact metric space with Lebesgue measureλ, f : X → X is
continuous,Y := lim(X, f), µ is a natural invariant measure onX with respect tof such thatµ is
nonatomic with full support, andm denotes the measure induced byµ. Thenm is a natural inverse limit
measure onY for the induced homeomorphismF : Y → Y , andm is also a natural invariant inverse limit
measure forσ = F−1.

For X compact andf : X → X continuous, once we have an invariant measureµ (natural or not) for
f onX , we therefore have an induced invariant measurem onY := lim(X, f), and it is straightforward to
show that we can then integrate onY , that is, forg : Y → R,

∫
Y

g dm makes sense.

Theorem 31 ([51]) Every continuous real-valued function onY is integrable relative to an induced na-
tural invariant inverse limit measure.

From [51]: The framework here for calculating expected utility (whichwe do shortly) can be used to
bridge two important literatures in macroeconomic theory:multiple equilibria and optimal policy.“Dy-
namic general equilibrium (DGE) models have become a standard framework for both the positive and
normative evaluation of policy. In the optimal monetary/fiscal policy literature one considers a mapping
from a policy space (e.g., money growth rate or set of taxes) to outcomes (e.g., allocations from a compe-
titive equilibrium). If the mapping from policies to outcomes in the DGE model is single-valued, then one
can induce arankingon the policy space in a very natural way. For instance, supposeΘ is the policy space
and for eachθ ∈ Θ, there is a unique competitive equilibriumE given byE = M(θ). If U is the utility
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Figure 9.

function of the household defined over the space of competitive equilibria, then one can use the function
W (θ) := U(M(θ)) to define a ranking onΘ. In addition to perhaps locating the most preferred or optimal
policy θ∗, such a ranking can be used to measure the welfare gains of switching from some policyθ to
another policyθ′. There is a large literature that takes this approach to evaluating policies starting with the
work of Ramsey [74].

However, whenH is not single-valued this method of ranking policies will not work, and it is not clear
what one should do since there is more than one equilibrium associated with a particular policy. There are
many ways in whichM may be multi-valued. For example, the model may exhibit local indeterminacy in
which for a given policyθ there exists a continuum of equilibria all converging to thesteady state equilib-
rium. However, one may also have a multi-valuedH due to global properties of the model as well. Our
framework can be applied to the class of economic models withequilibria that correspond to orbits gener-
ated by a chaotic dynamical systemf : X → X whereX is a compact metric space andf is continuous.
Thus there are both a large number of equilibria and a large and complicated variety as well. Our framework
is designed for this type of multi-valuedH .

Finally, we move to an application to the CIA model [52]. A utility functionU (from [66]) that generates
f : [x, x]→ [x, x] is the following:

U(x) =
x1−σ

1− σ
+

(y − x)1−γ

1− γ
,

whereσ > 0 andγ > 0 andy is the household’s endowment. Then forx = (x0, x1, . . .) ∈ Y ,

W (x) :=
∞∑

t=0

βtU(xt).

If we now compute ∫

X

W (x)m (dx).

we should obtain anexpected utility. In one parameterization, [66] setβ = 0.98, σ = 0.5, γ = 4.5 and
note that the CIA model exhibits chaos (the backward map has athree cycle) when money growth rates are
θ equal to0, 0.5 and1.0. The backward map for this parameterization (withθ = 0) is pictured in Figure 9.

To construct the naturalf -invariant measure, we approximateµ via a histogram using a sample tra-
jectory off for somex ∈ [x, x] : {x, f(x), f2(x), . . .}. This mimics the “rain gauge” description of the
natural invariant measure described in [1]. Figure 10 contains an approximation of the density function for
µ. This histogram uses104 bins and a sample trajectory of length108.
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Given this approximation to the natural invariant measure,the utility functionU and the discount factor
β it is now straight-forward to approximate our integral

∫

X

W (x)m (dx) =
1

1− β

∫

I

U(x)µ (dx) ≈ 83.3285573.

As mentioned in the introduction, our integral allows us to rank inverse limit spaces according to ex-
pected utility (a very natural ranking from the model). To give some sense of how this might be used to
evaluate different monetary policies, imagine that for money growth ratesθ ∈ Θ := [θ, θ], the backward
mapf is chaotic. However, not all chaotic maps are the same in terms of utility. One way of framing the
question through a Ramsey lens, is, within this subclass of possible monetary policiesΘ, which money
growth rate gives the greatest expected utility? We see thatfor eachθ ∈ Θ, we have a different backward
mapfθ, natural invariant measureµθ, invariant state spaceIθ, inverse limit spaceXθ := lim

←−
(Iθ, fθ), and

induced natural inverse limit measuremθ. We then have an indirect utility function (or expected utility)
given by

V (ω) :=

∫

Xθ

W (x)mθ (dx) ≡
1

1− β

∫

Iθ

U(x)µθ (dx).

To be more concrete, suppose that the monetary authority is only considering money growth rates inΘ :=
[0, 0.1]. Which θ ∈ Θ should the monetary authority choose to maximize expected utility? We see from
Figure 9 that a lower money growth rate is preferred to highermoney growth rate (θ = 0 is the most
preferred). This ranking is qualitatively similar to the ranking when considering only steady state equilibria.
However, Figure 11 illustrates that considering only the steady state equilibria would underestimate the
welfare costs of higher money growth rates.

Note that the framework given here is quite general and applies to any DGE model where the set of
equilibria correspond to the orbits generated by a chaotic dynamical systemf : X → X whereX is
compact andf is continuous with a natural invariant measure. In future research, we hope to extend our
framework to DGE models with multiple equilibria where the underlying dynamical system does not admit
a natural invariant measure. Such DGE models would include alarge and important class of models, namely
those with local indeterminacy.”

6.4 Another approach to measure

In [65], Medio and Raines continue their find-the-attractors approach, but add a “Lebesgue-like” measure.
If X is a topological space andλ : X → R is a measure onX , they defineλ asLebesgue-likeprovided

67



J. Kennedy

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
83.16

83.18

83.2

83.22

83.24

83.26

83.28

83.3

83.32

83.34

83.36

Money Growth Rate

U
til

ity

 

 

Chaotic Equilibria

Steady State

Figure 11.

1. λ is a positive Borel measure,

2. if U is open inX , thenλ(U) > 0, and

3. if x ∈ X , thenλ({x}) = 0.

They construct a Lebesgue-like measure for unimodal maps ofthe interval, and then use that measure
to identify metric attractors (the previous work identifiedtopological attractors) in the inverse limit for the
shift homeomorphism. Thus, these results would then apply to the CIA and OLG models discussed here, as
well as many others.

Their main results:

Theorem 32 Let f : [0, 1] → [0, 1] be a Type A unimodal map that has negative Schwarzian derivative
such thatf(1) > 0, f ′(x) > 1, for all x ∈ [0, f2(x∗)], wherex∗ ∈ (0, 1) is the turning point forf . Let
0̂ = (0, 0, . . .) ∈ lim

←−
([0, 1], f). Then{0̂} is the only metric attractor forlim

←−
([0, 1], f) underσ.

Theorem 33 Letf : [0, 1]→ [0, 1] be a transitive unimodal map that has negative Schwarzian derivative
such thatf(1) = 0. Then the only attractor is the entire spacelim

←−
([0, 1], f) (underσ).

Theorem 34 Let f : [0, 1] → [0, 1] be a Type B unimodal map that has negative Schwarzian derivative
such thatf(0) > p, wherep is the orientation reversing fixed point forf in [x∗, 1] (wherex∗ ∈ (0, 1) is the
turning point forf ), and|f ′(p)| > 1. Thenlim

←−
([0, 1], f).

Theorem 35 Let f : [0, 1] → [0, 1] be a Type B unimodal map that has negative Schwarzian derivative
such thatf(0) ≤ p, wherep is fixed point forf in [0, 1], and such thatf has a stable attractor which is either
chaotic or periodic. Then̂p = (p, p, . . .) ∈ lim

←−
([0, 1], f) is the metric attractor forlim

←−
([0, 1], f). Then the

metric attractor is the set̂Λ. (For the definition of̂Λ, see the previous section discussing Medio-Raines
work.)

6.5 And if a model is not well defined either backward or forwar d?

There are a number of models coming from economics that are not well-defined either backward or forward
in time. The Christiano-Harrison model (see [24]) picturedin Figure 12 is an example of such a model.
While we do not go into the derivation of this model, we note that here the marvelous tools developed in
the literature for inverse limits are not available. Topologists have recently begun studying these so-called
“generalized” inverse limits, but this study is in its infancy and seems to be quite difficult and much more
complicated than the usual inverse limit case. There is muchfor both mathematicians and economists to do
in this situation.
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