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Inverse Limits, Economics, and Backward Dynamics
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Abstract We survey recent papers on the problem of backward dynamesanomics, providing along
the way a glimpse at the economics perspective, a discuesitie economic models and mathematical
tools involved, and a list of applicable literature in botathematics and economics.

Limites inversos, Economiay Din  amica Regresiva

Resumen. Examinamos articulos recientes sobre el problema de &ardoa regresiva en Economia,
haciendo una breve incursion en la perspectiva econdryigaesentando una discusion de los mo-
delos econbmicos y herramientas matematicas involosragl una relacion de literatura pertinente en
Matematicas y en Economia.

1 Introduction

Our focus here is on introducing some problems from econstoicnathematicians, showing how mathe-
matical problems arise from these economic problems, agwl showing how tools from inverse limits,
topology, dynamics, and measure theory shed some light ®@sdhlution of the problems. There is no
claim that this survey is exhaustive; rather our goal is tecdbe how inverse limits have recently been
applied to the problem of “backward” dynamics in economidge begin with a brief discussion of the
goals of economics, a glimpse at the economic perspectig adist of some of the economics terms
encountered in our investigation of several models. Thedigaeuss the particular models we have studied,
the results obtained, and what it all means for economicsa$¥ame the reader has more familiarity with
the mathematical tools involved than with modern econontitsvever, extensive references are given at
the end from both the economics and mathematics literature.

2 A Glimpse at Economics

Let's start with a familiar example from economics that wiesek in a first semester calculus course: If
C(z), thecost functionis the cost of producing units of a certain product, then thearginal costis the
rate of change of’ with respect tar. That is, the marginal cost function is the derivativéx) of the cost

function. The average cost functiefr) = % represents the cost per unit whemnits are produced.
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Figure 1. The average cost function

An example: A company estimates the cost (in dollars) of peaty« items isC(x) = 2400 + 2z +
0.002z%. The average cost function is the(w) = @ = 2400/x + 2 + 0.002z, and the marginal cost
function isC’(z) = 2 + 0.004z. If we graph the average cost function, we get Fidilre 1.

It appears that the average cost function has an absoluienorin and we can find this minimum
by differentiatingc(z) and setting the derivative @ ¢/(z) = —2400z~2 + 0.002 = 0, which givesx
approximatelyl095.4. Since it is not possible to produéet units, it would appear that producin®95
units would give us a minimum average cost. We can check thtaking the second derivative ofz):
¢"(x) = 4800/23. Thus, the second derivative is positive fopositive, so the function is concave up for
positive, and since must be positive to make sense, this means that prodaodtgunits should give us
the minimum average cost possible.

This little example gives a glance at the mathematical teotsnomists use to make a decision as to
how best proceed. The model here is simple in that the costifumis a differentiable function of only one
variable. The example is a problem from microeconomicsgrathan macroeconomics, and it is also an
example of an optimization problenMicroeconomicss used to describe the decision making processes
of individuals and firms, whilenacroeconomicapplies to the study of relations between broad economic
aggregates. Not surprisingly, optimization is fundamkintaolving many problems in economics.

In economicsultility is a measure of the relative satisfaction or desirednes$gederom the consump-
tion of goods. The idea is that one attempts to increase omiéty. Economists actually sometimes call
this one’s happiness. goodis an object (a physical or tangible product) or service thateases one’s
utility, directly or indirectly. (Yes, this is circular, agtility is defined in terms of goods and vice versa.)
Goods are usually modelled as having decreasing margiigy. LEor example, the first car one purchases
is more useful than the fourth (especially when these pseshmean that four cars are now owned). Goods
arenormalif demand for them increases when income increases. Therntemmal good does not necessa-
rily refer to the quality of the good. Aagentis an actor in a model that (generally) solves an optimimatio
problem. More recently, it has come to be interpreted mooadiy as a persistent individual, social, bio-
logical, or physical entity interacting with other suchigas within the context of a dynamic multi-agent
system. Arendowmenis the amount of something that a person, country, etc.,Igihgs, rather than their
having to somehow acquire i€Consumptionefers to the final use of goods and services to provideyutilit
The market clearing conditiomolds when supply equals demand in a modgrfect foresights said to
hold when an agent in a model has exact knowledge of the f(telative to the model). In an economics
modelexogenousefers to an action or object coming from outside the systAmexogenous change is
one that comes from outside the model and is not explainedéynbdel. On the other hanelhdogenous
refers to something generated within the model and expldiyehe model.

Originally, anequilibriumin economics meant simply a state of the world where econdanies
are balanced and in the absence of external influences thiédagm values of economic variables will
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not change. For example, in a free market and simple supgiyatid model where the demand curve is
decreasing, the supply curve is increasing, and the cuntesect only at one point, an equilibrium occurs
at the price where the curves intersect. When the price iseatie equilibrium point there is a surplus
of supply, and when the price is below the equilibrium polrgre is a shortage of supply. Excess supply
would lead to price cuts, and would lead to a decrease in guppice there would be less incentive to
produce and sell the product), leading to an excess demdurich would then lead to price increases, thus
abolishing the surplus, and leading to an increase in syaptythe whole cycle starts again. In theory, over
time, this disequilibrium state (price too high, price tow) would tend to disappear, as the supply-demand
forces try to balance themselves.

Economists define models that represent the choices madgehysa The mathematics is representative
of the trade-offs inherent in decision making, and provitepefully) tractable methods for finding optimal
behavior. It also enables the derivation of testable hygs®h that should hold if the model accurately
reflects behavior. The universal assumption is that ageake mhoices that maximize returns (benefits). If
the set of feasible choices is unlimited, themconstrained maximizatide involved. If the set of choices
is limited by, say budgetary constraints, resource sgamitlegal barriers, theoonstrained maximization
is involved.

As in setting up any model, the first step is to specify thealdés and the parameters. The parameters
are constants in relation to the variables of the model,rbabmparative studies (static or dynamic) we can
see what happens to the outcome when one or more parameg@igechThe next step is to formulate the
conditions we lay down for the operation of the model. Thes®litions are of three kinds:

Definitions and identities. These specify a relation that holds by definition. For exanftal demand
could be defined as the sum of consumption and investmentradema

Functional relations. These are dependences assumed in the model. For exampleghteassume that
production in period, P, = f(C}, L), whereC; denotes capital in periad andL, denotes labor in
periodt.

Conditions of the model. These come from assumptions about the equilibrium or diklbequm operation
of the model. Such an assumption in the CIA model discusskaivtie that household may not use
the lump-sum transfet)M; from the government at perigdo purchase cash goo(ts ;) during that
same period.

Finally, the conditions of the model must be reduced as muscpossible to make the model easier
to study. The final formulation of the model may be in eithentomuous or discrete form. In a discrete
analysis, the flow of time is divided into successive periofisonstant length, which is taken as the time
unit. If the model is dynamic, in the sense of involving vatés at different time periods, the result is a
difference equation (or perhaps a system of differencetens). In a continuous analysis with a dynamic
model, the result is a differential equation (or system &iédéntial equations). The models we discuss here
are dynamic, and involve a discrete analysis.

The simple example above involved unconstrained maximoizgbr rather unconstrained minimization)
of a functionf(z) of a single variable. In the example, average cost was beingmzed. The function
f(z) could also, say, represent profits for a given quantity pfoduced, or it could represent utility, with
x being the quantity consumed. fi{x) represented profits, then the object would be to determirat wh
guantityx to choose to maximize profits. Jf(x) represents utility, the object would be to determine how
much ofz to consume to maximize utility.

Models are rarely as simple as the one discussed above. Tagywell be multidimensional, and
require the tools of optimization theory for solution. Swechultidimensional problem could arise, if, say,
profits are a functioy of capital, labor, and energy; or if utility is a function of food, water, and leisure.
If constrained maximization is involved, a tool widely udgdeconomists is the Lagrange multiplier.

A significant portion of the modern literature in economissjuite mathematical in nature. Indeed,
many papers are essentially mathematics papers with aetineproof-example format. (The Michener-
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Ravikumar papel [€6] is an excellent example of such a pafgonomists use tools from analysis, dif-
ferential equations, partial differential equations, aythamical systems as needed. With the advent of
powerful computers, it has become possible to study evee mamplicated models, so modern computa-
tion also plays an important role.

The dynamical systems resulting from dynamic models neeétadifferentiable, or even continuous;
indeed, they may not even be well defined functions! In thigecthe usefulness of the usual tools from
calculus is somewhat limited, as we shall see. In fact, waddwere on several such models. The cash-in-
advance model and the overlapping generations model daprablem of “backward dynamics”. These
two models are represented by functions thatrerewell defined forward in timeWe also briefly discuss
the Christiano-Harrison model, which is not a function baatd or forward in time. All three models
come from macroeconomics. The cash-in-advance model arthpping generations model, in particular,
would be encountered in an introductory graduate text orroggonomics.

For the discussion that follows, references to the ecomstiterature are[|3, 12, 15,22 144 127] 28] 29,
30,[311381.36, 48, 51, 5B, 55,1561 58] 61, 162,63/ 65, 66, 14/8®8B1/8P]. References to the mathematics
literature arell12,14,1%] 6] 7] Bl 0,110, 13] L4, [16,[17 [ 18209271 [ 23[ 25, 26, 32, 84,135,137, 88] B9, 40,
47,[42 [4B[ 44,45, 46, 417,149,150 52] b4, 51,5960 64, 666 69 7014218, ¥6.117.179]80]. We
would like to thank David Stockman for his help and advice] e would also like to thank Wikipedia.

3 The Cash-in-advance model

Cash-in-advance models are used to model monetary phemontégre we consider a particular cash-
in-advance model. The model is the standard endowment Cldehaf Lucas and StokeYy [58], and we
closely follow the exposition of R. Michener and B. Ravikurf&g]. The model gives rise to an implicitly
defined difference equation that has the unusual propeatyittis well-determined backward in time, but
not forward in time. We sketch the derivation of the modehfrthe economics assumptions made. For
more details, se€[66]. Note that, even in this quite idedlinodel, the process of going from the economic
assumptions to a simplified mathematical model takes a fiainent of work.

e In the model, households are choosing how much cash to helctiove.
e Households are representative, i.e., they are all “typloaliseholds and behave the same way.

e Holding cash today allows the household to purchase cegtaids and services which we will call
cash goods

e Other goods and services can be bought on credit and do ndteag@sh which we will caltredit
goods

e The implicit cost of holding cash is the interest income frmee if the household had instead held the
cash in the form of another asset, say bonds. The choicedachsh involves a trade-off: the benefit
of being able to purchase cash goods and services agairtsighef the foregone interest income. It
is assumed that the household makes this trade-off opjineeltl so the household’s problem is best
set in the framework of a dynamic optimization problem.

e Consumption in the future is worth less to the household sd#nefit from future consumption is
discounted. Accordingly, there is a parametecalled thediscount factorwhich is strictly between
0 and1, and which quantifies exactly how future consumption isalisted.

e To purchase the cash good at timet the household must have cash. This cash is carried forward
from timet — 1 and in this sense the household is required to ltagh in advancef purchasing the
cash good.

e The credit good,; does not require cash, but can be bought on credit.
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e The household has an endowmegneach period that can be transformed into the cash and credit
goods.

¢ In equilibrium, all of the endowment is transformed into cash and credit goods so that the total of
cash goods and credit goodgjis.e.,c1s + cor = .

e In equilibrium, this allows the cash good to be substitutadtfie credit good one-for-one, so both
goods must sell for the same prigeand the endowment must be worth this price per unit as well.

e The governmentin this economy transfers money to each hoidsat each period with/, denoting
the total money holding of the household at each titnagnd the government giving the household
the amount M,, wheref is another real-valued parameter. (Furtherm@rs,a parameter that the
government can control.)

e The sequencéM,}:°, is called themoney supply

Both U and W represent utility functionst/ denotes the utility gained from one choice of amount of
cash good and credit good, whilié represents the total utility gained from an entire sequehcash goods
and credit goods purchased over time. More specificallyhthesehold has preferences over sequences of
the cash good(;) and credit goodd;) represented by a utility function (real-valued) of thenfor

W ({ers, ca}2g) = Y BU (ere ear). 1)

t=0

One sequencfrry, co: 52, is preferred over another sequerég;, ¢o: } 52, if and only if
W ({ere, eat}iZo) > W({Err, G2t }iZo)-

Now consider the household’s optimization problem: Thedatwld seeks to maximiz& by its choice
of {c1t, car, my1}52, Subject to the constraints;, ca¢, m:+1 > 0. The cash-in-advance constraint says
that the amount spent on the cash gpgd; must be no more than cash on hangd The budget constraint
on cash holdings for next period says that the cash carriedinto next periods:+1) can be no greater
than the incomeyf;y) plus cash not spentr(; — psc1;) plus the transfer of cash from the governmeiti)
minus the amount spent on the credit gopet{;). These two constraints translate into inequalitiés (2)
and [B) below. Thus,

DeCir < M, 2
myr1 < pey + (my — pecre) + OMy — picay, (3

where we are taking as giveny and {p:, M;}:°,. (The money supply{M,} follows a constant growth
pathM;1 = (1 + 6) M, whered is the growth rate and/, > 0 given.)

In [66] the authors make assumptions on the functioso that the solution to this problem will be
interior and the solution to the first-order conditions arahsversality condition will be necessary and
sufficient. (First order conditions refer to the first detiva conditions. Transversality conditions are a
bit more mysterious. Transversality conditions are teghimnditions and are necessary for optimization.
Since our model is an infinite horizon one, for us it is a candibn the tail of the sequence chosen, and
corresponds to conditiohl(7) below.)

AssumptiorL[66, p. 1120]: The functio® : RZ — R is increasing in both arguments, strictly concave,
andC?. Bothc¢;, andcy, are assumed to be normal goods. Further, to guaranteeoinsetitions we will
assume

lim Uy (¢,y — ¢) = lim Us(c,y — ¢) = oo,

c—0 c—y

and that/; (y, 0) < oo andUz(0, y) < cc.
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The assumption thdt is increasing in both arguments embodies the notion thaensopreferred to
less. Strict concavity implies (among other things) that < 0 andUs; < 0, which represents what
economists callliminishing marginal utility The extra enjoyment from more of each good is positive, but
diminishes as more of the good is consumed. Beimpm@nal good simply means that, all else equal, if
the household has more income, more of the good will be coaduithe other assumptions on the partial
derivatives imply that if feasible, the household will clsed < ¢; < y and0 < ¢z < y, i.e., the solution
will be interior. In the economics literature, these asstioms are fairly standard.

To solve the household’s constrained optimization prollegriagrangian method is used In[66]:

L= BYU(c1s, car) + pe(my — prere) + Melpe(y — eat) + (my — pyery) — muyr + OMy]}

t=0

where{u, \:} are non-negative Lagrange multipliers. The first-orderditions and transversality condi-
tion for this problem are

Ui(eir, cat) = pe( e + pie), (4)
Ua(cat, cat) = peAe, (5)
At = B(Aet1 + pet1), (6)

0= tliglo BN mpg1. 7

Equations[(¥),[{5) and16) come from applying the method afraage multipliers. Upon substituting
equationsl{4) andl5) int@l(6), we get

Us(cie, cat)/pe = BUL(Cre41, Cot41) /D1 (8)

This condition reflects that at the optimum, the householsitrbe indifferent between spending a little more
on the credit good (giving a marginal benéfit(c1¢, co:) /p:) versus savings the money and purchasing the
cash good in the next period (giving a marginal ben@it (c1¢41, c2t41)/Pr+1)-

An equilibrium in the model is essentially a sequence ofgwrisuch that supply equals demand. More
formally, an equilibrium is by definition a collection of sequendes:, ca:, m+, My, p:}52, such that
My = (1 + 6)M, (the money supply follows the stated policy rule); = M; (demand for money
equals the supply of money) amg; + co; = y (demand for goods equals the supply of goods), and the
solution to the household optimization problem is given{by;, ca;, mi11}:2,. Letz, := my/p;. Then
using the conditions that/; = m; andcs; = y — c1¢, equation[(B) implies

xUs(c1e,y — c1t) = %mt+1Ul(Clt+la Y — Clit1)- 9

If the cash-in-advance constraifit (2) holds, then= z;. If not, then the Lagrange multiplier; = 0 and
c1t = ¢ := argmax, U(z,y — x). It then follows that;; = min[x;, ¢] for all ¢. Using this relationship we
can eliminate:;; andey4. 1 from @) to get a difference equationinalone:

x:Us(min|xy, ], y — min[xy, ¢]) = mthUl(min[th, ],y — min[zs41,c])

or
B(xt) = A(wt+1), (10)

where

B(z) := zUy(min[z, ], y — min|z, ),

A(x) == T+ omUl (min[z, ¢], y — min[z, c]).

44



Inverse Limits, Economics, and Backward Dynamics

Figure 2.
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Figure 3.

See FigureEl2 arld 3 for illustrations of two possible confitjans forA and B. There are three possible
configurations forA and B, which are called Type |, Type IlI, or Type Il (respectivelyase |, Case II,
Case lll), depending on howt behaves. A Type | (Case I) configuration &) = 0, A increasing on
[0, b], decreasing offb, ¢], and increasing offt, co). A Type Il (Case Il) configuration hag(0) > 0, 4
increasing o0, b], decreasing ofb, c|, and increasing oft, co). A Type Il (Case Ill) configuration had
decreasing o0, ¢], and increasing oft, oo). For Case Il1,[[65] také = 0; A may or may not be defined
at 0 in this case. One can show that there is a one-to-one mappimgebn equilibria in the model and
non-negative sequenceés; } that satisfy the difference equatidn10) and transveysadindition

tlim B'U (min[wy, c], y — min[xy, ])z; = 0.
—00
Since the discount factgt is assumed to be strictly betweerand1, any solution to the difference equa-

tion (I0) that is bounded from above and from below by a $yrfmbsitive constant will satisfy the transver-
sality condition.
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Michener and Ravikumar use two more assumptions in theiemp|#t, p. 1125] which we give next
and briefly describe what they imply for the model.

Assumptior2:  There exists & € [0, ¢) such thatzU; (z,y — x) is increasing in the regiofo, b) and
decreasing in the regidp, c|.

This assumption is puts additional restriction on the tytflunction so that the functionl(-) is either
hump-shaped or monotonically decreasind®m].
Assumptior8: (a)(1+6) > gand (b)b < x*.

These conditions guarantee the existence of a solutior 0 to A(z*) = B(z*) and guarantee that
this intersection of the two functions occurs whéf) is decreasing.

Now we begin determining what all this means and reducingtbélem further. Consider the diffe-
rence equation
B(zt) = A(we41)

from above and recall that we are interested in the solutmtige difference equation, which are sequences
xg, 1, T2, . . . Of NONNegative real numbers satisfying the difference gguaBoth A and B are continuous
functions from[0, oo) to [0, o). The functions4 and B have the following properties:

1. While B is increasing and therefore one-to-oAdds not one-to-one.

2. For some positive numbeyboth A and B are linear oric, co) with positive slopes, and the slope of
Al[¢,00) I8 less than the slope @] ).

3. On some intervdD, b], (with b < ¢) the behavior ofA may be increasing withl(0) = 0 (case 1), or
it may be increasing witkl(0) > 0 (case Il), orA may be decreasing df, c| (case Ill). For case IlI
we letb = 0.

4. Onthe interva(b, c], A is decreasing, witlh: € (b, ¢) such thatd(z) = B(z).
Note that there are positive numberandz such that

B(z) = A(c
B(T) = A(z)

~

)

and in case | and perhaps case I, there are positive numbarsdz’ such that

B(zb) = A(@").

Since the functiom is not one-to-one, the dynamics in the model given by thetiffice equatiofi.{1L0)
are not well-defined. However, sindg is one-to-onewe can invertB and define the functioyi(z) :=
B~ o A(x). This function gives the backward dynamigs= f(z:1), maps|0, co) to itself and inherits
the basic shape of. Consequently, even though the dynamicdof (10) are notaedihed going forward
in time, the dynamics are well-defined goibgckward in timeln terms of thef function we have:

z:= f(c),
T = f(z),
"= f(b),
2’ = f(@°).
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Casel A Case |.B Case |.C

Figure 4. Case |

Remark 1 If b > 0, we haved(z) < A(b), which implies

B(@) = A(x) < A(b) = B@).
SinceB is increasing, this implies < z°.
Remark 2 If b > 0, we haveA(z’) > A(c) (sincez® > b), which implies

B(z) = Ac) < A(@°) = B(z?).

SinceB is increasing, this implies < 2°
In [64], it is shown that there are three generic possib8ifior f in Case | wher® < b < z:
LA, T >c
I.B. T=c¢c
I.C. T <c

See Figur&l for an illustration of the three possibilities@ase I.
Michener and Ravikumar also show (sE€ [66]) that there aeztheneric possibilities faf in Case Il
wherez < b:

A, z<zb<b< T <ec
NB. z<b<zb <7 <ec.
I.C. z<b<c<al.

See Figur€ls for an illustration of these three possibdlifae Case II.

The dynamics are not interesting in cases |.B, |.C, and Thg three-cycle proposition in 56, p. 1128]
assumesl + 6)c/B < Z. Since(1 + 6) > g (by assumption in[€6]), these sufficient conditions foraha
only cover cases I.A and II.d_[B6] illustrate by an examplgtichaos is possible in case Il.A.

Thus far, our work has dealt with caté only. Cases |.B and II.B are the same and not interesting, and
case |.C is not interesting either. Case Il.A is interesting case I1.C (sort of a combination of Cases |.A
and II.A) is interesting also. Cases II.A and II.C should dyei¢s for future study.

Thus, we know quite a bit about the possible behaviod B, andf. However, there is still much not
known: different choices oft and B all satisfying the required conditions yield very diffetetynamical
behavior. Some choices lead to rather boring dynamica¢systand some lead to interesting ones.
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Case llLA Case llB Case ll.C

Figure 5. Case Il

One obvious equilibrium is the sequenee, 2*, z*, . ..), wherez* is the positive number such that
A(z*) = B(z*). We will call this thetrivial solution. There are many other solutions. For case I.A, note
that if a sufficiently larger, is chosen, then the requirement tht:;) = B(x) forcesz; to be larger
thanxg, andz; is unique. (See Figuf@ 2.) Continuing, one sees that théisol(x,, x1, . . .) for that initial
condition is well-defined antim;_, ., x; = co. Likewise, if a sufficiently small positive, is chosen, then
x1 is smaller than:,, and the solutiofxo, z1, . . .) consists of a decreasing sequence of positive numbers
converging td). We summarize the possibilities precisely in the followprgpositions.

As before, letz denote the unique positive number such tBét) = A(c). LetT denote the unique
positive number such thd&(Z) = A(z). Then for the cases we consider< ¢ < 7.

Proposition 1  Consider caséA. If (zo,z1,...) is a solution toA(z:41) = B(x) such thatr; < x for
somet, then

[a] fort > %, the choice of,41 is unique, i.e.x:41 such thatd(z,41) = B(x:) is unique;
[b] hn’ltﬂoo Tt — 0, and
[C] :CtA> :CtA+1>xtA+2>~~'.

Proposition 2 For casel.A, if (zg, 21, ...) is a solution toA(z:11) = B(z¢) such thate; > T for some
t, then the choice of;, ; may not be unique, but either

[a] lim; . z; = oo and eventuallye; < x4y1 < xgq0 < -+, 0r

[b] lim;_ . x; = 0 and eventuallye, > xy11 > X440 > - -.

It follows from the previous propositions that in case |.Autimns that contain members not in the
interval [z, ] exhibit simple behavior. Mathematically they are not verteresting. From an economics
perspective, they may not constitute an equilibrium (th@dwersality condition may be violated). If the
transversality condition is satisfied in these cases, tbeh equilibria are referred to as self-fulfilling in-
flations ; — 0) and self-fulfilling deflations£; — o0). Moreover, a solution containing a member
not in [z, 7] would be locked into one behavior-either its members wowehtually increase without
bound, or they would eventually decreasedtoWe can also conclude that solutions gl (10) that satisfy
0<z <z <ZT < ooforall t will be an equilibrium in the model.

Note that the original model with its equilibria defined asodlection {c1y, cor, my, My, pi }52,, Of se-
quences that satisfy conditiofi$ (Z}-(7) and AssumptioBshks now been reduced to an implicitly defined
difference equation on an interval, and then to the funcfidrom the positive reals to the positive reals.
Although f has the “problem” of backward dynamics, the problem of us@derding the model has certainly
been reduced. An equilibrium in the reduced model is nowgsstquence of nonnegative numbirs} 2,
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such thatf (z:+1) = x:. Furthermore, since any equilibrium that contains a membein [z, Z] behaves

in a simple and completely predictable manner dynamicatig, is not good news economically (if it even
satisfies the transversality condition), we may as welriesiurselves to the study of only those sequences
each member of which is in the interval, z]. We call the restricted version ¢f, f, also. Thus, we are
down to studying interval dynamics (or are we?), althougy tre backward interval dynamics.

4 The Overlapping Generations model

The overlapping generations model (OLG model) is a type ofiemics model in which agents live a finite

amount of time and live long enough to endure into at leastpami®d of the next generations’ lives. The

concept of OLG was developed in 1947 by Maurice Allais andutenized by Paul Samuelson in 1958.

OLG models can have varying characteristics depending emtéthod of study but many models share
several key elements. (We thank Wikipedia for this nice)list

e Individuals receive an endowment of goods at birth.
e Goods cannot endure for more than one time period.
e Money endures for more than one period.

¢ Individuals must consume in all periods and their lifetintidity is a function of consumption in all
periods.

¢ Individuals live for two periods—in the first period they ar&@led the Young; in the second they are
the Old.

e A number of individuals is born in every period with the sgiechumber born in a given period
denoted asV,. (Thus,N; denotes the people born in peribd

e The economy begins in periddand in period there is a group of people who are already old. They
are the initial Old and are denoted &s.

e There is only one good and it cannot endure for more than onede

e Each individual receives a fixed endowment of the good ahbifhis endowment is denoted as
It can also be thought of as an endowment of labor that theiohal uses to work and create a real
income equal to the value of gogdporoduced. Under this framework, individuals only work ahgyi
the young phase of their lives.

Next we sketch the OLG model derivation for the particulatGnodel studied by Raines and Medio.
For more details, seE153].

In each generation, the young representative agent maedmitility of consumption over the two-
period life, subject to the constraint that the total valfieansumption must be no greater than the total
value of the endowments received. Also, the market cleazarglition holds, that is, the market for the
consumption good is always in equilibrium, which means tibeg in each period the demand for the
consumption good from young and old is equal to the total syuppmely the total endowments, and that
perfect foresight holds, that is, agents’ expectationsatways fulfilled. Another assumption is that the
population is constant: for each period the number of Yosngay,V, which is also the number of Old,
and therefore the total population numbe2is.

Letc; > 0 be the young agent’'s consumption at timand letd; > 0 be the old agent’s consumption at
timet. Letey,, > 0 be the young agent’'s endowment ang, > 0 be the old agent’s endowment. The basic
utility functions areu; andus, with «; a function of the young agent’s consumptigrandu, a function of
the old agent's consumptiof). Now define another utility functiot” by U (ct, d) = ui(et) + ua(dit1).
(Thus,U is formed by adding the respective basic utilities of thengand old agents.)
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Let p, > 0 be theinterest factorat timet, that is, the exchange rate between present and future
consumption. Note thaf; andc; must be nonnegative, because negative consumption makesnse.
A mathematical formulation of the problem then is to maxienthe functionu,(c;) + ua(ds+1) such
thatdir1 < eola + pe(eyng — ¢t) ande, diy1 > 0. The market clearing condition for all timeis
¢t + die = eyng + €014, that is, total consumption is equal to total income (endewtn

Economists are interested in studying the properties afitefisequences @f (or equivalently, ofl;,
satisfying the optimality conditions and market clearimgndition. From the first order conditions of the
constrained maximization and the market clearing conditipfollows (some details are left out here—
see[68]) that the young agent’s optimal choice must sattiefyequatiorf? (d¢+1, ¢:) = U(diy1) +V(er) =
0 whereld(d) = u5(d)(eola — d) @andV(c) = u}(c)(eyng — ).

Whether or not we can now derive a difference equation mofangard in time depends on whether
the functiori/ is invertible. Consider the following specific example:

up(c) = ac — (b/2)c?; ua(d) = d

wherea andb are positive constants. In this cad#d) = e.1q — d is of course invertible. For simplicity’s
sake and without loss of generality, we pyt, = 0 anda = b = p. Thenegq — di1 = 41 = Flu(er) =
uer(1 — e¢), a much studied noninvertible map. Starting from an arhyititaitial conditioncg € [0, 1], this
equation determines sequences of young agents’ consunfptiward in time. Applying the equilibrium
conditionc; + d; = eyng + €014, the old agents’ consumption is determined as well.

The case on which Medio and Raines facBappose that we now interchange the utility functions, so
thatui(c) = c andus(d) = ad — (b/2)d? and then puteq = 0, eyne > 0. In this case, we can instead
write an equation

eyng — €t = dy = Fj(dig1) = pdpr (1 — dieyr)
so thatF), now defines sequences of old agents’ consumption (and byciatipin, young agents’ consump-
tion) moving backward in time.

But now we have a problem. Economically, it means that to eadlre of the young agent’s present
saving (endowment minus consumption) there may correspamadr more values of expected future con-
sumption that justify it—or, ifu < 4, there may be none. (See Figlile 6.) This problem will occtin wi
great generality whenever the functithis noninvertible. Nor is it limited to this version of OLG biit
may also occur in two-dimensional models of OLG with produtti.e., models in which consumption is
produced by means of current labor and capital stock indeste period ago. In order to have a visual
insight of the nature of the problem whep,, — ¢; = d; = F},(d:+1) holds, consider the figure (logistic
map), where we represent the curve of the functignin the plane(d;1, d;) and for simplicity’s sake
assume thadyax = eyng.

Start at timef = 0, and suppose that our maximizing young agent considersashplity of consum-
ing an amount, and thereby saving an amount,; — co = do. The preimage ofly € [0, dmax = €yng],
F!(dy), consists of two points, the lesser of which we lat§gland call low-level consumption and the
higher of which we labef! and call high-level consumption. Hence there are two levfisture consump-
tion at timel that would be allowed for the young agent at tilmé his problem continues: At tim2 there
are two levels of future consumption allowed for the youngragat timel, and so on. iy € (eyng, 1],
then there is no preimage df, that is,F;l(dO) is empty.

Hence, not all sequences of consumption are admissibleistreome choices lead to a sequence that
must at some point stop, because the preimage of the last en@fithe previously chosen finite sequence is
empty. Thus, we make the following definition: We say an inéisiequencéd, } 22, is forward admissible
if d; > 0andd; = F,(d¢41) forall ¢ > 0.

5 Tools from mathematics

Both the CIA and OLG models studied have now been reducec tstukdy of a unimodal majp on an
interval J of the formh(z:41) = a: for z; € J. Both are thus well-defined backward in time, but not
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Figure 6. Backward moving mafg, with ;1 < 4.

forward in time. In both cases, economists are not intetkstene number,, but in entire sequences of
(zo,x1,...) such thath(z:41) = x; for ¢t a nonnegative integer, since these sequences form thébeiguil

for both models. It occurred to all of us that the man the interval/ was only part of the story: our
equilibria sit in the inverse limit spadém(.J, 2). This is the space we should be studying: the dynamics on
it are intimately related to the dynamics bfon J sinceh : J — J generatedim(/J, h). Furthermore, we
have an induced homeomaorphigrhon liLn(J, h). And—a real bonus, topologists and dynamicists have
been studying these limit spaces for over 50 years, and ihareast literature we can just “plug into”. (See
referenced 6. 17.18] 9, 110,117,118] L9} 23,[25)38[ 39, 40, 44445/ 60| 7, 42, 73.75] for a sampling.)

SupposeN denotes the positive integers ahiddenotes the nonnegative integers.céntinuumis a
compact, connected metric spaceXlfandY are continua, and” C X, thenY is asubcontinuunof X .

If Y is a subcontinuum ok, butY # X, thenY is apropersubcontinuum ofX .

A chainis a finite sequencé&’;, Gs, ..., G, of open sets such th&t; intersectsG; if and only if
|i — j] < 1. The open set&; are thdinks of the chain. Theneshof the chain is the largest diameter of its
links. A continuum ischainableprovided for each positive integethere is a chain cover dff with mesh
less thare. The unit interval is the most obvious example of a chainabldginuum, but there are examples
that are much more interesting.

A continuum isdecomposabld it is the union of two of its proper subcontinua. If a contim is
not decomposable, it indecomposableA reader not familiar with these objects might wonder wieeth
they exist. They do indeed, and are quite common occurreincelsaotic dynamical systems. All in-
decomposable continua share certain structureX I§ an indecomposable continuum ands X, then
Cps(z) = {y € X : there is a proper subcontinuum &fthat contains both andy}; Cps(z) is called the
composanbf z. The set of composants of an indecomposable continuuntipastthe continuum into an
uncountable collection of mutually disjoint sets, each bfah is dense in the continuum. Each composant
is like a “highway” in the continuum. The continuum is madenfrthe collection of highways, each close
to any other but forever apart from the other.

A continuum with the property that every proper subcontmus an arc is called aarc continuum
Note that a continuum can be both indecomposable and an atingom. A continuum can also be both
indecomposable and chainable. In the case of an indecolmpama continuum, each composant of the
indecomposable arc continuum is an arc component.X(is an arc continuum, and € X, thearc
component(x) of the pointz is the sef{ z € X : there is an ar@, in X that contains both andz}.) The
familiar Knaster bucket handle continuum, which is homerhi to the Smale horseshoe attractor, is a
chainable, indecomposable arc continuum. However, indeosable arc continua need not be chainable—
the solenoids are indecomposable arc continua, but theparehainable. Likewise, indecomposable
chainable continua need not be arc continua. The pseudnartindecomposable chainable continuum
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which contains no arcs. In fact, every proper subcontinufiagseudoarc is either a point or a copy of the
pseudoarc.

SupposeX is a compact metric space affd X — X is continuous. The point in X is aperi-
odic pointof periodn if f™(z) = z. If  is a periodic point of period, then itsorbit is O (x) :=
{x, f(x), f2(z),..., f* (z)}. We can talk about the orbits of nonperiodic points, tooXlfis a met-
ric space and’: X — X is continuous, therbit O, (z) of the pointz under the action of is the set
O4(z) = {z, f(2), fQ(x)v .

A subsetd of X isinvariantunderf if f(A) = A. (Hence the orbit of a periodic point is an invariant
subset ofX underf.)

Suppose thak andY are metric spaced,: X — X is continuous ang: Y — Y is continuous. If
there is a homeomorphism X — Y such thath o f = g o h, thenf andg are said to beonjugate
Whenever two maps are conjugate, their dynamics are eguivalA weaker condition is that of semi-
conjugacy: If there is a continuous onto mapX — Y suchthatio f = go h, thenf andg are said to be
semi-conjugateand f factors overg. If two maps are semi-conjugate, their dynamics are reldtetnot
necessarily equivalent.

A subsetA of a a complete, separable metric spaces residualin X if A contains a dens@; subset
of X. A subsetM of X is nowhere densi X provided the interior of the closure 8f in X is empty. M
is meagetlin X if M is a countable union of nowhere dense subsefs.of he complement of a meager set
in a complete separable metric space is a residual set cfpthat.

Suppose thak is a compact, metric space, ahd K — K is continuous. If there is a poiptwhich
has a dense orbit i under the action of, then there is a residual set of pointsfiheach of which has
its orbit dense inK. We say that is transitiveif there is a poinp in K which has its orbit dense i
The maph is transitive if and only if it has the following property: if andv are nonempty open subsets
of K, then there is some integersuch thath”(u) N v # @. The maph hassensitive dependence on
initial conditionson the invariant closed subsét of K if there is some positive numbersuch that for
each pointc in H and for eacke > 0, there is a poiny in H with d(z,y) < e and an integek > 0 such
thatd(h*(x), h*(y)) > r. The maph is chaotic in the sense of Li and Yorkeh has sensitive dependence
on initial conditions onK. The maph is chaotic in the sense of Devanigy

1. there is a poinp in K which has its orbit dense i,
2. the set of periodic points i is dense ink, and
3. his sensitive to initial conditions at each point&f

If X is a metric space anfl: X — X is continuousf is transitive, and the set of periodic points of
fis dense inX, then f has sensitive dependence on initial conditians [5]. ThueyaDey’s last condition
is redundant. Rob Roé& [I75] has shown thaKifis a finite tree andf: X — X is continuous and has
a dense orbit, therfi is chaotic in the sense of Devaney. (Note that Roe’s assomfitat X be a tree is
important: An irrational rotation on a circle forms a dynaalisystem in which every orbit is dense, but it is
not chaotic and it does not have any periodic points.) Tharsa fnap from an interval to itself, condition 1
above implies that the map is chaotic in the sense of Devaney.

Suppose that is a fixed point off (i.e., f(z) = z). We say thay is homoclinicto the fixed point
if there isy # x such thatf"(y) — z and there is a choice of inverse images! (y), f~2(y), ... with
f~™(y) — =. If x is a periodic point of period underf, we say thay is homoclinicto z if i is homoclinic
to x underf™.

Let f: I — I be a continuous map on an intendasuch that/ = [a,b]. We say thatf has a (one-
dimensionalhorseshoef there are disjoint subintervalg and; of I andny € N such thatly U I; C
f"([o) andlpUl; C f"([l).

The notion of topological entropy involves the concept of ayx)-separated set. Lgtbe a continuous
map on a compact metric spadewith metricd. Let A, E C X. We say thatZ is (d, ¢, A)-spanning

if £ is finite and for everyy in A, there exists an: € F such thatd(x,y) < e. Givenf, forn € N,
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we define a new metrid/ on X given byd’ (z,y) := maxo<;<n_1d(f*(z), f'(y)). Forn € N and

n

e > 0, let S(df, e, A) denote the minimum cardinality of afti/, e, A)-spanning sets. Then define for

n? n?
AC X,h(f, A, e) = limsup,,_, . (1/n)[log S(df, e, A)]. Thetopological entropy off on A is defined by
h(f,A) =lim._o h(f, 4, €). Thetopological entropy off is defined byh(f) = h(f, X).

A continuumX has thdixed point propertyf for every continuous functioh from X to itself, there is
a pointp in X such thati(p) = p.

A map of an interval onto itself is callearkovif there is a finite invariant setl containing the end
points of the interval such thatif andq are consecutive members 4f then the restriction of the map to
[p, ¢] is monotone.

A topological rayis a locally compact, connected metric sp@teontaining a poin© such tha?\{O}
is connected, and jf € R, butp # O, thenR\{p} is the union of two disjoint connected sets.

Unfortunately, there is no commonly accepted definitionhef word “attractor”, and to make matters
worse, Kennedy-Stockman-Yorke use the word one way andd/Reines use it another way. L&tbe a
complete separable metric space gndX — X be continuous. Left C X suchthatd is a closed invariant
set. We say is anattractor for X if there is an open s&? such thatd C O andn92,f"(0) = A. This
is how Kennedy-Stockman-Yorke use the word.

Now for the Medio-Raines version: Again, I¢t X — X be a continuous map on the metric space
X. Thew-limit setof a pointz of X is defined to bevs(z) = Ni>o{f™(z) : m > i}. If Alis closed and
invariant undetf, then thebasin of attraction ofA is defined to b&3(A) = {x € X : w;(z) C A}, andA
is called atopological attractorprovidedB(A) contains a residual subset of an open subsét ahd there
is no closed invariant subsgt of A for which B(A4) andB(A’) coincide up to a meager set. Howevér,
is ametric attractorprovidedB(A) has positive measure and there is no closed invariant subsétA for
which B(A) andB(A’) coincide up to a set of measure zero. An attraetds Liapunov stablerovided
there are arbitrarily small neighborhoadf A such thatf(O) C O. If A is Liapunov stable and its basin
of attraction is open and honempty, théns asymptotically stable

A map of a continuum to itself imonotonegprovided each point inverse is a continuum. A piecewise
monotone function on an intervil, b] is expandingf wheneverr < y andf is monotone or, y|, then

[f(y) = f@)|

> 1.
ly — |

If [a,b] = [ro,r1] U [r1,72] U--- U [rn—1,7,] @and f is strictly increasing or strictly decreasing on each
subintervalr;_1, 7], let 7T = {Jo, J1, ..., Jan}, WhereJy; = {r;} for 0 < i < n, andJa;i+1 = (ri,7i41)

for 0 < i < n — 1. We sayz andy havedifferent itinerariesf f™(z) andf"(y) are in different members
of 7 for somem > 0. A piecewise monotone map on an inter{alb] is weakly expanding, whenever

x # yin[a, b], x andy have different itineraries.

A map f of an intervalla, b] onto an intervald, e] is unimodalprovided is not monotone, and there
is a pointc in (a, b) such thatf|;, ., and f||. ;) are both monotone. The poiais called theturning point
for f. The mapf is aType (1)unimodal map iff (b) = a. Several families of tent maps (piecewise linear
unimodal maps) and logistic maps (of the fofj)(z) = px(1 — x)—such as those associated with the
OLG model) have been extensively studied by a number of asitiieel[B, 6. 39, 43], for example.)

Type (1) unimodal maps go up and then come down; members @ldufamily of maps go down and
then come up. This is not a problem: we can “flip” our map oveasto more easily use the results in the
literature. Also, translating tf9, 1] from the intervalz, Z] C (0, 00) (via a conjugacy) is easy. Thus, our
CIA interval maps are all conjugate to type (1) unimodal maps

In the OLG work, the following definitions are used: Lgbe continuous with domaiif, 1]. Then we
say thatf is

(1) atype Aunimodal map provided is unimodal o0, 1] with turning pointe, f(0) = 0 andf(c) < 1,

(2) atype Bunimodal map provided is unimodal o0, 1] with turning pointe, f(0) > 0 andf(c) < 1,
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(3) atype Cunimodal map provided there is a poing (0, 1) such thatf| . is strictly increasingf|.,1
is strictly decreasing, anfl(c) > 1.

Supposef : [a,b] — [a,b] is continuous and onto. We sgyhasfinitely many turning pointg there
exists a finite sefag, a1,...,an}, a = ap < a1 < --- < a, = b such thatf is monotone otja;_1, a;] for
i=1,...,n,butfis not monotone on any interval [n, b] properly containing somg;_1, a;]. Members
of the sef{aq, ..., a,—1} are theturning pointsfor f.

Let, for eachn € N, X, be a nonempty metric space, afid denote a continuous map from,, ., to
X The pair(X,,, f,) is called arinverse sequenag inverse systemThe space,, are calledfactor
spacesand the mappingg,, are calledoonding maps

Suppose X, fm) IS an inverse sequence. Theverse limitof the inverse sequence is denoted by
@(Xm,fm) and is defined as the subset of the product sﬁgLeEN X.m, to which the pointx (with
n-th coordinater,,) belongs if and only iff,, (1) = zm, for eachm € N. If m € N, the map
Tm: [[pen Xn — Xin defined byr, (x) = z,, is called theprojection map(or, if specificity is required
them-th projection map.

We note that inverse systems and inverse limits can be ddfin@dmuch broader class of spaces (here
we limit ourselves to metric spaces) and indexing sets (Wwerase the nonnegative integers for indexing),
but the definitions above are sufficient for our purposesatt, Except when we are talking about subsets
of inverse limits, our inverse limit spaces here are all gatexd with the space a closed intervaland the
map a continuous map: J — J (so just one bonding map), so our inverse limit spaces ar@efdrm
@(J, f). Some useful background theorems we need about the prexpefinverse limit spaces are given
below. The theorem statements and many of their proofs cdoumel in [38,69], and other books. There
aremanymore such theorems.

Theorem 1 If (X,,, f,n) IS an inverse sequence and ea&h, is compact, then its inverse limit is a
nonempty compact metric space contained jp, .y X If (Xon, fin) is an inverse sequence and for
eachm € N, X, is a continuum, then the inverse limit of the inverse seggiena continuum. IfX,,,, f:)

is aninverse sequence and eakh is a chainable continuum, thé{h_n(Xm, fm) is a chainable continuum,
is of topological dimension 1, can be embedded in the plamhas the fixed point property.

Theorem 2 If (X,,, f) iS an inverse sequence ad = an(Xm, fm), thenmy,|x: X — X, is con-
tinuous.

Theorem 3 If (X,,,, f,n) is an inverse sequence, aidis the inverse limit of the inverse sequence, then
foreachm < n € N, mpn|x = fm © fmg1 00 fno1 0 fn o (mn]x). (Often the composition map
fmo fmy10---0 fn_10 fy, is denotedf]; and /" is used to denote the identity 6f),,. The notation makes
bookkeeping easier.)

Theorem 4 If oy, as, ... is a sequence of arcs each of which is a proper subset of areanti.X such
thatay C as C a3 C -- -, the pointO is a common endpoint of;, s, ..., R=a; Uaz Uaz U---,and
no point ofa,, belongs toR\av,+1, thenR is a ray.

Theorem 5 If (X,,, fn) is an inverse limit system such that for eagh X, is a compact metric space
and f,,, is a homeomorphism, then the inverse limit of the inversesys a compact metric space homeo-
morphic to eachX,,,. Note that it follows that if eacX,, is [0, 1] and eachf,, is a homeomorphism from
[0, 1] onto[0, 1], then the inverse limit of the inverse system is an arc.

Theorem 6 (Subcontinua) Suppos€ X, f.,) is an inverse limit sequence. If, for eash K,, is a

subcontinuumoX,,, and f,, (K py41) = K, then@(Km, Jml|K..41) iS@subcontinuum 0(1@1(Xm, fm)-

To repeat: IfX is a compact metric space, ayfids a continuous map fromX to X, then(X,,, fi),
whereX,, = X andf,, = f for each positive integen, is an inverse system. With the simpler counting
here, we can denote the corresponding inverse limifiby X, f) and not have problems with ambiguity.
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Let X* = lim(X, f). Inthis case, a natural map is induced on the inverse limai¢tgjpy the bonding mafa
forx = (l‘(),l‘l, .. ) e X*, definef*(x) = f*((l'(),l'l, .. )) = (f(l‘()), f(l‘l), .. ) = (f(l‘()),l‘(), X1,.. )
The induced mag™ is a homeomorphism frotx * onto X *. The inversegy := f’“1 of f* is then defined
by g(x) = g((zo,21,...)) = (1,22,...). Thus, the pai(X*, f*) forms a dynamical system, one that
runs both forward and backward. Both the induced nfapnd its inverse are traditionally called the
shift homeomorphism$ote that we have, in a sense, “turned” a continuous nfagn a spaceX into a
homeomorphisnfi* on a possibly more complicated spaké. Note also that the map on X determines
the inverse limit space itself. How complicated topolotijcthe inverse limit space is, is a measure of the
complexity of the dynamics of the original map.&n Because we are concerned here with the problem of
backward dynamics, ang*)~! := o is the homeomorphism that takes us forward in time reserve the
use of the word “shift” in this paper to meay*)~! := o.

A nice, well written introduction to inverse limits on an émval with one bonding map is given in143],
along with an investigation of the relationship betweendbmnplexity of the topology of the inverse limit
space and the complexity of the dynamics on the resultingrse/space.

The theorems below are due to Tom Ingram.

Theorem 7 ([89]) Supposef is a Type(1) unimodal mapping of an intervak, b with critical point ¢
onto itself, and; is a pointin(c, b] such thatf?(q) = ¢ and f(a) = ¢. Then the inverse limit of the inverse
limit system([a, ], f) is the union of two Knaster bucket handle continua intefegat a point or an arc.

Theorem 8 ([89]) Suppos¢ is a Type(1) unimodal mapping of an intervad, b] onto itself and is the
first fixed point forf2 in [c,b]. Thenf has a periodic point of odd period greater tharif and only if

f2b) <q.

Theorem 9 ([89]) Supposé is a Type(1) unimodal mapping of an intervad, b] onto itself andy is the
first fixed point forf* in [c, b]. Thenlim([a, b, f) is indecomposable if and only ffla) < g.

Theorem 10 ([39]) Supposef: X — X andg: X — X are conjugate. Then their inverse lim-
its lim (X, f) and lim(X, g) are homeomorphic. Furthermore, K is the induced homeomorphism on
an(X, f) and@G is the induced homeomorphism @(X, g), thenF and G are conjugate, as are their

respective shift maps.

Theorem 11 ([89]) If I denotes an interval an(, f) is an inverse system such thais a homeomor-
phism, then the inverse limit of the inverse system is horoggtit to an arc.

Theorem 12 ([40]) Supposef: [a,b] — [a,b] is a continuous mapping, is periodic of periodn > 3
underf andbis in O (a). If k is an integer such that* (a) is the first member a?, (a)\{a}, andn andk
are relatively prime, thetim([a, b], f) is an indecomposable continuum. (Nofé:(a) is the first member
of O (a)\{a} means first relative to the order on the interyalb].)

Theorem 13 ([41]) Suppos€: [a,b] — [a, b] is a continuous mapping and is a Markov map with Markov
partitiona = a1 < as < -+ < a, =bforn >3 andO4(a) = {a1,as,...,a,}. If kisan integerk < n,
such thatf*(a) = as, andn andk are relatively prime, thetim([a, b], f) is an arc continuum.

Barge and Martin[[1/1] show that if the dynamics ofire complicated, then the inverse limit contains
indecomposable continua, and they give a partial converdencertain conditions ofi.

Theorem 14 ([11}) Letl = [a,b], f: I — I be continuousX = lim(/, f), and F be the induced
homeomorphism. Suppasandn are integers withk > 0, n > 1, and thatf has a periodic point of power
2%(2n + 1), i.e., not a power o2. ThenX contains an indecomposable continuum that is invariantund

F2k+1

Theorem 15 ([L1]) Supposef: I — I is continuous and onto with finitely many turning points. If
@(I, f) isindecomposable, thefihas a periodic point whose period is not a poweeof
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Theorem 16 ([11]) Supposef: [a,b] — [a,b] is continuous andX’ = lim([a,b], f). If f has a point
homoclinic to a periodic point theX contains an indecomposable continuum.

Barge and Diamond[7] prove the following:

Theorem 17 ([7]) Suppose': X — X is continuous with finitely many turning points, aidis a finite
graph (e.g.X is an interval). Then the following are equivalent:

(a) The entropya(f) > 0.
(b) The inverse limitim (X, f) contains an indecomposable continuum.
(c) The functionf has a horseshoe.

(d) There exist, M € N such that formn > M, f has a periodic point of prime periogn.

6 Results

6.1 CIA model—topology and dynamics

In their paper[[66], the economists Michener and Ravikuneaed the Li-Yorke papef[60], show that the
map f (from our discussion of the CIA model) can admit a period ¢hpeint and also that it can admit a
period 6 point, and conclude that whenever a period thre® present, this means the presence of chaos
(in the sense of Li and Yorke). Michener and Ravikumar alsedcihe Sarkovskii Theorem and noted that
presence of a period three point férmeant that periodic points of all periods would be preserieyT
essentially left it at that.

We note that while Kennedy and Yorke are mathematiciangk8tan is an economist. We can sum-
marize our work in[[54],[I56], and_[53] as follows: We show tltlae dynamical and topological behavior
of the family of case I.A CIA maps we study is quite rich. As &rwe can see now, it is just as rich as that
of any of the extensively studied families of unimodal mapd @verse limits formed from those maps,
although there is certainly work left to be done here, if anmifully characterize this familyA result that
economists found surprising was that the inverse limit speauld be as simple as an arc, which would
mean that the induced homeomorphism would be a homeomorginighat arc, and that therefore, even
though the map is not one-to-one, it would induce simple amdpdetely understandable dynamidg3ne
thing that bothered us about the Michener-Ravikumar pajgesrtivat[[65] tried to understand the forward
behavior of the system by looking exclusively at sequenééseoform (..., x_o,2_1,x0), that is, they
looked backward in time (where the CIA map is well-definedhi/one can obtain some information this
way, such as, for example, knowledge of the periodic poistigoking at only the backward sequences
going to fully reveal the properties of the system? [In [53% proved that, at least in the chaotic case, it
essentially is OK to do this, i.e., to just study the backwsaguences. We have also given a characterization
of the utility functionU in terms of the interval mag. This makes it easy to use either the utility nap
or the backward majf to produce examples and results. We provide more specifica/be

We focus on the interval = [z, Z] (and case |.A) from now on, since any solutions that contgiaiat
outside this interval behave in a simple way. Note thigt J — J is surjective. We denot§| ; as justf,
since it should not lead to confusion.

If we considerthe map: J — J and form the inverse limiX' = lim(J, f), X is a chainable continuum
and can therefore be realized as a subset of the plane. Tits pbX are precisely the solutions of the im-
plicitly defined difference equatioA(z:,1) = B(x:) that stay inJ. Denote byF' the homeomorphism in-
duced onX by f Thus, forx = (l‘(),l‘l, .. ) € X, F(l‘) = F(CE(), X1, .. ) = (f(lE()), f(l‘l), f(l‘g), .. ) =
(f(z0), 70, x1,...). Letoc = F~1, so thato is the shift map, and noting this, we dendte! by o.

The proofs can be found in_[53].[54], arid [55]. Since the fs@ppear elsewhere, we do not include
them here. Note that in the theorem below, we are back toseptigU as a function ot; andc,. Under
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equilibrium conditions, it is the case that + co; = y for all ¢ (that is, amount spent on cash goods plus
amount spent on credit goods is the total endowmgrdnd it makes sense to writéas a function of just
one variable.

Theorem 18 ([55]) In the CIA model,f is a typel.A backward map generated by a utility function
U(c1, c2) satisfying Assumptiofh (of [66]) with 0 < 8 < 1 if and only if f is a typel.A map satisfy-
ing

1. forz, > s, f is linear with sloped < 3 < 1 with 2, = ¢/,

2. fisCton|z,7)\{z1,¢ 22}, Wherex < x; < Cis the unique solution tg(z) = ¢,

3. forz € {z1,¢, 22}, f'(z1) and f/(x ) exist, are non-zero with

and

4. zf'(x) < f(x)forz € [¢, z2).

In [53], we give meaning tgf ~! being chaotic, even though! is not a function. We also define
what it means forf ! to have positive entropy. Those definitions are long, tezdiniand given in the
inverse limit setting, and we do not include them here, buhete that it follows from results of Li]59]
and Casanovas[R1] that the induced homeomorplhisand shift mapr on the inverse limit space must be
chaotic if and only iff is chaotic, andf has positive entropy if and only i ando have positive entropy.

Theorem 19 ([53]) SupposeX is a compact metric space and X — X is continuous. Therf~! is
chaaotic (in the sense of Devaney) if and only if chaotic onX .

Theorem 20 ([53]) SupposeX is a compact metric space anfd X — X is continuous. Theh(f) =
h(f~1). Thus,f~! has positive entropy if and only jfhas positive entropy.

Applying the results discussed in the previous section,eedlisat if{x, T, ¢} forms a period three orbit
for f, X is an indecomposable continuum. Furthermore, it followesiSarkovskii's Theorem that has
periodic orbits of all periods; and therefore, X — X admits periodic orbits of all periods. Howevgr,
may be chaotic only on an invariant Cantor set containeddrirtterval, or it may have dense set of periodic
points (and thus be chaotic on the entire interval), or pesliacould be something in between. We show
that the first two cases can occur.

Most likely f is contracting orjc, Z], and we make that assumption in our exampleg. iff expanding
on |z, c], and that expansion is large enough to dominate the coiunamt the rest of the interval, thefi?
is expanding on the entire interval, and it follows from fdésof Baldwin [4] that the set of periodic points
in the interval is dense, anflis conjugate to the piecewise unimodal n@pn [0, 1] such thatG(0) = 1/2,
G(1/2) =1,andG(1) = 0.

Example 1 ([%4], Indecomposable Inverse Limit with Period T hree Point and Dense Set of
Periodic Points) We give an example of a mgpn our allowed family of maps (for convenience we have
shifted the interval fronfz, 7] to [0, 1]) such tha) and1 are part of a period three orbit fof, and f has a
dense set of periodic points. Defifie [0, 1] — [0, 1] as follows:

-2 .

Tox—i-l if0 <x<045
flx) = 45)2

2937(0' 5) if0.45 <z <1

11 .55

Thenc := 0.45, f'[j0,0.45) = —TQO,f’|[0,4571] = % Note thatf is continuous and0,0.45, 1} is a period3
point. Also,f is conjugate to the piecewise unimodal n@pn [0, 1] such thatz(0) = 1/2, G(1/2) =1,
andG(1) = 0.
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+7

Theorem 21 ([64]) Defineg: J — J as follows:g(z) = 7, g(F) = 252, g(£3%) = z, g is decreasing
and linear onfz, ££2] andg is increasing and linear of£3%, 7). Lete = Z2. h: J — J, 2 < c < T,
andh(z) = 7, h(T) = ¢, andh(c) = z (so that{z, ¢, T} forms a period three orbit if<). Furthermore,
supposé: is strictly decreasing ofiz, ¢|] and strictly increasing oric, 7], and h? is expanding onz, 7).
Thenh is weakly expanding ofx, Z]. It follows thath is weakly expanding of, & is conjugate tgy, and
we may completely understand the dynamids ofi X by considering the simpler piecewise linear map

Furthermore, the orbit of some point i§ (under the action of) is dense, and it must be the case that

1. there is a residual set of points i each of which has an orbit dense i,
2. the set of periodic points i{ is dense ink, and

3. his sensitive to initial conditions at each point &f

Hence,h is chaotic in the sense of Devaney &n Then if Y = lim(K, %), Y is an indecomposable
continuum and it is also an arc continuum. (Thysis an indecomposable continuum, but it is rather
simple for this class of continua in that it contains no indeposable proper subcontinua.) LiEtdenote
the homeomorphism induced bynY’, and letc = H~!. It follows immediately that, under the action of
o, the set of points iy’ that have dense orbits W is a residual subset df, the set of periodic points in
Y form a dense subset &f, ando is sensitive to initial conditions ir". In other wordsg is chaotic in the
sense of Devaney dn.

It is not possible to picture completely an indecomposabletinouum, and it is very difficult even
to picture pieces of more than one composant. The applicatican algorithm developed by Beverly
Diamond and Karen Bruck5I[6] makes it possible to draw, withtielp of a computer, accurate pictures of
the developing continuum (or at least one composant of sewomgéinuum) for an inverse limit space on an
interval with one bonding map. For a nice picture of this fpdithree” continuum, see Nadle@ontinuum
Theory[B9, Fig. 1.10, page 8].

Now suppose that the expansion jonnc) does not dominate the contraction Gnz]: Suppose there
is an intervalL = [z,d] in [z, c) such thath®(L) C [z,d). (This might happen if, say, the maxof h
corresponds to the local maximum value of the original (dageh defined on[z, ¢).) In this case the
period three orbi{z, Z, c} is attracting for an open set of points in the interval:

Theorem 22 ([%4]) Suppos¢ : [z,Z] — [z,T] is continuous and has the following properties:
1. f(z) =7, f(T) = c(Wherez < ¢ < T),andf(c) = z;
2. there isd € (z, c) such thatf|, 4 is linear with negative slope-m; and0 < m; < 1;
3. flia,q is linear with negative slope-mo;
4. flicq is linear with positive slopens < 1; and
5. mams > 1 andmimams < 1.

Then{z, ¢, T} is an attracting period point for » and the basirmB of attraction of{z, ¢, T} is dense in the
interval [z, 7] and containgz, d]. FurthermoreC := [z, 7]\ B is a Cantor setf(C) = C, andC contains
periodic points of all periods.

Example 2 ([%4], Indecomposable Inverse Limit with Period T hree Attracting Orbit) The the-
orem above is not vacuous, i.e., such a nfagxists in our family of maps. Suppase= 0 andz = 1
(we can translate later to change the interval without chagghe dynamics). Defing: [0,1] — [0, 1] as
follows:

1—(0.1)z, if0<z<0.1
- 4 .

fla) = %x + %ﬁ if 0.1 <z<045
9 (0.45) .
= . <z<
11m 5 if 045<z<1
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Thend = 0.1, ¢ = 0.45 ,my = 0.1, may = 99/35, mg = 9/11. Note thatf is continuous and0, 0.45, 1}
is a period3 point. Also,maoms = 81/35 > 1 andmimams = 81/350 < 1.

Corollary 1 ([ B4]) Supposef: [z,T] — [z,T] is continuous and satisfies the properties of the previous
theorem. (The notation used for the theorem also applies h&hen there is a continuous map [z, 7] —
[z, T] with the following properties:

1. h(z) =T, h(T) = c (Wherez < ¢ < T), andh(c) = z;
2. h(z) = f(z)forz € [d,Z];

3. h([z,d]) = f([z,d]); and

4. h|(z,c) is smooth and strictly decreasing.

Then{z, ¢, T} is an attracting period point and the basiB,, of attraction of{z, ¢, Z} is dense in the
interval [z, 7] and containgz, d]. Furthermore,C}, := [z, T]\ B}, is a Cantor seth(Cy) = Cj, andC,
contains periodic points of all periods.

Requiringh|(4,.) to be linear seems to be a strong requirement, but it coulduintédly be weakened
and the result would still hold.
Next we show that the two Knaster bucket handle case can:occur

Example 3 ([55], Two Knaster Bucket Handle Inverse Limit ) Letf: I — I where

my +mozx  if z € [a,d]
fl@)y=<n1+mnex ifzeld7,
p1+pax  ifx €]
withl = [a,bl,a=1,b=2,c=a+ (2/7)(b—a),d = (2/3)a+ (1/3)c,n2 = —1,ma = —(b—a —
t+d)/(d—a),mi =b—moa,n1 =a—nat p2 = a/(C+ 24/5), p1 = (24/5)p2. This map satisfies
Ingram’s Theorend so that the resulting inverse limit space is two Knaster btiblandles joined at a point

or an arc. Sincd(iLn(I, f) contains an indecomposable continuum, by Barge and Diafadtatoreml9,
f must have positive topological entropy afidontains a horseshoe.

Figure[T illustrates a map on an interval conjugate to a mewiur family that has simple dynamics.
(It has been flipped and translated to the unit interval.) iFiverse limit space is an arc or a double
topologist’ssin(1/x) curve in this case (which of these we get depends on[how and|d, 1] interact for
the map under the action g%, and the dynamics are therefore simple, even though fahivatime the
corresponding map from our family is not well defined. (S€8] fér a picture of the double topologist's
sin(1/x) curve.)

Theorem 23 ([54]) Suppose) < e < ¢ < a < b < d < 1, and supposg: [0,1] — [0, 1] has the
following properties:

@) f([a,b]) = [e, d],

() flie: [e; 1] — [0, 1] is one-to-one, onto, and decreasing,
(¢) fljo,q isincreasing, and

(d) f(c) =1, £(0) = d = f(a), f(b) = e, f(1) = 0.

Thenlim([0, 1], f) is either an arc or a double topologistisn(1/x) curve.
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Figure 7.

Example 4 ([%4], Inverse Limitan arc) A map satisfying the hypotheses of Theof&Bexists such
that the inverse limit spacg is an arc. The map is also conjugate to a member of our casidirance
family of maps: Suppose = 0.2, ¢ = 0.6, a = 0.7, b = 0.8, andd = 0.9. There is a function
g: [0.7,0.8] — [0.2,0.9] such that(i) ¢’(0.7) = ¢’(0.8) = —1, (i) ¢’'(z) < 0 for z € (0.7,0.8), and
(i) g(0.7) = 0.9, g(0.8) = 0.2. Definef: [0,1] — [0, 1] as follows:

%+0.9, if 0<a<0.6

f)={cF 1.6, if 0.6 <z<0.7
g(z) if 0.7<2<0.8
—z+1 if 0.8<zx<1

Then f is continuous or{0, 1] and satisfies the hypotheses of TheoEin Note thatf?([0,0.2]) =
£(0.9,28/30]) = [1/15,0.1] € [0,0.2] and f?(z) = f(z/6 4+ 0.9) = 0.1 — x/6 for z € [0,0.2].
Also, £2([0.9,1]) = f([0,0.1]) = [0.9,55/60] C [0.9,1] and f%(z) = f(1 —x) = —z/6 + 64/60 for
x € [0.9,1]. Hencel; := N>, f*"([0,0.2]) consists of one point, as dogs:= N>, 2"([0.9,1]) # @.

n

Example 5 ([%4], Inverse Limit a Double Topologist's Sin(1/x)) A map f satisfying the hypothe-
ses of Theoref@3exists such that the inverse limit spa€és a double topologist'sin(1/z) curve. The map
is also conjugate to a member of our cash-in-advance fanfitgaps: Suppose= 0.4, ¢ = 0.5, a = 0.6,
b= 0.7, andd = 0.8. There is a functiog; : [0.5,0.85] — [0.275, 1] such tha(i) g; is continuously differ-
entiable on[0.5, 0.85], (ii) ¢}(x) < 0 for 2 € [0.5,0.85], (iii) ¢1(0.5) = 1, g1(0.6) = 0.8, g1(0.7) = 0.4,
91(0.85) = 0.275, and(iv) ¢;(0.85) = —2.5. There is a functiogz : [0.95, 1] — [0, 0.025] such that(i) g2
is continuously differentiable 0i6.95, 1], (ii) g5(z) < 0 for z € [0.95, 1], (iii) g2(0.95) = .025, g2(1) = 0,
and(iv) ¢5(0.95) = —2.5. Definef: [0,1] — [0, 1] as follows:

04z+038, if0<z<0.5

g1(z) if 0.5<ax<0.85
fl@)=4¢ 5 .

—5r+24 if 0.85 <z <0.95

g2(x) if 0.95<z<1
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Thenf is continuous orf0, 1] and satisfies the hypotheses of ThedBE3mNote thatf?(0.85) = 0.91
and £2(0.91) = 0.85. (In fact, each point in the interva0.85,0.91] is a period two point forf2.) Thus,
[0.85,0.91] C N>, f*"([0.85,0.95]) and I is an interval in this case. Hencé, := N>, f2"(]0,0.2])
must be an interval, too. Then the inverse limit space far #xample is a double topologist&i(1/x)
curve.

We have shown that the inverse limit spaces from differemhivers of our family of maps on an interval
can behave quite differently, both topologically and dyieaity. There are many more possibilities and
we conjecture, although much remains to be done here, thaisdibilities which follow from the body of
tools for inverse limits developed in the last fifty or so yeean occur:

1. Tom Ingram'’s theorems (Theoref$9-13) can all be satifdieshaps conjugate to many members
of the family of maps for our cash-in-advance model. Thus,résulting inverse limit can be an
indecomposable continuum whether or not there are cer@ingpoints (Theorefl1 is satisfied).

2. If the map is a Markov map, then Ingram’s Theolemh 13 givéficgent conditions under which the
resulting inverse limit space is an arc continuum.

3. In [8], the authors proved that for a certain famjlfs } of tent maps and a residual set of parameters
(M € [1,2]), the inverse limit spac(h‘Ln([O, 1], f») is not only indecomposable, it also contains ho-
meomorphic copies of every inverse limit of a tent niBpfor eachs € [1,2]. (The collection
{Ts} for 8 € [1,2] is another family of tent maps df, 1].) Thus, not only is this space complex,
it has “sublayers” that are themselves complex. This comtim must contain uncountably many
topologically different indecomposable proper subcamdinWe don’t know if this is true for at least
some member of our family of models, but we conjecture thiat it

There are many more questions one could ask, even about mewibe family of maps we have
studied, not to mention cases II.A and II.C (which we did rasider at all).

What does all this mean to an economist? What does the peeséaliaos itself mean to an economist?
The presence of chaos is interesting because it offers amative way of modeling fluctuations. The
standard method of modeling fluctuations in economics issmairandom (stochastic) dynamical system
where the fluctuations are due to exogenous random “shooltsiet system. However, a chaotic system
allows for (deterministic) endogenous fluctuations withthie need to introduce exogenous randomness to
the model. Economists are also interested in knowing undhet warametrization of the model is chaos
possible. This potentially allows one to make policy prggn (e.g., in the CIA model, the growth rate
of the money supply) to eliminate the possibility of chaos (assuming this wobddconsistent with the
central bank’s goals). The fact that the inverse limit telsssomething about the underlying dynamics is
important to an economist because it offers a new way to eg@od detect complicated dynamics. For
example, the fact thaX’ can turn out to be an arc, arida homeomorphism from an arc to itself, so that
the dynamics of the system are extremely sim@ajgnificant to economists. It says that even thoyigh
on J is not one-to-one, and the corresponding difference eguédinot well-defined forward in time, the
behavior of the system can be predictable and simple rathardcomplicated and chaotic.

6.2 The OLG model—topological attractors

In [63] and [64], Medio (economist) and Raines (topologistidy the qualitative behavior of an OLG model
of the ‘Samuelson’ type. As with the CIA model studied by Kedy, Stockman, and Yorke, the model has
the problem of backward dynamics. Medio and Raines idetitifge canonical types of maps coming from
this OLG model, and describe the inverse limit space coarding to each of them as well as the attractor
of the associated shift maffhe goal of the papers is to understand the structure of etitrs (under the
shift maps) that arise, because the forward admissible esecgs that make up the attractors (metric or
topological) are the ones that can be ‘seen’, and thus areoties the implicitly defined system predicts
Again, since the proofs appear elsewhere, we give only nfakeanain results.
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Theorem 24 ([64]) Let f: [0,1] — [0,1] be unimodal. Let/lAbe a closedg-invariant subset of
lim([0, 1], f) with m (A) = A. Suppose thaf ~'(A) # A. ThenA is not Liapunov stable, and there-

fore A is not asymptotically stable.

Corollary 2 ([€4]) Letf: [0,1] — [0, 1] be unimodal. Let1 be a periodic orbit undey of periodn > 3.
ThenA is a closed invariant subset ¢, 1] under f, and we defingim(A, f{4). ThenA is a closed,

o-invariant subset ol(iLn([O, 1], ), A is not Liapunov stable, and thereforeis not asymptotically stable.

Medio-Raines then move on to consider unimodal maps of typye B, and type C (since interval
maps coming from the OLG family can be any of these). They daansider in detail the case in which
f(e) < ¢ (wherec is the turning point for the unimodal maf), since in this case the inverse limit space
lim([0, 1], f) is simply an arc, and so the actioncobnlim([0, 1], f) is just the action of a homeomorphism
on an arc. -

Theorem 25 ([64]) Let f be a type AAunimodaI map d, 1] with turning pointc, and0 = (0,0,...). If
f2c)=f(1)>0 and f'(0) > 1, then0 is an asymptotically stable attractor. Moreoverfifz) > z for
all z € (0, ¢), then0 is the only topological attractor fos onlim([0, 1], f).

If instead, f?(c) = f(1) = 0, then the usual unimodal maps (such as the tent or quadrafis)hon
[0, 1] are transitive and so contain no topological attractorgfofhe only topological attractor in this case
is the entire inverse limit space. For type B maps, the sdnas not so simple.

Theorem 26 ([64]) Let f be a type B unimodal map df, 1] with unique fixed poinp € |[c, 1], that
is repelling onlc, 1], and supposg(0) > p. (Again,c is the turning point forf.) Then the poinp =
(p,p,...) € 1@([0, 1], f) is an asymptotically stable attractor, and it is the only edgmical attractor in
1lim([0, 1], f).

—

It is possible to have a type B map wiftf0) > p andp not repelling orc, 1]. It could even be possible
for f to have a period two orbit contained i 1], that is repelling: this would generate a two-point set in
lim([0, 1], f) thatis an asymptotically stable attractor.

Next suppos¢' is a type B unimodal map withi(0) < p. Now we have an incredibly rich family of
maps, and they generate many types of inverse limit spacksnust contain indecomposable continua
and if f(0) < p, then the inverse limit space itself is an indecomposabiticoum. Suppose then that
we restrict ourselves to the case whéris a type B unimodal map anf{0) < p, and we further assume
that f has a stable attractor. (This occurs for many unimodal maghsnegative Schwarzian derivative.
See[[44].) For such type B unimodal maps with stable attraBtahen from results in[44], there are
open intervalsdg, A, ..., A,_1 such thatfi(Ay) C A; andU?E‘OlAi is the stable manifold of. Then
FURSMAy) C U Ay LetA = {z € [0,1] : f(z) ¢ U, A;}. The restriction off to A is conjugate to
a subshift of finite typer 4 on some sequence spaxg,, and there is a decomposition &finto a disjoint
union of Cantor setd; such thatf|, is topologically transitive. For simplicity, we assumettifé, is

topologically transitive. Lefs = lim(A, f|A).

Theorem 27 ([64]) Supposef is a type B unimodal map 0, 1] with f(0) < p (wherep is the unique
fixed point forf), f has a stable attractoP, and f is topologically transitive or\ = {z € [0,1] : f"(z) ¢
U?gOlAi} (with the setsd; defined as above). Theh = lim(A, f[4) is a topological attractor forr on

@([0, 1], ). Moreover,A is the only topological attractor.

Finally, consider the familiar logistic map), (z) = pxz(1 — x) with © > 4 playing the role of our
‘canonical model’ of a type C unimodal map. See Fiddre 8.

Let X; = [0,1], Xo = X; N F,/'(X1), and inductively define(; = X, ; N F, ' (X;_,). Also define
fi = Fu|x,.., so thatf; mapsX;; into X;. Then{Xj, f;} is a inverse sequence aﬂ@(X,-,fi) is
the associated inverse limit space (note that we have lefotie bonding map situation) consisting of all
forward admissible sequences permitted by the differegoatéon withz; € [0, 1].
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Figure 8. The logistic map), with x> 4.

In this caselim(.X;, f;) is homeomorphicto a product of a Cantor set and arLalc [64] Ledenote the
Cantor set{(zo, z1,...) : z; € {0,1}for each nonnegative intege}. Let: denote the standard itinerary
mapping defined by(x) = 0 if and only if # < 1/2 andi(z) = 1 otherwise forz € [0,1]. LetA =
N0, 1([0,1]), and letA = lim(A, F},). Note thatA is a homeomorphic embedding &fin lim (X, f;).
Also, from LGE:],A is closed and a-invariant subset d{ﬁLn(Xi, fi)-

Theorem 28 ([64]) Lety > 4. Let K C [0,1] such thatK is closed invariant and repelling undét,,.
Let K = lim(K, Fj,|x). ThenK is an attractor forlim(X;, f;) if and only if K = A, with A defined as
above. Furthermore) is homeomorphic to the product of a Cantor set and an arc, aigldlosed and
invariant undero.

6.3 Quantitative behavior

While the work just described{[54,55,153,1 63] 64]) gives adystart in applying inverse limits to the
problem of backward dynamics, the results in those papergaalitative and, while economists have an
appreciation for qualitative results, they eventuallglik get to quantitative results. So we felt we needed
to move in that direction, and we have. We needed to “measlediesgue measure just doesn’t work on
most inverse limit spaces. We needed to come up with a mom®ppate and somehow “natural” measure.

We finally did that, and then discovered that it had almoshlane long before (seB[25]). But we
had what we needed, a “natural” invariant measur@r@J, f) for one of our backward mapgdefined
on an intervalJ. While we applied all this to the type I. A CIA model examplespiously studied, our
techniques can be applied much more broadly to dynamicibguih models (DGE’s), and apply to direct
limits (which also come up in many economic models) as welhaarse limits (which we have used to turn
the original mapf taking us back in time, into a homeomorphism on the inversé §pace).

Specifically, suppose that an economic model’s equiliboiaespond to orbits generated by a chaotic
dynamical systenf: X — X whereX is a compact metric space ayids continuous. The map could
represent the forward dynamies;; = f(z:) or the backward dynamies = f(z:y1). If f represents the
forward/backward dynamics, the set of equilibria formsracliinverse limit space. We use @rinvariant
measure orX to induce a measure on the direct/inverse limit space and it this induced measure is
o-invariant wheres is the shift operator. Moreover, we show that if thénvariant measure is a so-called
natural invariant measure, then the induced measure orirgat/thverse limit space will also be a natural
invariant measure. (Note: since Lebesgue measure makesnse sn many inverse limit spaces, we must
give this term meaning. We cannot use the usual definitionatiinal measure, so we call these natural
invariant inverse limit measures.)
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This section describes work of Kennedy-Raines-Stockmeatraibpears il [51] and [52]. Since the direct
limit results are quite easy to obtain and parallel the isgdimit results, and we haven't focused on forward
dynamics anyway, we discuss only the inverse limit portibthe results. Again, we omit the proofs. At
the end of this section, we give an example showing how tresdts can be applied to chaotic CIA maps
and what it means for economics.

A contentis a nonnegative, finite, monotone, additive, and subagdsit function defined on the class
C of all compact sets of a locally compact metric spatelt is straightforward to generate a regular Borel
measure from a content on the compact subsets of a locallpacispaceX, seel[34, Section 53, p 231].
Thus, if we can define a content &h:= an(X, f), we can generate a measureion

If X is a metric spacef: X — X Is continuous, angk is a measure oX with the property that
wlf=(S)] = u[S] for every closed se§ in X, theny is called aninvariant measure forf. Letn be a
nonnegative integer, and |8 be a compact subset &f. Define thetower setsB,, for B as follows:

By :={xe€Y :m(x) =z, € m(B)}.
Note thatr,, ! (7, (B)) = 7, ! (mn(By)) = Bn, and thatBy 2 B; 2 --- 2 B and thah>® ,B,, = B.

n=0
Suppose that is an f-invariant measure oX . Now define the functiofr on the compact subsets bf
by first declaring thal'[B,,] = u[m,(B)], whereB,, is a tower set for the compact sBtas defined above.

Then defind’[B] = lim,,. '[B,]. The functionl is a content on the compact setsYaf
Lemma 1 ([52]) The set functiof’ is a content on the compact sets¥of:= an(X, 1)

The contenf” induces a Borel measure dn, which we callm. We also have the following useful
properties.

Lemma 2 ([52]) LetK C Y be Borel. Themn[K] < u[m, (K)] for all nonnegative integers such that
m,(K) is a Borel set inX.

Lemma 3 ([62]) LetK C X be a Borel set. Then, for any nonnegative integen[ K] = m[r,, *(K)].

n

A measurev is nonatomicf v({z}) = 0, for everyz € X. We call a measurstrictly positiveif it
assigns every (nonempty) open set positive measuresdgortof v is the set ofc € X such that every
open set containing has positive measure. A measw@asfull supportif the support ofv is all of X.
Being a strictly positive measure is equivalent to havirlgdupport. Then we have the following result:

Theorem 29 ([52]) SupposeX is a compact metric spacg,; X — X is continuousY := lim(X, f),
w is an invariant measure o with respect tof such thatu is regular and nonatomic witp(O) > 0 for
each nonempty open g8tin X, andm denotes the measure inducedibyThen the induced measureis
F-invariant (and thereforer-invariant).

Suppose we have a mgp X — X that is continuous and chaotic, witki being a compact metric
space. We would like to choose a measur@n X so thatu is not only invariant relative tg, but is also,
in some sense “natural”. After all, X is the unit interval0, 1], then there is a fixed point for f. We
could defineu[A4] = 1if A C [0,1] andp € A, andu[A] = 0if A C [0,1] andp ¢ A. Theny is an
invariant measure fof on [0, 1], but what is it doing for us? It picks up the presence of thedfppeint, and
absolutely nothing else—including any chaos or total laick dt is not doing the job we want.

There is, fortunately, another approach—there is a largly lo6 literature on what are called natural
invariant measures (which are related SRB measures or-Birgle-Bowen measures, SLYRB measures,
and rain gauge measures). (See [1] for an introduction teetimeeasures and [37] for a more in-depth
discussion, survey, and reference list.) These measudessdhow the trajectory of a typical initial point
is distributed asymptotically by the map What makes natural invariant measures so nice is that, when
one exists, it really does measure the dynamicg af the sense that if almost all points ha&@% of
their respective orbits iy, then this measure assigns a valu® 6fto S. Figuring out whether the natural
invariant measure exists for a mgpan be difficult in general.
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SupposeX is a compact metric spacg; X — X is continuousy is a point inX, andsS is a Borel
subset ofX . Define thefraction of the orbit ofr lying in .S by

G(x0,5) = lim #{fi(r9) €5:1<i< n},

n— o0 n

provided this limit exists.

SupposeX is a compact metric spacé,is a subset ofX, andr is a positive number. DefinB,.(S) =
{z € X : d(z,y) < r for somey € S}. Note thatD,.(.S) is an open set containingand as- — 0, D,-(S)
shrinks down orf' (althoughn,~oD..(S) may not be equal t&).

SupposeX is a Euclidean space with Lebesgue measulteet f: X — X be continuousy, be a point
in X, andS be a compact subset &f. Thenatural measure generated by the mafor the f-measurgis
defined by

7(S) = Iim G (w0, D (S))

provided that for\-almost everyr this limit exists and is the same.

We would like to have a similar notion for an inverse limit spaHowever, iff is chaotic, the inverse
limit space is topologically complicated and is not a Euedid space (or even close to it). Thus we give the
following definition:

SupposeX is a compact metric spacg¢; X — X is continuousy := lim(X, f). If x¢ is a pointin
Y, S is a closed subset &f, and F' is the induced homeomorphism af then thenatural inverse limit
measureggenerated by is defined by

ur(S) = ,ll_I% Gr (2o, Dr(5))

provided that for allkky ¢ Z this limit exists and is the same, whefds some set of the forrd = U2, Z;
with A(m;(Z;)) = 0forall i > 0.

There is at most one natural inverse limit measureffoiVe have already used an invariant meagure
on X to induce an invariant measune on Y. We can then show that the measuen the inverse limit
space is the natural inverse limit measure inducefl' lpyovided thaj: is the natural measure induced py

Theorem 30 ([52]) SupposeX is a compact metric space with Lebesgue measyr¢g: X — X is
continuous,Y := lim(X, f), p is a natural invariant measure oX with respect tof such thatu is
nonatomic with full support, angh denotes the measure inducedbyThenm is a natural inverse limit
measure orY” for the induced homeomorphisit Y — Y, andm is also a natural invariant inverse limit
measure for = F1.

For X compact andf: X — X continuous, once we have an invariant meagu(eatural or not) for
f onX, we therefore have an induced invariant measur@n Y := lim(X, f), and it is straightforward to
show that we can then integrate binthat is, forg: Y — R, [, ¢ dm makes sense.

Theorem 31 ([%1]) Every continuous real-valued function &his integrable relative to an induced na-
tural invariant inverse limit measure.

From [51]: The framework here for calculating expected utility (whieh do shortly) can be used to
bridge two important literatures in macroeconomic theomultiple equilibria and optimal policy:Dy-
namic general equilibrium (DGE) models have become a stdnfdlamework for both the positive and
normative evaluation of policy. In the optimal monetaryéikpolicy literature one considers a mapping
from a policy space (e.g., money growth rate or set of taxesptcomes (e.g., allocations from a compe-
titive equilibrium). If the mapping from policies to outc@®in the DGE model is single-valued, then one
can induce aankingon the policy space in a very natural way. For instance, ssg@ads the policy space
and for eacl¥ € O, there is a unique competitive equilibriuBigiven by E = M (6). If U is the utility
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function of the household defined over the space of compettiuilibria, then one can use the function
W () := U(M(0)) to define a ranking o®. In addition to perhaps locating the most preferred or ogkim
policy 6*, such a ranking can be used to measure the welfare gains whavg from some policy to
another policyd’. There is a large literature that takes this approach taiatialg policies starting with the
work of Ramseyi[.74].

However, wherH is not single-valued this method of ranking policies wilkmmrk, and it is not clear
what one should do since there is more than one equilibrissmcéated with a particular policy. There are
many ways in which\/ may be multi-valued. For example, the model may exhibitllgodeterminacy in
which for a given policyd there exists a continuum of equilibria all converging to steady state equilib-
rium. However, one may also have a multi-valuéddue to global properties of the model as well. Our
framework can be applied to the class of economic modelserjthlibria that correspond to orbits gener-
ated by a chaotic dynamical systefa X — X whereX is a compact metric space aiids continuous.
Thus there are both a large number of equilibria and a largeamplicated variety as well. Our framework
is designed for this type of multi-valued.

Finally, we move to an application to the CIA model[52]. Alityifunction U (from [6€]) that generates
f: [z, %] — [z,7] is the following:

A )
U) =1 1—~

)

wheres > 0 andy > 0 andy is the household’s endowment. Then fo&= (zg, z1,...) € Y,

W(x) := Z BU (4).

t=0

If we now compute
/ W (x)m (dx).
X

we should obtain aexpected utility In one parameterizatiorl, [66] sét= 0.98, ¢ = 0.5, v = 4.5 and
note that the CIA model exhibits chaos (the backward map liaa cycle) when money growth rates are
6 equal to0, 0.5 and1.0. The backward map for this parameterization (vith: 0) is pictured in Figur&l9.

To construct the naturaf-invariant measure, we approximaievia a histogram using a sample tra-
jectory of f for somex € [z,7] : {x, f(x), f*(z),...}. This mimics the “rain gauge” description of the
natural invariant measure describedih [1]. Fidurk 10 dostan approximation of the density function for
. This histogram usei)* bins and a sample trajectory of lengtbf®.
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Given this approximation to the natural invariant meastre ptility functionU and the discount factor
[ it is now straight-forward to approximate our integral

1
/X W(x)m (dx) = T3 /[ U(zx)p (dr) ~ 83.3285573.

As mentioned in the introduction, our integral allows usdak inverse limit spaces according to ex-
pected utility (a very natural ranking from the model). Teeggsome sense of how this might be used to
evaluate different monetary policies, imagine that for eygrowth rate$ € © := [6, 0], the backward
map f is chaotic. However, not all chaotic maps are the same ingefnatility. One way of framing the
guestion through a Ramsey lens, is, within this subclasss$iple monetary policie®, which money
growth rate gives the greatest expected utility? We sedtha&achd € ©, we have a different backward
map fy, natural invariant measuge, invariant state spack, inverse limit spacey := liin(fg, fo), and
induced natural inverse limit measurey. We then have an indirect utility function (or expectedityf)l
given by

Viw)i= [ Wome (de) = - L[ U@ (de).

Xo - B Iy

To be more concrete, suppose that the monetary authorityysconsidering money growth rates@ :=
[0,0.1]. Whiché € © should the monetary authority choose to maximize expediéty? We see from
Figure[® that a lower money growth rate is preferred to higheney growth rate® = 0 is the most
preferred). This ranking is qualitatively similar to thekéng when considering only steady state equilibria.
However, Figurd1 illustrates that considering only theady state equilibria would underestimate the
welfare costs of higher money growth rates.

Note that the framework given here is quite general and agpid any DGE model where the set of
equilibria correspond to the orbits generated by a chaotymamical systenf: X — X where X is
compact andf is continuous with a natural invariant measurn future research, we hope to extend our
framework to DGE models with multiple equilibria where thederlying dynamical system does not admit
a natural invariant measure. Such DGE models would includrega and important class of models, namely
those with local indeterminacy.”

6.4 Another approach to measure

In [65], Medio and Raines continue their find-the-attrast@pproach, but add a “Lebesgue-like” measure.
If X is atopological space and X — R is a measure oX, they define\ asLebesgue-likprovided
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1. \is a positive Borel measure,
2. if U is openinX, thenA(U) > 0, and
3. ifx € X, thenA({z}) = 0.

They construct a Lebesgue-like measure for unimodal mapsedhterval, and then use that measure
to identify metric attractors (the previous work identifieghological attractors) in the inverse limit for the
shift homeomorphism. Thus, these results would then applya CIA and OLG models discussed here, as
well as many others.

Their main results:

Theorem 32 Let f: [0,1] — [0,1] be a Type A unimodal map that has negative Schwarzian dmévat
such thatf(1) > 0, f'(z) > 1, forall z € [0, f2(x*)], wherez* € (0,1) is the turning point forf. Let
0=(0,0,...) € lim([0, 1], f). Then{0} is the only metric attractor folim([0, 1], f) undero.

Theorem 33 Letf: [0,1] — [0, 1] be a transitive unimodal map that has negative Schwarziginatéese
such thatf (1) = 0. Then the only attractor is the entire spal(dz_el([o, 1], f) (undero).

Theorem 34 Let f: [0,1] — [0,1] be a Type B unimodal map that has negative Schwarzian deévat
such thatf (0) > p, wherep is the orientation reversing fixed point fgrin [z*, 1] (wherez* € (0, 1) is the
turning point for f), and|f'(p)| > 1. Thenlim([0, 1], f).

Theorem 35 Let f: [0,1] — [0,1] be a Type B unimodal map that has negative Schwarzian dmévat
such thatf(0) < p, wherep is fixed point forf in [0, 1], and such thaf has a stable attractor which is either
chaotic or periodic. Thepp = (p,p,...) € 1@([0, 1], f) is the metric attractorfo@iin([o, 1], f). Thenthe

metric attractor is the sel\. (For the definition ofA, see the previous section discussing Medio-Raines
work.)

6.5 And if a model is not well defined either backward or forwar d?

There are a number of models coming from economics that dmeaibdefined either backward or forward

in time. The Christiano-Harrison model (s&el[24]) pictuiedrigure[T2 is an example of such a model.
While we do not go into the derivation of this model, we notatthere the marvelous tools developed in
the literature for inverse limits are not available. Togpsts have recently begun studying these so-called
“generalized” inverse limits, but this study is in its infanand seems to be quite difficult and much more
complicated than the usual inverse limit case. There is niardboth mathematicians and economists to do
in this situation.
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