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Attractors and Inverse Limits

James Keesling

Abstract. This paper surveys some recent results concerning inverse limits of tent maps. The survey
concentrates on Ingram’s Conjecture. Some motivation is given for the study of such inverse limits.

Atractores y lı́mites inversos

Resumen. Este artı́culo expone algunos resultados recientes sobre lı́mites inversos de aplicaciones
tienda. La exposición se concentra en la Conjetura de Ingram. Se presentan tambien algunas motivaciones
para el estudio de tales lı́mites inversos.

1 Introduction

For the purposes of this paper a dynamical system is a continuous map f : X → X with X a locally
compact metric space. If the map f is a homeomorphism, then it can be thought of as a group action of
the integers on the space X , F : Z × X → X with f(x) = F (1, x) for all x. We will have occasion to
mention continuous dynamical systems. These are flows, continuous maps of R×X to X , F : R×X → X ,
satisfying (1) F (0, x) = x for all x and (2) F (a + b, x) = F (a, F (b, x)) for all a, b ∈ R and all x ∈ X . A
flow is a group action of the additive reals on X . Differential equations give rise to flows. Physical systems
are typically described this way. However, many systems are described more easily by a continuous function
with discrete time.

Dynamical systems are an abstract way of studying the evolution through time of a system. The system
could be physical, chemical, or biological. It could also be a model of some human activity such as a
business or economy.

A set A ⊂ X is said to be an attractor if there is an open set A ⊂ U ⊂ X having compact closure such
that f(U) ⊂ U and

⋂∞
n=1 fn(U) = A. The most obvious attractors are attracting fixed points. However,

since the 1960’s it has become clear that there are attractors A that have complicated topology with the
dynamics of f |A being chaotic. This has sparked considerable interest in these strange attractors.

Perhaps the most famous attractor is the one discovered by Edward Lorenz. It has probably had the
greatest influence in bringing dynamical systems and attractors to the public consciousness. In the early
1960’s Lorenz was a meteorologist studying atmospheric convection at M.I.T. In 1963 [31] he described
his remarkable discovery of unexpected behavior of a solution of differential equations modeling this phe-
nomenon. He observed that the resulting flow had deterministic nonperiodic flow. His results provoked
wide interest. Among mathematicians there was an attempt to understand the phenomenon that Lorenz
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Figure 1. Attractor.

Figure 2. Lorenz attractor.

had observed. It led to an attempt to understand turbulence in terms of the newly founded dynamical sys-
tems ([35] and [44]). The Lorenz attractor is an attractor in the sense we have stated at the beginning of this
section. It has an attracting neighborhood that is an ellipsoid. The ellipsoid maps into itself under the flow
induced by the system of differential equations defining model. The intersection of the forward images of
this solid ellipsoid forms the attractor.

In addition to studying the physical significance of the Lorenz attractor, there arose the problem of
whether it could be analyzed and characterized with full mathematical rigor. Flows based on geometric
models were created by mathematicians. These were easier to analyze and seemed to exhibit the behavior
of the Lorenz attractor. See the papers by Guckenheimer and Williams ([18] and [19]) for one example. A
complete satisfactory analysis of the Lorenz attractor was only recently produced by Warwick Tucker ([39]
and [40]).

Around the same time as the discovery of Lorenz, other papers seemed to observe chaotic behavior
of maps. The paper by Hénon and Pomeau [21] describes a map related to the return map of the Lorenz
flow that seemed to exhibit chaotic behavior. This Hénon attractor is also an attractor in the sense stated
at the beginning. However, the conclusions drawn in [21] were drawn largely from computer simulations.
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Figure 3. Hénon attractor.

The review by John Guckenheimer of this article in the Mathematical Reviews brings out the difficulty
that mathematicians were having at this early stage distinguishing between what was “known” by careful
definition and proof and what was “observed” by numerical simulation. That difficulty still continues.

Since the discovery of these examples, many more have been studied. A search of the Internet will yield
many geometrically intriguing and mathematically challenging examples. It would take volumes to cover
the full scope of the subject.

The study of attractors is closely related to the study of inverse limits. Robert Williams showed that if
f : Rn → Rn is hyperbolic and A is an attractor for f , then A is the inverse limit of a system K

g← K
g← · · ·

where K is a branched manifold and g is an immersion ([41, 42, 43]). These results were motivated by the
work of Steven Smale [37] and his program to understand dynamical systems and hyperbolic attractors.

We use the notation A = (K, g) for an inverse limit where the inverse sequence of spaces and maps
are all the same. For such an inverse system, there is a shift map σ : (K, g) → (K, g) defined by
σ
(
(x0, x1, x2, . . .)

)
= (g(x0), x0, x1, . . .). Williams also showed that f |A is conjugate to this shift map.

See the section on inverse limits for more details.
Williams’ classification of hyperbolic attractors has proved very useful. Many conclusions can be drawn

about the topology of the attractor and the dynamics of f |A. For instance, at every point x ∈ A, x has
a neighborhood in A that is homeomorphic to a Cantor set cross In. The periodic points of f |A will be
dense in A. More about the dynamics of f on the limit set can be determined by properties of the shift
map mentioned above. From Williams’ work it seemed that there might be some hope that the topology
of attractors and the dynamics on them might be fully understood. It could be said that, for hyperbolic
attractors at least, the problem was solved by Williams’ work.

Despite this glowing picture, the classification of attractors is far from complete. There is even difficulty
classifying a very simple case. Suppose that we have an attractor represented as an inverse limit of the
following form, As = (I, fs) where I is the unit interval, [0, 1], and fs : I → I is defined by

fs(t) =

{
s · t if 0 ≤ t ≤ 1

2

s · (1− t) if 1
2 ≤ t ≤ 1

where 1 ≤ s ≤ 2. We will show in the sections that follow that a classification of these inverse limits can
be given only in special cases and that many of them have surprising complexity.

From now on the paper will concentrate on inverse limits. The next section of the paper will give precise
definitions for those not familiar. The use of inverse limits in the study of attractors has proved extremely
valuable. However, inverse limit spaces have many other applications and are of considerable interest to
mathematicians as an area of research in themselves. The interest in them is not limited to the study of
attractors.
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2 Inverse Limits
We will mainly be considering compact metric spaces and inverse sequences in the study of inverse limits.
So, let

{Xi, fi} = X0
f0←− X1

f1←− X2
f2←− · · ·

be an inverse sequence of compact metric spaces and continuous maps. We define the inverse limit as the
subset of a product space.

lim←−{Xi, fi}∞i=0 =

{
(xi) ∈

∞∏
i=0

Xi xi = f(xi+1) for all i

}
There are projections from the inverse limit space to each of the spaces in the inverse system. These are

just the projections from the product space to each of its factors. We denote these maps by

πj : lim←−{Xi, fi} → Xj for j = 0, 1, 2, . . . .

These inverse systems are easier if the spaces are all the same compact metric space X and the functions
are all the same f . In this case the inverse limit is denoted by (X, f). In this special case there is a map on
the inverse limit space induced by the map f : X → X . This is the shift map, σf : (X, f) → (X, f). It is
defined by

σf

(
(x0, x1, x2, . . .)

)
= (f(x0), x0, x1, . . .).

It is the unique map that makes the diagram below commute for all i = 0, 1, 2, . . ..

X
πi←−−−− (X, f)yf

yσf

X
πi←−−−− (X, f)

The shift map is a homeomorphism on the limit space. The inverse of the shift is given by

σ−1
f

(
(x0, x1, x2, . . .)

)
= (x1, x2, x3, . . .).

Inverse limits play a vital role in dynamical systems. For a few papers using this approach see [4, 8, 5,
23] as well as the papers by Williams ([41, 42, 43]) already mentioned. The sections following give some
motivation using examples that are easier understood than the research reported in the later sections of the
paper. Some recent results are reported in these sections as well.

3 The Solenoid
Solenoids can be represented simply as the inverse limits of inverse systems of the form (S1, zn) where we
think of the circle as the complex numbers of modulus one in the complex plane. The map zn : S1 → S1

takes the complex number z to its n-th power. The solenoid described this way will be denoted Σn =
(S1, zn). It is called the n-adic solenoid. Figure 4 is a visualization of the dyadic solenoid. Let F : T → T
be a continuous map of a solid torus into itself such that F (T ) wraps twice around the axis of T . Then the
dyadic solenoid can be visualized as Σ2 =

⋂∞
n=1 Fn(T ). Figure 5 gives a graphic visualization of this [22].

The solenoid is a compact connected topological group. The shift map σn : Σn → Σn is a topological
group homomorphism and in fact an automorphism since the shift is a homeomorphism. If n = p is a prime
number, then the automorphism group of Σp is generated by σp and inversion. In this case, the automor-
phism group is Aut(Σp) ∼= Z ⊕ Z2. For general n, the prime factorization determines the automorphism
group. If n has k prime factors, then the automorphism group is Aut(Σn) ∼= Zk ⊕ Z2. The shift and
inversion do not generate the whole automorphism group in this case.
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Figure 4. Dyadic solenoid.

Figure 5. The dyadic solenoid as an attractor [22].

In the general case a solenoid is given as the inverse limit of an inverse system of the following form.

S1 zp0
←−−−− S1 zp1

←−−−− · · ·

One can assume without loss of generality that the powers of z are prime numbers. Let α = (p0, p1, . . .)
be the sequence of prime powers. It is well-known that two solenoids, Σα and Σβ , are homeomorphic if and
only if finitely many primes can be deleted from each of α and β to form α′ and β′, respectively, such that
each prime occurs the same number of times in α′ and β′. This result is due to Bing [9] and McCord [32].

A solenoid is an attractor for some continuous f in some Rn, n ≥ 3, if and only if it is of the form
Σk = (S1, zk) for some k > 1. No solenoid can be the attractor of a flow by the result of Günther and
Segal [20]. For each point in the solenoid, there is a neighborhood that is homeomorphic to a Cantor set
cross an interval.

For more on the structure of solenoids and their homeomorphism groups see Aarts and Fokkink [2] and
Keesling [28].

There are recent results concerning the dynamics on general solenoids. Each homeomorphism h of a
solenoid Σα has the same topological entropy as a certain automorphism α ∈ Aut(Σα) associated uniquely
with h. This result was recently proved by Kwapisz [30]. The topological entropy of automorphisms of
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Figure 6. The solenoid as an inverse limit.

Figure 7. The local structure of the solenoid.

solenoids can be calculated using techniques determined by Abramov [1]. The topological entropy of
automorphisms of general compact connected Abelian topological groups has been determined by Juzvin-
sky [25]. The topological entropy of an autohomeomorphism of these may not be the same as the automor-
phism to which it is associated by homotopy. So, solenoids are a special case.

4 The Knaster continuum
Solenoids were the main motivation for the study of expanding hyperbolic attractors. The work of Williams
was in response to questions posed by Smale and his program of analyzing the structure of structurally stable
dynamical systems [37]. His work determined the structure of expanding hyperbolic attractors. However,
there are many attractors that do not fit into the category he studied. The simplest of these is the Knaster
continuum. Let n ≥ 2 be an integer. Define Kn = (I, fn) where fn : I → I is defined by

fn(t) =


n · t 0 ≤ t ≤ 1/n

2− n · t 1/n ≤ t ≤ 2/n
n · t− 2 2/n ≤ t ≤ 3/n
4− n · t 3/n ≤ t ≤ 4/n
· · · · · ·
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Figure 8. The Knaster continuum as an inverse limit.

Figure 9. The Knaster continuum as a quotient of a solenoid.

The space Kn can also be obtained from the solenoid Σn as a quotient space. Define x ∼ x−1 on Σn

using the topological group structure of Σn. Then Kn is homeomorphic to Σn/ ∼. There are generalized
Knaster continua. These are similar to the generalized solenoids. A generalized Knaster continuum can be
defined by a sequence of primes α = (p0, p1, p2, . . .) as Kα ≈ Σα/ ∼ where the equivalence relation is
x ∼ x−1. The quotient mapping qα : Σα → Kα is exactly two-to-one except at one or two points. These
generalized Knaster continua can also be represented as inverse limits, Kα = lim←−{I, fpi}.

Let a : Σα → Σα be an automorphism. Then a(x−1) = a(x)−1. Consequently there is a unique
homeomorphism ha : Kα → Kα which is the quotient of a. Call these homeomorphisms ha on Kα

automorphisms and denote the set of them by Aut(Kα).
The identity element e ∈ Σα has the property that e = e−1. Its image under x0 = qα(e) is an endpoint

in Kα. That is, if A and B are subcontinua of Kα containing x0, then either A ⊂ B or B ⊂ A. There may
be another endpoint in Kα. It depends on whether the sequence w = (−1,−1,−1, . . .) is a thread in Σα.
If it is, then x1 = qα(w) is also an endpoint. The sequence w is a thread if and only if 2 does not occur in
α. If α′ is obtained from α by eliminating finitely many terms, then Σα

∼= Σα′ . So, in fact, Kα has two
endpoints if 2 occurs in α just finitely many times and one endpoint if 2 occurs in α infinitely often.

There are no other endpoints in Kα. In fact, at every other point x ∈ Kα, there is a neighborhood of x
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homeomorphic to a Cantor set cross an interval, C × I . Since x is in the interior of one of the intervals in
this product, it cannot be an endpoint.

If Kα has just one endpoint, then it must be a fixed point for any homeomorphism of Kα. If there are
two endpoints in Kα and h is a homeomorphism, then the two endpoints could possibly be interchanged
by h. However, h2 must leave both endpoints fixed and so must have at least two fixed points. In fact h2n

may have many more fixed points. A study of the fixed points for homeomorphisms of Kα has been done
by Keesling and Ssembatya [29]. It generalized the work of Aarts and Fokkink [3] that showed that every
homeomorphism of K2 has at least two fixed points.

If there are k primes that occur infinitely often in the sequence α and 2 is one of these primes, then
Aut(Kα) ∼= ⊕k

n=1Z. If 2 does not occur infinitely often in α, then we need to add another involution to the
automorphisms for completeness giving Aut(Kα) ∼= ⊕k

n=1Z × Z2. The extra involution is generated by
the following diagram.

I
fp0←−−−− I

fp1←−−−− I
fp2←−−−− I

fp3←−−−− · · ·Kα

h

y yh

yh

yh

yg

I
fp0←−−−− I

fp1←−−−− I
fp2←−−−− I

fp3←−−−− · · ·Kα

The map h is defined by h(t) = 1− t : I → I . The map g is well-defined provided 2 does not occur as
one of the primes. By (1) below, if 2 occurs only finitely many times, then there is a sequence β in which
2 does not occur such that Kα ≈ Kβ . Use Kβ to define g. This automorphism is not a quotient of an
automorphism of Σα, but is a standard homeomorphism and is needed for a complete analysis of Kα. So,
Aut(Kα) ∼= ⊕k

n=1Z or Aut(Kα) ∼= ⊕k
n=1Z⊕Z2 depending on whether 2 does or does not occur infinitely

often in α.
The following additional facts are known about Kα.

(1). Two Knaster continua, Kα and Kβ , are homeomorphic if and only if Σα and Σβ are homeomorphic.

(2). If h is a homeomorphism of Kα, then h is isotopic to a unique a ∈ Aut(Kα).

(3). If h is a homeomorphism of Kα, then there are exactly two homeomorphisms h1, h2 : Σα → Σα

making the following diagram commute.

Σα
h1,h2←−−−− Σαy y

Kα
h←−−−− Kα

This result was proved by Kwapisz [30]. The result has been accepted and used, but this is the first
correct proof in the literature.

(4). Each isotopy between homeomorphisms on Kα lifts to two isotopies on Σα.

(5). If h is a homeomorphism of Kα, then the topological entropy of h is the same as the topological
entropy of h1 and h2 where h1 and h2 are the homeomorphisms of Σα given in (3).

(6). If h is a homeomorphism of Kα, then the topological entropy of h is the same as the automorphism
to which it is isotopic. This is a simple consequence of (2).

(7). If h is any homeomorphism of K2, then h has at least two fixed points [3]]. The same is true for any
Kα where 2 occurs infinitely often and 3 occurs only finitely many times in α. For more results of
this type see [29] mentioned above.
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5 Basic properties of inverse limits of tent maps
From what has been said about solenoids and Knaster continua, one may get the impression that attractors
have a simple and easily comprehensible structure. The solenoids are simplest since they are expanding
hyperbolic attractors and are understood by Williams’ results. The results of Williams were motivated by
what was known about solenoids.

The Knaster continua are slightly more complex. At all but one or two points, the local structure is a
Cantor set cross an interval, C × I . The one or two exceptional points are endpoints and the local structure
is also known in this case.

Consider the sequences of primes α = (p0, p1, . . .) and β = (q0, q1, . . .) defining Σα and Σβ , respec-
tively (Kα and Kβ , respectively). A simple comparison of these sequences tells us whether Σα and Σβ are
homeomorphic (Kα and Kβ are homeomorphic). We know the structure of the homeomorphism groups of
these spaces. Each homeomorphism of Σα which leaves the identity element fixed is isotopic to a unique
automorphism of Σα. There is a similar result for Knaster continua.

We now consider inverse limits of tent maps. Tent maps are similar to the maps defining Knaster
continua. So, we might expect that these inverse limits would not differ much from Knaster continua.
This is not the case. We get spaces having much greater complexity and we are very far from a complete
understanding of them.

Let s ∈ [1, 2] and consider the family of maps fs : [0, 1]→ [0, 1] defined in the following way.

fs(t) =

{
s · t 0 ≤ t ≤ 1

2

s · (1− t) 1
2 ≤ t ≤ 1

This is known as the tent family. It arises naturally in the study of the dynamics of unimodal maps. For
instance, given any unimodal map g : [0, 1]→ [0, 1], there is a unimodal map f : [0, 1]→ [0, 1] whose slope
is everywhere ±s and a continuous h : [0, 1] → [0, 1] with h ◦ g = f ◦ h with the topological entropy of
f being the same as the topological entropy of g. See Milnor and Thurston [34] for this result and similar
results for piecewise monotone functions on an interval.

Figure 10. The tent family.

A natural question arises. What is the structure of (I, fs)? If we would hope to understand the inverse
limits of piecewise monotone maps on an interval, we would need to understand this case.

If s = 1, then a simple argument shows that (I, fs) is homeomorphic to an interval. If s = 2, then we
get the Knaster continuum, K2. If 1 < s < 2, then one prominent structure stands out. There is an open
ray which is dense in the inverse limit. Let us denote that ray by A0. It is convenient to denote the images
of c in the following way c0 = c, c1 = fs(c), c2 = f2

s (c), . . . . The first four of these are particularly useful
in understanding the inverse limit space under consideration. Figures 11 and 12 help visualize features of
the graph of fs.
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Figure 11. f−1
s ([0, c2)) ⊂ [0, c2).

Figure 12. The core.

Consider the interval [0, c2). Each point in this interval has a unique point in the interval [0, 1] which
maps to it and that point is in the interval [0, c2). So we have an inverse system.

[0, c2)
f2←−−−− [0, c2) ←−−−− · · ·

This forms an open arc in the limit space (I, fs). This arc is just π−1
0

(
[0, c2)

)
. The ray A0 mentioned

above is just the union of the monotone increasing sequence of open sets given below.

A0 =
∞⋃

n=0

π−1
n

(
[0, c2)

)
One can show that A0 is dense in the inverse limit (I, fs). We can visualize the inverse limit then as in

Figure 13.
Consider the map fs : [c2, c1]→ [c2, c1]. The rest of the inverse limit (I, fs) will be the inverse limit of

this map and subinterval. We call this the core and denote it by Xs = ([c2, c1], fs). Most of the study of
the space (I, fs) has concentrated on the core.

6 Ingram’s Conjecture
In 1995 Tom Ingram conjectured [24] that if (I, fs) is homeomorphic to (I, ft), then s = t. The conjecture
may not be original with Ingram, but he was the first having the boldness to put it in print as an important
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Figure 13. The open ray A0 limiting on the core Xs.

problem to consider. It is the most basic question to ask about these spaces. Much of what we know about
(I, fs) comes from attempting to prove this conjecture.

There is an immediate simplification. If it is true that Xs homeomorphic to Xt implies that s = t, then
Ingram’s Conjecture is true. Most of the work so far has concentrated on showing this. The open ray A0

has largely been ignored and considered superfluous. In Section 9 we will show that A0 may actually be
a key in solving Ingram’s Conjecture. It is certainly a key to understanding the structure of the group of
homeomorphisms of (I, fs).

There are other simplifications used in the pursuit of Ingram’s Conjecture. If
√

2 < s < 2, then Xs is
indecomposable. A metric Y continuum is indecomposable if whenever Y is the union Y = A ∪ B, with
A and B subcontinua of Y , then either A or B is equal to Y . This may seem a strange property, but it is
invaluable to continuum theorists. The property has been exploited to great advantage. Most papers assume
that
√

2 < s < 2 and consequently that Xs is indecomposable. However, it is well known by researchers in
the area that if Ingram’s Conjecture holds in this case, then it is true for all 1 ≤ s ≤ 2. In the next paragraph
we give an outline of why this is true.

If 4
√

2 < s <
√

2, then it can be shown that there is a unique
√

2 < t < 2 such that there are exactly two
copies of (I, ft) contained in Xs. These two copies are joined at the endpoints of their respective A0’s and
the map fs interchanges these two copies by an map with a fixed point at the point where they are joined.
So, if Ingram’s Conjecture is true for all

√
2 < s, t < 2, then it would be true for all 4

√
2 < s, t <

√
2. In a

similar fashion one can in fact show that it is sufficient to show Ingram’s Conjecture for
√

2 < s, t < 2 for
it to be true for all n+1

√
2 < s, t < n

√
2 for n = 1, 2, 3, . . . . This will imply that it is true for all 1 ≤ s, t ≤ 2.

So, we not only have a range of s for which the core is indecomposable, it is sufficient to concentrate on
that range alone to arrive at a complete solution of the problem.

From this point on, we assume that all slopes are in the range,
√

2 < s < 2.

7 Periodic turning point and Kailhofer’s result

When Ingram proposed his conjecture, there was perhaps only one result that appeared helpful. It is the
following theorem.

Theorem 1 Suppose that fs : I → I is a tent map and that c = 1
2 is periodic of period n. Then Xs has

exactly n endpoints.
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Suppose that Xs and Xt are homeomorphic for fs and ft tent maps with periodic turning point. Then
the theorem above implies that the turning point for fs and ft must have the same period n. This looks
promising and would be helpful if there were but a small number of slopes s with the turning point having
given period. However, this is not the case as can be seen from Table 1. For period 3 there is just one value
of s for which c is period three. For period 5, there are three values of s.

Consider the case of period five. By a very sophisticated argument Marcy Barge and Beverly Diamond
showed that for these three cases Ingram’s Conjecture holds [5]. Henk Bruin showed Ingram’s Conjecture
for other special cases when c is periodic [16].

The proof of Barge and Diamond did not hold out much hope for proving Ingram’s Conjecture for higher
periods. It was algebraic and made use of Maple to make some difficult calculations. The task was made
all the more daunting when one realizes how many values of s yield c with the same period as indicated by
Table 1.

n Number of s
3 1
5 3
7 9

11 93
13 315
17 3,855
19 13,797
23 182,361
29 9,256,395
31 34,636,833

Table 1. Prime periods n and number of s with orbit of c having this period.

One was not likely to solve the problem even for a few values of n by using difficult algebraic calcu-
lations. There were just too many cases to contend with. The final breakthrough came in the work of Lois
Kailhofer in [26] and [27].

Theorem 2 (Kailhofer [26] and [27]) Suppose that fs and ft are tent maps and the turning point is
periodic for both maps. Then if Xs is homeomorphic to Xt, then s = t.

This gave great hope for the conjecture by settling a case that had become a main focus of research. The
proof was difficult. It was made more difficult by not providing a clear roadmap to the final theorem. A
more readable proof has since been published based on the work of Kailhofer, but written so that one could
read the paper independently [12]. There are in fact some additional results in this paper. These deal with
the structure of the homeomorphism group of the spaces.

Before saying more about the paper [12], let us say some more about the structure of the space Xs when
c is periodic of period n. As was mentioned at the beginning of this section, there are n endpoints in Xs.
These endpoints come from the periodic orbit of c. That periodic orbit can be made into n threads that can
be shown to be n endpoints in the inverse limit. The other points have neighborhoods homeomorphic to a
Cantor set cross an interval.

In the next section we will state what proved to be a valuable insight into the structure of the homeo-
morphism group. It has suggested an approach that could solve Ingram’s Conjecture for all values of s.

8 Homeomorphisms of Xs for c periodic
The paper [12] provides a simplification of Kailhofer’s original solution of Ingram’s Conjecture for c peri-
odic. It also proves an isotopy result for homeomorphisms of Xs. The basic results can be stated simply in
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Figure 14. Endpoints and local structure of Xs with c periodic.

the form of two theorems.

Theorem 3 ([12]) Suppose that c is period for fs. There is an ε > 0 such that if h : Xs → Xs is any
homeomorphism such that d(h, id) < ε, then h is isotopic to the identity.

Of course, the result implies that if any two homeomorphisms are within ε of each other then they are
isotopic. It is a natural conjecture that every homeomorphism h : Xs → Xs is isotopic to some power
of the shift σ on Xs. This is probably true in the case that c is periodic. It is not true for c not periodic.
However, in the next section we will show that in the general case it may be true that every homeomorphism
h : Xs → Xs is pseudo-isotopic to a power of the shift. What is actually proved in [12] is somewhat less
than is believed to be true.

Theorem 4 ([12]) Suppose that c is periodic for fs. Let h : Xs → Xs be any homeomorphism. Then
there is a positive integer k and an integer m such that hk is isotopic to σm.

As stated above, σ is just the shift homeomorphism induced by the map fs on the core Xs = ([c2,c1], fs).
The result is reminiscent of what is known about homeomorphisms on Knaster continua. The best result
would be if each isotopy class of the homeomorphism group of Xs has exactly one power of the shift in it.
This would show that the homeomorphism group of Xs is very similar to that of the Knaster continua Kp

for p prime.
Theorem 4 can be used to give a proof of Theorem 2. The idea is to use Theorem 4 to distinguish the

two tent maps fs and ft having periodic c with the same period. One can show that if s < t, then there is
some k > 0 such that ft has more points of period k than fs. On the other hand, by Theorem 4, one can
show that if Xs is homeomorphic to Xt, then for this k, fs and ft have the same number of periodic points,
a contradiction.

It would be too complicated to give a satisfactory account of the proof of Theorem 4. However, the
following description together with Figure 15 may give a hint of what is involved. One uses the indecom-
posability of Xs. There is a continuous map ϕ : [0,∞) → Xs so that ϕ(0) = c ∈ Xs. The point c is the
point in the inverse limit that corresponds to the turning point c. The trick is to define ϕ carefully in terms
of the inverse system so that if πn

(
[ϕ(x), ϕ(y)]

)
is one-to-one, then the distance between x and y, |x− y|,

in [0,∞) is equal to sn · |πn(ϕ(x))− πn(ϕ(y))| in the image of πn. One can choose ε > 0 carefully so that
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Figure 15. Close homeomorphisms in Xs are isotopic.

if h is a homeomorphism of Xs which is within ε of the identity, then h(c) = c. Furthermore, the choice of
ε can be made carefully enough that one can show that for all 0 < x < ∞, |h(x) − x| < M for some M
where h(x) = ϕ−1 ◦ h ◦ ϕ(x). The image of ϕ, ϕ([0,∞)), is dense in Xs. The bounded distance between
h and the identity on [0,∞) can be used to show that for any x ∈ Xs, x and h(x) are connected by an arc
in Xs. One can parameterize these arcs between x and h(x) in such a way as to get an isotopy from the
identity to h.

9 A conjecture about homeomorphisms on (I, fs)

For this section we need the concept of pseudo-isotopic. Suppose that h1, h2 : Xs → X2 are homeomor-
phisms. Suppose that for all x ∈ Xs, {h1(x), h2(x)} ⊂ Bx, where Bx is a proper subcontinuum of Xs.
Then we say that h1 and h2 are pseudo-isotopic. If h1 and h2 were homotopic, then Bx could be taken to
be a Peano continuum. Since Peano continua are arcwise connected, we could in fact take Bx to be an arc.
If c is periodic, then the only proper subcontinua of Xs are points and arcs. This fact was important in the
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Figure 16. The bounded d-distance theorem.

proof of Theorem 3. If c is not periodic, then Xs may have many strange subcontinua which are not Peano
continua [6].

If h1 and h2 are pseudo-isotopic on Xs, then they permute the composants of Xs in the same way. That
observation is a key element in the proof of the following theorem.

Theorem 5 ([13]) Suppose that Xs and Xt have the property that if h is a homeomorphism, then there is
an integer m such that h is pseudo-isotopic to σm. Then if Xs and Xt are homeomorphic, then s = t.

So, a general approach to Ingram’s Conjecture would be to show that for every s and every homeomor-
phism h on Xs, there is an integer m such that h is pseudo-isotopic to σm. So, showing this structure on
the group of homeomorphisms of Xs would solve Ingram’s Conjecture.

In fact, there is a conjecture that could be used to show this property for the homeomorphisms of Xs.
The proof of Theorem 3 uses the fact that ϕ : [0,∞) → Xs has a dense image. This motivated an-

other look at the open arc A0 ⊂ (I, fs). It is dense in (I, fs) and a continuous one-to-one image of
[0,∞). We found that we could carefully define a map ϕ : [0,∞) → A0 so that if two homeomorphisms
h1, h2 : [0,∞)→ (I, fs) have the property that there is an M > 0 such that |ϕ−1 ◦ h1 ◦ϕ(x)−ϕ−1 ◦ h2 ◦
ϕ(x)| < M for all x in [0,∞), then h1|Xs and h2|Xs are pseudo-isotopic. For convenience we say that h1

and h2 are bounded d-distance apart on A0. Let us restate this result as a theorem.

Theorem 6 ([13]) Suppose that h1 and h2 are bounded d-distance apart on A0. Then h1|Xs and h2|Xs

are pseudo-isotopic.

This leads to an approach which could solve Ingram’s Conjecture in the general case.

Theorem 7 ([13]) Suppose that for every s and every homeomorphism h : (I, fs) → (I, fs) there is an
integer m such that h and σm are bounded d-distance apart on A0. Then Ingram’s Conjecture holds.

10 Concluding remarks.
This paper has surveyed some recent results in the study of tent maps. There has been an effort to motivate
the research and put it in perspective. Since the length of the paper is limited and the patience of the reader
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is likely also to be limited, the survey is not complete. It has concentrated mainly on results with which the
author has been intimately involved. There are many more results that should have been mentioned to be
comprehensive, but that would have required a book many times the length of this article.

However, there are a few more results that should be mentioned. The result of Kailhofer has been sub-
stantially improved. Stimac [38] has shown that if the forward orbit of c is finite, then Ingram’s Conjecture
holds for those s. This, of course, includes the case that the forward orbit of c is periodic. Another result
has been announced by Raines and Stimac dealing with the case that the critical point c is non-recurrent.
However, the most difficult case still eludes us. For most values of s in (

√
2, 2), the orbit of c will be dense

in [0, 1]. Almost nothing is known about Ingram’s Conjecture in this case. It is a challenge not only to solve
the conjecture in this case, but also to gain a clearer understanding of the structure of these inverse limits.
It is probably best to leave the subject with this challenge in mind.

11 Further reading
For the interested reader, there is a considerable literature on one-dimensional dynamics. The book by
Collet and Eckmann [17] is probably the best starting place. The article by Milnor and Thurston [34]
was widely circulated before it was published and gives a good introduction to the kneading sequence for
unimodal maps and its generalization to kneading matrices for general piecewise monotone maps. The
book by de Milo and van Strien [33] brings one up to date at the time of writing in the early 1990s. Block
and Coppel [11] was written with a different purpose in mind. It gives excellent coverage of the theory
of topological entropy for maps of the interval. It is carefully written and is useful both for the beginner
and the experienced researcher. The book by Brucks and Bruin [15] covers a wide range of topics from
one-dimensional dynamics. It would be a good text for students preparing for research in the area.
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