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Coarse dimensions and partitions of unity

N. Brodskiy and J. Dydak

Abstract Gromov [11] and Dranishnikov [2] introduced asymptotic andcoarse dimensions of proper
metric spaces via quite different ways. We define coarse and asymptotic dimension of all metric spaces in
a unified manner and we investigate relationships between them generalizing results of Dranishnikov [2]
and Dranishnikov-Keesling-Uspienskij [5].

Dimensiones a gran escala y particiones de la unidad

Resumen. Gromov [11] y Dranishnikov [2] han introducido dimensionesasintóticas y a gran escala
para espacios métricos propios de varias formas diferentes. Nosotros definimos dimensiones a gran escala
y asintóticas para todos los espacios métricos de modo unificado e investigamos las relaciones entre ellas,
generalizando resultados de Dranishnikov [2] y Dranishnikov-Keesling-Uspienskij [5].

1 Introduction

There are three concepts of dimension associated with variants of the coarse category of proper metric
spaces. The original one, the asymptotic dimension of Gromov [11], and dimensionsasdim∗(X) and
dimc(X) introduced by Dranishnikov [2]. All three dimensions are defined in seemingly different ways:

1. The asymptotic dimension of Gromov (see [11] or [2, Definitions 1–2 on p. 1103]) is the smallest
integern such that for everyM > 0 there is a uniformly bounded familyU of Lebesque number at
leastM and multiplicity (or order) at mostn + 1.

2. The asymptotic dimensionasdim∗(X) of Dranishnikov (see [2, Def. 3 on p. 1104]) is the smallest
integern such that for every proper functionf : X → R+ there is a contracting mapφ : X → K to
ann-dimensional asymptotic polyhedron such that for eachM > 0 there is a compact subsetC of X
with the property thatφ−1(B(φ(x), M)) ⊂ B(x, f(x)) for all x ∈ X \ C.

3. The coarse dimensiondimc(X) of Dranishnikov (see [2, Def. 4 on p. 1105]) is the smallest integer
n such thatRn+1 is an absolute extensor ofX in the category of proper asymptotically Lipschitz
functions. That dimension coincides with the dimension of the Higson coronaν(X) of X (see in [2,
Theorem 6.6 on p. 1111]).

One of the main motivations behind the research in asymptotic dimension is the result of Yu (see [16]
and [17]) that the Novikov Conjecture holds for groups of finite asymptotic dimension.
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In this paper we work in the coarse category of all metric spaces and we devise a unified way of defining
five dimensions:coarse dimensiondim coa

rse (X), major coarse dimensiondim COA
RSE (X), asymptotic dimen-

sionasdim(X), minor asymptotic dimensionad(X), andlarge scale dimensiondim large
scale(X).

In case of proper metric spaces, three of them coincide with the above dimensions. Namely,dim COA
RSE (X)

= dim∗(X), dim coa
rse (X) = dimc(X), andasdim(X) coincides with Gromov’s asymptotic dimension. The

fourth one, the minor asymptotic dimension, is a variant of Gromov’s dimension. The large scale dimension
is always equal to the coarse dimension and the reason we are introducing it is to simplify proofs of the
relations between the three basic dimensions which we do in amuch simpler way than as described in
Dranishnikov’s paper [2]. The main relations between dimensions are as follows:

1. There are two strands of inequalities:

asdim(X) ≥ dim COA
RSE (X) ≥ dim coa

rse (X) and asdim(X) ≥ ad(X) ≥ dim coa
rse (X),

2. In each strand (for unbounded spacesX), finiteness of a larger dimension implies its equality with
all smaller dimensions in the strand.

We do not know of any unbounded spaceX such that a larger dimension in a strand is infinite and a
smaller dimension is finite.

Our fundamental concept is that of a coarse family and we follow the well-established route of defining
the covering dimension by refining covers with covers of a prescribed multiplicity. In classical dimension
theory one deals with two cases: finite covers and infinite covers. There, for paracompact spaces, the two
concepts coincide. In the case of coarse covers we get two concepts of coarse dimension whose equality
remains unresolved.

A finite family U of subsets ofX is coarse if and only if there is a slowly oscillating partition of unity
f on X \ B for some bounded subsetB of X whose carriersCarr(f) refineU . That explains why, in the
case of a proper metric spaceX , its coarse dimension equals the covering dimension of the Higson corona
of X .

Our basic strategy is to associate natural functions with objects and declare those objects to be coarse,
asymptotic, or large scale if the function is coarsely proper. A functionf is coarsely properif f(En) → ∞
wheneverEn → ∞. ElementsEn related to objects could be points in a metric space, boundedsubsets in a
metric space, or covers of a metric space (in which case divergence to infinity is measured by the size of the
Lebesque number). In [2, p. 1089] coarsely proper functionswere defined as thosef : X → Y such that
f−1(A) is bounded wheneverA is bounded inY . Notice that our definition generalizes the one from [2].

2 Preliminaries

Given a subsetA 6= ∅ of a metric spaceX the most basic function isthe distance functiondA : X → R+:
dA(x) = dist(x, A).

Definition 1 Given a subsetA of a metric space(X, dX) the ballB(A, M) is defined to be the set{ x ∈
X | dist(x, A) < M } if M > 0, it is defined to be the set{ x ∈ X | dist(x, X \ A) > −M } if M < 0,
and it is simplyA if M = 0.

The distance function leads to the first concept of divergence to infinity: xn → ∞ if dX(xn, x0) → ∞
for some (and hence for all)x0 ∈ X . However,dist(x, A) is a function of two arguments and we can use
the second one to define divergence to infinity for bounded subsets ofX . Here is a more general concept.

Definition 2 A familyU of bounded subsets ofX is calledcoarsely properif the functionU → dU (x0) is
coarsely proper for some (and hence for all)x0 ∈ X . HereU is considered as a subspace of all bounded
subsets ofX with the Hausdorff metric.
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Notice that a sequence{An} of bounded subsets ofX containing pointsxn ∈ An so thatxn → ∞ is
coarsely proper if and only if every bounded subset ofX intersects at most finitely many elements of the
sequence. In that case we writeAn → ∞ and that form of divergence to infinity is of most interest to us.

Lemma 1 If U is a coarsely proper cover ofX , then every selection functionφ : X → U (that means
x ∈ φ(x)) is coarsely proper.

PROOF. Supposexn → ∞ andxn ∈ Un ∈ U . Clearly,Un → ∞ in the Hausdorff metric. Pickx0 ∈ X .
SincedUn

(x0) → ∞, every bounded subset ofX intersects at most finitely many elements of the sequence
{Un} and any selection functionφ is coarsely proper. �

Definition 3 Given a familyU in X , the local Lebesque numberLU(x) ∈ R+ ∪ ∞ is defined as the
supremum ofdist(x, X \ U), U ∈ U . If U = X for someU ∈ U it is defined to be infinity.

Notice that eitherLU ≡ ∞ at all points or it is a natural Lipschitz function associated with U . More
precisely|LU(x) − LU(y)| ≤ dX(x, y).

Definition 4 TheLebesque numberL(U , A) is inf{LU(x) | x ∈ A }.

Definition 5 A family of subsetsU of a metric spaceX is calledcoarseif LU is coarsely proper (as a
function fromX to R ∪∞).

An alternative way to define coarse families is to requireL(U , A) → ∞ asA → ∞. Yet another way is
to state thatL(U , X \ B(x0, t)) → ∞ ast → ∞.

Proposition 1

1. A familyU = {A} consisting of one subsetA of X is coarse if and only ifX \ A is bounded.

2. A familyU = {X1, X2} consisting of two subsets ofX is coarse if and only ifdX restricted to
(X \ X1) × (X \ X2) is coarsely proper.

3. A familyU = {X1, X2, . . . , Xn} consisting of finitely many subsets ofX is coarse if and only if the
functiondU (x) :=

∑n

i=1 dist(x, X \ Xi) is coarsely proper.

PROOF. 1. If X \ A is bounded, thenLU(x) ≥ dist(x, X \ A) andLU is coarsely proper. IfX \ A is
unbounded, thenLU(x) = 0 at allx ∈ X \ A andLU is not coarsely proper.

2. SupposeU = {X1, X2} is coarse andxn → ∞, yn → ∞, for somexn ∈ X \ X1, yn ∈ X \ X2.
NoticeLU(xn) ≤ dX(xn, yn), sodX(xn, yn) → ∞.

If U = {X1, X2} is not coarse, then there is a sequencezn → ∞ with LU (zn) bounded byM . We can
producexn ∈ X \ X1 andyn ∈ X \ X2 so thatdX(zn, xn) < M + 1 anddX(zn, yn) < M + 1 for all n.
Now,dX(xn, yn) < 2M + 2, a contradiction.

3. NoticedU (x) ≥ LU(x) andm · LU (x) ≥ dU (x). �

Definition 6 Given a functionf : X → Y of metric spaces, itsLebesque number transferLf : R+ →
R+∪∞ is the supremum of all functionsα : R+ → R+∪∞ such thatL(U , Y ) ≥ t impliesL(f−1(U), X) ≥
α(t) for all familiesU of subsets ofY .

Definition 7 A functionf : X → Y of metric spaces iscoarseif the Lebesque number transferLf is
coarsely proper.

An alternative definition of coarse functions is to require the functionU → L(f−1(U), X) to be coarsely
proper on the set of covers ofY .

Let us show that our definition of coarse functions coincideswith that of Roe [14].
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Proposition 2 A functionf : X → Y is coarse if and only if for everyR > 0 there isM > 0 such that
dX(x, y) ≤ R impliesdY (f(x), f(y)) ≤ M for all x, y ∈ X .

PROOF. Notice that ifM > 0 andN > 0 are numbers such thatdX(x, y) < M impliesdY (f(x), f(y)) <
N , thenLf(N) ≥ M . Thereforef being coarse in the sense of Roe impliesLf being coarsely proper.

Conversely, ifLf (N) ≥ M , then consider the coverU = {B(z, N)}z∈Y whose Lebesque number is
clearly at leastN . If dX(x, y) < M , then there isz so thatx, y ∈ f−1(B(z, N)). HencedY (f(x), f(y)) <
2 · N andf is coarse. �

Dranishnikov [2, p. 1088] definedasymptotically Lipschitz functionsf : X → Y as those for which
there are constantsM > 0 andA such thatdY (f(x), f(y)) ≤ M · dX(x, y) + A for all x, y ∈ X . Let us
relate this concept to the Lebesque number transfer.

Proposition 3 A functionf : X → Y is asymptotically Lipschitz if and only if there is a linear function
t → m · t + b so thatm > 0 andLf (t) ≥ m · t + b for all t.

PROOF. Suppose there are constantsM > 0 andA such thatdY (f(x), f(y)) ≤ M · dX(x, y) + A for all
x, y ∈ X . Given a coverU of Y with L(U , Y ) ≥ t and givenx ∈ X , the ballB(x, (t − A − δ)/M) is
mapped byf into the ballB(f(x), t − δ) which is contained in an element ofU for all δ > 0. That shows
the Lebesque number off−1(U) to be at least(t − A)/M . Conversely, ifLf(t) ≥ m · t + b for all t and
m > 0, then we claimdY (f(x), f(y)) < 2 · dX(x, y)/m + 2(1 − b)/m. Indeed, putdX(x, y) = s and
consider the coverU = {B(z, (s+1−b)/m)}z∈Y whose Lebesque number is clearly at least(s+1−b)/m.
There isz so thatx, y ∈ f−1(B(z, (s + 1 − b)/m)). HencedY (f(x), f(y)) < 2 · (s + 1 − b)/m andf is
asymptotically Lipschitz. �

Proposition 4 Given a functionf : X → Y of metric spaces the following conditions are equivalent:

1. f sends bounded subsets ofX to bounded subsets ofY andf−1(U) is coarse for every coarse family
U in Y .

2. f is coarse and coarsely proper.

PROOF. 1 =⇒ 2. Given a bounded subsetA of Y the family{Y \A} is coarse (see Proposition 1). Since
{f−1(Y \A)} is coarse andf−1(Y \A) = X \f−1(A), f−1(A) must be bounded andf is coarsely proper.

If f is not coarse, we find sequencesxn, yn ∈ X so thatdY (f(xn), f(yn)) > n for eachn but
dX(xn, yn) < M for all n. Sincef sends bounded subsets ofX to bounded subsets ofY , we may
assumexn → ∞, henceyn → ∞. PutA = {xn} andB = {yn}. Using Proposition 1 we see that
U = {Y \f(A), Y \f(B)} is a coarse family inY . Sincef−1(U) is coarse, the familyV = {X\A, X\B},
to whichU is a shrinking, is coarse as well. That however contradicts Proposition 1.

2 =⇒ 1. Obviously, coarse functionsf : X → Y send bounded subsets ofX to bounded subsets
of Y . PutV = f−1(U) for some coarse familyU in Y . To find pointsx ∈ X such thatLV(x) > t
we find s > 0 so thatLf(s) > t and we findu > 0 such thatLU(y) > s for y ∈ Y \ B(y0, u). Put
W = U ∪ {B(y0, u + s)}. NoteL(W , Y ) > s. SinceL(f−1(W), X) > t, pointsx lying outside of the
bounded setf−1(B(y0, u + s)) satisfyLV(x) > t. �

In the end of this section let us demonstrate the usefulness of the concept of a coarse family by rewording
notions from [6].

In [6, section 5.2] the concept ofasymptotic neighborhoodW of a subsetA of X is introduced by
requiringlimr→∞ dist(A \ B(x0, r), X \ W ) = ∞ for some (and hence for all)x0 ∈ X .

Proposition 5 W is an asymptotic neighborhood ofA if and only if the pair{X \ A, W} is coarse.

PROOF. According to part 2 of Proposition 1 the pair{X \A, W} is coarse if and only ifdX restricted to
A × (X \ W ) is coarsely proper. That can be easily seen as equivalent to

lim
r→∞

dist(A \ B(x0, r), X \ W ) = ∞
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for some (and hence for all)x0 ∈ X . �

In [6, section 5.2] (see also [3]) the concept ofasymptotically disjoint subsetsA andB of X is intro-
duced by requiringlimr→∞ dist(A \ B(x0, r), B \ B(x0, r)) = ∞ for some (and hence for all)x0 ∈ X .

Proposition 6 A andB are asymptotically disjoint if and only if the pair{X \ A, X \ B} is coarse.

PROOF. Apply part 2 of Proposition 1. �

Also notice that the concept of an asymptotic separator of [6] (see section 5.2) can be introduced without
referring to the Higson corona.

Definition 8 A subsetC of X is anasymptotic separatorbetween asymptotically disjoint subsetsA and
B if there are asymptotic neighborhoodsWA of A andWB of B such thatC = X \ (WA ∪ WB) and
WA ∩ WB = ∅.

3 Multiplicity and higher Lebesque numbers

Definition 9 Given a familyU of subsets ofX we definethe multiplicity functionmU : X → Z+ ∪∞ by
settingmU (x) to be equal to the number of elements ofU containingx. Theglobal multiplicity m(U , A)
is the supremum ofmU(x), x ∈ A.

By a coarse refinementV of a coarse familyU we mean a coarse family such that every elementV of
V is contained in an elementU of U . V is called ashrinkingof U if they are indexed by the same setS and
Vs ⊂ Us for all s ∈ S. If V is a coarse refinement ofU indexed by a different setT , then one can create a
shrinkingV ′ of U as follows: find a functionφ : T → S satisfyingVt ⊂ Uφ(t) for all t ∈ T . DefineV ′

s as
⋃

{Vt | s = φ(t) }. Notice thatV ′ has multiplicity at most that ofV and is a coarse shrinking ofU .
Given a familyφ = {φs : X → R+}s∈S of functions itscarrier family Carr(φ) is the family

{φ−1
s (0,∞)}s∈S. The multiplicity m(φ) of φ is defined as the multiplicity of its carrier family and its

Lebesque numberL(φ) is defined as the Lebesque number of its carrier family.

Lemma 2 If U = {Us}s∈S is a family inX such thatLU(x0) = ∞ for somex0 ∈ X , then it has a coarse
refinementV of multiplicity at most2.

PROOF. PutVn = { x ∈ X | (n − 1)2 ≤ d(x, x0) < (n + 1)2 } for n ≥ 1. �

Lemma 3 If U = {Us}s∈S is a family in X of multiplicity at mostn + 1, then it can be refined by
V =

⋃n+1
i=1 V i such thatLV(x) ≥ LU(x)/(2n + 2) for eachx ∈ X and eachV i consists of disjoint sets.

PROOF. Definefs(x) = dist(x, X \ Vs). For each finite setT of S define

WT =
{

x ∈ X | min{ ft(x) | t ∈ T } > sup{ fs(x) | s ∈ S \ T }
}

.

Notice WT = ∅ if T contains at leastn + 2 elements. Also, notice thatWT ∩ WF = ∅ if both T
andF are different but contain the same number of elements. Let usestimate the Lebesque number of
W = {WT }T⊂S . Givenx ∈ X arrange all non-zero valuesfs(x) from the largest to the smallest. Add0 at
the end and look at gaps between those values. The largest number is at leastLU(x), there are at mostn+1
gaps, so one of them is at leastLU(x)/(n+1). That implies the ballB(x, LU (x)/(2n+2)) is contained in
oneWT (T consists of allt to the left of the gap). DefineVi as{WT }, all T containing exactlyi elements.
�

Lemma 4 If U = {Us}s∈S is a coarse family inX , then it has a coarse refinementV that is coarsely
proper. Moreover, ifU is of finite multiplicity, then we may requireV to be of finite multiplicity as well.
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PROOF. Let V = {Vs,m}(s,m)∈S×N , whereVs,m = {x ∈ Us | 2m < d(x, x0) ≤ 2m+2}. NoticeV is
coarse of multiplicity at most2 ·m(U). Also, it consists of bounded sets so that for any sequencexk → ∞
the conditionsxk ∈ Vs(k),m(k) imply Vs(k),m(k) → ∞. �

Proposition 7 If U = {Us}s∈S is a coarse family inX , then it has a coarse shrinkingV = {Vs}s∈S

such that for anyM > 0 there is a bounded subsetAM of X with the property thatB(x, M) ∩ Vs 6= ∅
impliesB(x, M) ⊂ Us providedx ∈ X \ AM .

PROOF. Pick x0 ∈ X and definef(x) = min(d(x, x0)/2, LU(x)/2). Notice f is a coarsely proper
function of Lipschitz constant1/2. For eachx ∈ X pick s(x) ∈ S so thatB(x, f(x)) ⊂ Us(x). DefineVs

as the union of those ballsB(x, f(x)/2) so thats = s(x). It suffices to observe thatB(x, M) ∩ Vs 6= ∅
andM < f(x)/3 implies B(x, M) ⊂ Us. Indeed,B(y, f(y)) ⊂ Us for somey ∈ B(x, M). Since
f(x) − f(y) ≤ d(x, y)/2 < M/2, one hasf(y) > f(x) − M/2 > 3M − M/2 > 2M andB(x, M) ⊂
B(y, f(y)) ⊂ Us. �

Lemma 5 If U is a coarse family inX that is coarsely proper, then there is a coarsely proper function
f : U → R+ such that the family{B(U,−f(U))}U∈U is coarse.

PROOF. Definef(U) = inf{LU(x)/4 | x ∈ U}. Noticef is a coarsely proper function. Picks(x) ∈ S so
thatB(x, LU (x)/2) ⊂ Us(x). f(Us(x)) ≤ LU (x)/4 which impliesB(x, LU (x)/4)⊂B(Us(x),−f(Us(x))).
Thus{B(U,−f(U))}U∈U is coarse. �

In the large scale geometry one should think of bounded subsets ofX as points. Here is a generalization
of the Lebesque number.

Definition 10 Letn ≥ 0. SupposeU is a family inX andA is a bounded subset ofX . Then-th Lebesque
numberLn(U , A) is the supremum oft ∈ [0,∞] such thatU|A has a refinement of multiplicity at mostn+1
and Lebesque number at leastt.

Notice such supremum exists as the cover ofA consisting of points is of Lebesque number0 and
multiplicity 1.

Observe thatLn(U , A), n ≥ 0, form an increasing sequence of numbers bounded byL(U , A). If U|A
is of finite order, then they eventually stabilize and are equal toL(U|A, A).

Let us point out that Sperner’s Lemma can be used to estimate higher Lebesque numbers as follows:
Consider a 2-simplex∆ with vertices labeled0, 1, and2. Let U be the cover of∆ by starsUi, i = 0, 1,
2, of its vertices. Consider a subdivisionL of ∆ with meshM (in this case it coincides with the longest
edge in the subdivision). LetX = A be the set of vertices ofL. SupposeV = {V0, V1, V2} is a shrinking
of U|A. Obviously, there is a shrinking of multiplicity1. However, if we requestV to be of large Lebesque
number, we run into problems. Namely,L1(U , A) ≤ M . Indeed, ifL(V) > M , we assign to each vertexv
of L numberi such thatB(v, M) ⊂ Vi. We are in the situation of the classical Sperner’s Lemma: vertices
on the edges of∆ must be labeled with a number of one of the vertices of that edge. Therefore one has a
simplex inL whose vertices were assigned all three numbers0, 1, 2. SinceL(V) > M , the three vertices
belong toV0 ∩ V1 ∩ V2 and multiplicity ofV is 3. ThusL1(V , A) ≤ M .

We will use the observation above in the case ofM -scale connected spaces.

Definition 11 SupposeM is a positive number. A metric spaceX is calledM -scale connectedif for every
two pointsx, y ∈ X there is a chain of pointsx = x1, x2, . . ., xk = y such thatdX(xi, xi+1) < M for all
i < k.

Here is an application of Sperner’s Lemma for1-simplices.

Lemma 6 LetM be a positive number andX be anM -scale connected metric space. IfL0(U , X) > M
for some coverU of X , thenU containsX as an element.
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PROOF. SupposeV is a refinement ofU of multiplicity at most1 and Lebesque number bigger thanM .
If X is not an element ofV , then there are disjoint non-empty elementsV1, V2 ∈ V . Pick a chain of points
x = x1, x2, . . ., xk = y such thatdX(xi, xi+1) < M for all i < k andx ∈ V1, y ∈ V2. There is an index
j < k such thatxj ∈ V1 andxj+1 /∈ V1. The ballB(xj+1, M) is contained in an elementW of V and
intersectsV1. ThereforeW = V1, a contradiction. �

4 The coarse category

Let us introduce the coarse category in a way that explains why two coarse functions are considered equi-
valent if their distance is bounded.

Definition 12 Given a metric space(X, dX) and its two subsetsX1 andX2 the notationX1 ≤ X2 means
there is a positive numberR such thatX1 is contained in the ballB(X2, R) = {x ∈ X | dist(x, X2) < R}.

Proposition 8 A functionf : X → Y of metric spaces is coarse if and only if it preserves the relation≤
of sets. Thus,X1 ≤ X2 impliesf(X1) ≤ f(X2).

PROOF. Supposef : X → Y preserves the relation≤ of sets but not in the sense of Roe. There-
fore, for someM > 0 there is a sequence of pointsxn, yn so thatdX(xn, yn) < M for eachn but
dY (f(xn), f(yn)) → ∞ asn → ∞. If f(A) is bounded for some subsequenceA of xn, thenf(B) is
bounded for the corresponding subsequence ofyn (in view of f(B) ≤ f(A)) contradicting

dY (f(xn), f(yn)) → ∞ asn → ∞.

Thusf(xn) → ∞ andf(yn) → ∞ asn → ∞. By induction define a subsequencean of {xn}n≥1

and the corresponding subsequencebn of {yn}n≥1 with the property thatdY

(

f(ak), f(bi)
)

> k and
dY

(

f(bk), f(ai)
)

> k for all k ≥ i. SinceA = {an}n≥1 ≤ B = {bn}n≥1 one hasf(A) ≤ f(B), a
contradiction.

Supposef : X → Y is coarse in the sense of Roe andX1 ≤ X2 in X . Pick R > 0 so thatX1 ⊂
B(X2, R) and chooseM > 0 satisfyingdY

(

f(x), f(y)
)

< M if dX(x, y) < R for all x, y ∈ X . Given
x ∈ X1 pick y ∈ X2 so thatdX(x, y) < R sincedY

(

f(x), f(y)
)

< M one getsf(X1) ⊂ B(f(X2), M).
Thusf(X1) ≤ f(X2). �

Notice thatX1 ≤ X2 for every bounded subsetX1 of X providedX2 6= ∅. Also, X1 ≤ X2 implies
X1 is bounded providedX2 is bounded. Thereforef(A) is bounded for every bounded subsetA of X and
every coarse functionf : X → Y .

Given a functionf : X → Y of metric spaces one can identify it with its graphΓ(f) ⊂ X × Y .
Therefore it makes sense to ponder the meaning ofΓ(f) ≤ Γ(g) for f , g : X → Y .

Proposition 9 Supposef , g : X → Y are functions of metric spaces.

1. If g is coarse, thenΓ(f) ≤ Γ(g) implies that the distancedist(f, g) betweenf andg is finite. In
particular, f is coarse.

2. If dist(f, g) is finite, thenΓ(f) ≤ Γ(g).

PROOF.
1. Suppose the distancedist(f, g) is not finite, so there are pointsxn ∈ X with dY

(

f(xn), g(xn)
)

> n
for all n ≥ 1. Let R > 0 be a number such thatB(Γ(g), R) containsΓ(f). For eachn pick yn ∈ X
satisfyingdX(xn, yn) + dY

(

f(xn), g(yn)
)

< R. There isM > 0 so thatdY (g(xn), g(yn)) < M for all
n ≥ 1 asg is coarse. Now,dY

(

f(xn), g(xn)
)

≤ dY

(

f(xn), g(yn)
)

+ dY

(

g(yn), g(xn)
)

< R + M for all
n ≥ 1, a contradiction.

2. NoticeΓ(f) ⊂ B(Γ(g), dist(f, g)). �
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Definition 13 Given a functionf : X → Y of metric spaces we define theforward distance transfer
functiondf : R+ → R+ ∪ ∞ as the infimum of all functionsα : R+ → R+ ∪ ∞ with the property that
dX(x, y) ≤ t impliesα(t) ≥ dY

(

f(x), f(y)
)

for all x, y ∈ X .
Thereverse distance transferfunctiondf : R+ → R+ ∪ ∞ as the infimum of all functionsα : R+ →

R+ ∪∞ with the property thatdY

(

f(x), f(y)
)

≤ t impliesdX(x, y) ≤ α(t) for all x, y ∈ X .

Notice thatf is coarse if and only ifdf mapsR+ to R+, i.e. the values ofdf are finite. Also,f is
asymptotically Lipschitz if and only ifdf is bounded by a linear function.

Proposition 10 If f , g : X → Y are two coarsely proper coarse functions, then the following conditions
are equivalent:

1. dist(f, g) is finite.

2. For every coarse familyU = {Us}s∈S in Y the family{f−1(Us) ∩ g−1(Us)}s∈S is coarse.

PROOF.
1 =⇒ 2. Let dist(f, g) < M . ConsiderV = {B(Us,−M)}s∈S. It is a coarse family, sof−1(V) is

coarse by Proposition 4. Noticef−1
(

B(Us,−M)
)

⊂ f−1(Us) ∩ g−1(Us) for all s ∈ S which is sufficient
to establish coarseness of{f−1(Us) ∩ g−1(Us)}s∈S .

2 =⇒ 1. If dist(f, g) is not finite, there is a sequencexn → ∞ such thatdY

(

f(xn), g(xn)
)

> n for
all n. PutA = {xn}n≥1. By Proposition 1, the familyU = {Y \ f(A), Y \ g(A)} is coarse. However,
{f−1(Us) ∩ g−1(Us)}s∈S is not coarse as it refines{X \ A} which is not coarse. �

Our category is that of metric spaces and equivalence classes of coarse functions.

f ∼ g if dY (f(x), g(x)) is a bounded function ofx.

Generalizing the concept ofA ≤ B for subsets of a given metric spaceX , we sayY coarsely dominates
X (notation:X ≤ coa

rse Y ) if there are coarse functionsf : X → Y andg : Y → X such thatg ◦ f is at a
finite distance fromidX .

Proposition 11 Supposef : X → Y andg : Y → X are coarse functions. Ifg ◦ f is at a finite distance
from idX , then bothf : X → f(X) andg : f(X) → X are coarsely proper andf ◦ g is at finite distance
from idf(X).

PROOF. Supposexn → ∞. None of the subsequences of{f(xn)} can be bounded asg would send it to a
bounded subset ofX . Thusf(xn) → ∞. If f(xn) → ∞, then none of subsequences of{xn} is bounded.
Therefore none of the subsequences of{g

(

f(xn)
)

} is bounded andg : f(X) → X is coarsely proper. If
dX

(

g(f(x)), x
)

< M for all x ∈ X , thendY

(

f(g(f(x))), f(x)
)

≤ df (M) andf ◦ g is at finite distance
from idf(X). �

Proposition 12 A surjective coarse functionf : X → Y of metric spaces is a coarse isomorphism if and
only if the reverse distance transfer functiondf is finite.

PROOF. If there is a coarse functiong : Y → X such thatg ◦ f is at finite distanceM to idX , then
df (a) ≤ dg(a) + 2M is finite.

Assumedf is finite and pick a right inverseg : Y → X . NoticedX

(

g(x), g(y)
)

≤ df
(

dY (x, y)
)

, sog
is coarse. �
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5 Coarse dimensions

Definition 14 Thecoarse dimensiondim coa
rse (X) (respectively,the major coarse dimensiondim COA

RSE (X))
is the smallest integern such that any finite coarse family inX (respectively, any coarse family inX) has
a coarse refinement with multiplicity at mostn + 1.

Remark 1 Using [2, Proposition 4.4 on p. 1104](notice that the words ‘uniformly bounded’ are erro-
neously inserted there) one can show that, for proper metricspacesX , the major coarse dimension ofX
coincides with the asymptotic dimension of Dranishnikov. In view of Corollary6, our coarse dimension and
Dranishnikov coarse dimension are identical.

Given a coarse familyU = {Us}s∈S in a subsetA of X one can extend it to a coarse familyU ′ =
{Us ∪ (X \A)}s∈S in X . Notice thatV ∩A is a coarse refinement ofU for any coarse refinementV of U ′.
Therefore the following holds.

Corollary 1 If A is a subset of a metric spaceX , then

dim coa
rse (A) ≤ dim coa

rse (X) and dim COA
RSE (A) ≤ dim COA

RSE (X).

Proposition 13 If Y coarsely dominatesX , then

dim coa
rse (X) ≤ dim coa

rse (Y ) and dim COA
RSE (X) ≤ dim COA

RSE (Y ).

PROOF. The proof is almost the same for both dimensions. SupposeU is a coarse family inX and
f : X → Y , g : Y → X are coarse functions such that there isM > 0 with dX

(

x, g(f(x))
)

< M
for all x ∈ X . ReplacingY by f(X) we may assumef is onto and bothf andg are coarsely proper
(see Proposition 11). The idea of the proof is to refineg−1(U) by V and then refinef−1(V) to obtain
a desired refinementW of U of multiplicity at mostn + 1, wheren is the dimension ofY . Consider
U′ = {B(Us,−M)}s∈S. It is a coarse family inX , so{g−1

(

B(Us,−M)
)

}s∈S is coarse and it has a coarse
shrinkingV = {Vs}s∈S of multiplicity at mostn+1. Supposex ∈ f−1(Vs)\Us. SincedX

(

x, g(f(x))
)

<

M , g(f(x)) /∈ B(Us,−M). However,f(x) ∈ Vs ⊂ g−1
(

B(Us,−M)
)

, a contradiction. �

Definition 15 Theminor asymptotic dimensionad(X) (resp., theasymptotic dimensionasdim(X)) is
the smallest integern such that the functionU → Ln(U , X) is coarsely proper on the space of finite covers
(resp., arbitrary covers)U of X .

Let us show that our definition of asymptotic dimension is equivalent to that of Gromov.

Proposition 14 asdim(X) ≤ n if and only if for eachM > 0 there is a uniformly bounded familyU in
X of Lebesque number at leastM and multiplicity at mostn + 1.

PROOF. If asdim(X) ≤ n as in Definition 15 andM > 0, then there isN > 0 such that every coverV of
X satisfyingL(V , X) ≥ N has a refinementU of multiplicity at mostn + 1 and Lebesque number at least
M . PickV to be the cover ofX by balls of radiusN . The resultingU is uniformly bounded.

Suppose for eachM > 0 there is a uniformly bounded familyUM of multiplicity at mostn + 1 and
Lebesque number at leastM . Let α(M) be the supremum of diameters of elements ofUM . Given any
family V of Lebesque number at leastα(M) + 1, UM is a refinement of ofV which proves that the
functionV → Ln(V , X) is coarsely proper on the space of all coversV of X . �

Quite often it is useful to have even stronger conditions imposed on covers appearing in Proposition 14.

Proposition 15 (Gromov) If Gromov asymptotic dimensionasdim(X) does not exceedn, then for any
M , N > 0 there exist uniformly bounded familiesU i, 1 ≤ i ≤ n + 1, such that eachU i is N -disjoint and
U =

⋃n+1
i=1 U i is of Lebesque number at leastM .

9
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PROOF. Consider a uniformly bounded familyV = {Vs}s∈s of multiplicity at mostn + 1 and Lebesque
number at least2(n + 1) · (M + N). Lemma 3 says it can be refined byV ′ =

⋃n+1
i=1 V i such that

LV(x) ≥ LU(x)/(2n + 2) ≥ M + N for eachx ∈ X and eachV i consists of disjoint sets. DefineUi as
{B(W,−N)}, W ∈ V i. �

Let us characterize spaces of asymptotic dimension0.

Proposition 16 asdim(X) > 0 if and only if there exist a numberM > 0 and a coarsely proper sequence
{(xn, yn)}∞n=1 of pairs of points inX such thatdist(xn, yn) → ∞ and the pointsxn andyn can beM -
scale connected inX \ B(x0, n).

PROOF. If asdim(X) = 0, then for anyM > 0 there exists anM -disjoint cover ofX by uniformly
bounded sets. Therefore, the distance between two pointsx andy which can beM -scale connected inX is
uniformly bounded.

Supposeasdim(X) > 0. Letn be a positive integer andx0 be the base point inX . There isL > 0 such
that X does not have a uniformly bounded cover of Lebesque number bigger thanL and multiplicity 1.
Define an equivalence relation onX \ B(x0, n) by sayingx ∼ y if and only if x andy can be2L-scale
connected inX \ B(x0, n). The cover ofX by the equivalence classes has Lebesque number at least2L,
therefore these classes are not uniformly bounded by the choice of L. Thus, there exist pointsxn andyn

which can be2L-scale connected inX \ B(x0, n) such thatdist(xn, yn) is arbitrarily large. �

Proposition 17 If Y coarsely dominatesX , thenasdim(X) ≤ asdim(Y ) andad(X) ≤ ad(Y ).

PROOF. The proof is almost the same for both dimensions. SupposeU is a coarse family inX and
f : X → Y , g : Y → X are coarse functions such that there isM > 0 with dX(x, g(f(x))) < M for
all x ∈ X . By replacingY with f(X) we may assumef is onto and bothf andg are coarsely proper
(see Proposition 11). The idea of the proof is to refineg−1(U) by V and then refinef−1(V) to obtain a
desired refinementW of U of multiplicity at mostn + 1, wheren is the dimension ofX . Take a coarsely
proper functionα : R+ → R+ with the property that any finite cover (respectively, arbitrary cover)U of Y
satisfyingL(U , Y ) ≥ α(t) has a refinementV of multiplicity at mostn + 1 so thatL(V , Y ) ≥ t.

Givent > 0 pick β(t) so thatLg(β(t)) > α(t) (see Definition 7). AssumeL(U) > M +β(t). Consider
U ′ = {B(Us,−M)}s∈S. L(U ′) > β(t), so{g−1

(

B(Us,−M)
)

}s∈S is of Lebesque number at leastα(t)
and it has a shrinkingV = {Vs}s∈S of multiplicity at mostn+1 andL(V) ≥ t. Supposex ∈ f−1(Vs)\Us.
SincedX

(

x, g(f(x))
)

< M , g(f(x)) /∈ B(Us,−M). However,f(x) ∈ Vs ⊂ g−1
(

B(Us,−M)
)

, a
contradiction. �

Theorem 1 The major coarse dimension ofX does not exceed the asymptotic dimension ofX .

PROOF. Supposeasdim(X) = n < ∞ andU = {Us}s∈S is a coarse family inX . By Lemma 4 we may
assumeU is coarsely proper. By induction onk find a sequence of numbersM0 = 1, M1, M2, . . ., and
coversV k = {Vt}t∈T (k), k ≥ 1, of multiplicity at mostn + 1 and satisfying the following conditions:

a. L(V k, X) ≥ Mk−1 for k ≥ 1.

b. The diameter of each element ofV k is smaller thanMk.

c. The family{B(x, Mk−1) | d(x, x0) ≥ Mk } refinesU for eachk ≥ 1.

d. Mk+1 > 2Mk for all k ≥ 1.

Find functionsj(k) : T (k) → T (k + 1) so thatVt ⊂ Vj(k)(t). Denote{ x : Mk ≤ d(x, x0) < Mk+1 }
by Ak. Givent ∈ T (k) so thatVt is contained in some element ofU defineα(t) ∈ S by looking at the
sequenceVt ⊂ Vj(k)(t) ⊂ · · · , picking the latest element contained in someUs and settingα(t) = s (it is
possible each element of the sequence is contained in someUs in which case all of them are contained in

10
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someUs and thats is picked asα(t)). DefineWs as follows: it is the union of non-empty sets of the form
Vt ∩Ak so thatVt ∈ Vk−1 andα(t) = s. Notice thatm(W) ≤ n + 1 as in the annulusAk the familyW is
obtained fromV k−1 by assembling some of its elements together.

We plan to showW is coarse by proving that ifMk ≤ d(x, x0) < Mk+1, thenB(x, Mk−3) is contained
in someWs. Indeed, there ist ∈ T (k − 2) so thatB(x, Mk−3) ⊂ Vt. Put r = j(k − 2)(t) andu =
j(k − 1)(r). Points ofB(x, Mk−3) can belong to only two of the following three annuli:Ak−1, Ak, and
Ak+1. If z ∈ B(x, Mk−3) ∩ Ak+1, thenVu ⊂ B(z, Mk) ⊂ Us for somes ∈ S. We might as well put
s = α(t) = α(u) = α(r). In this caseB(x, Mk−3) ⊂ Ws. If B(x, Mk−3) misses the last annulus, then
only α(r) is definitely defined (α(u) may not exist) andα(t) = α(r). Now, B(x, Mk−3) ⊂ Ws, where
s = α(r). �

Remark 2 Theorem1 generalizes[2, Proposition 4.5 on p. 1105].

6 The large scale dimension

In this section we prove that any dimension ofX (asymptotic, major coarse, or minor asymptotic), if finite,
equals the coarse dimension ofX . That corresponds to results of Dranishnikov [2] thatasdim(X) or
asdim∗(X), if finite, are equal to the dimension of the Higson corona of any proper metric spaceX . Our
proofs are direct and become simpler by introducing a new dimension, thelarge scale dimensionof X .
That dimension turns out to be identical with the coarse dimension.

Definition 16 The large scale dimensiondim large
scale(X) of X is the smallest integern such thatA →

Ln(U , A) is a coarsely proper function on the set of bounded subsets ofX for all finite coarse familiesU
in X .

Noticedim large
scale(X) = −1 if X is bounded.

Obviously,dim large
scale(X) ≥ dim large

scale(A) for any subsetA of X .

Proposition 18 ad(X) ≥ dim large
scale(X) anddim coa

rse (X) ≥ dim large
scale(X).

PROOF. The inequalitydim coa
rse (X) ≥ dim large

scale(X) is almost obvious. Indeed, givenn = dim coa
rse (X)

and given a coarse familyU in X consisting ofm elements one has a coarse refinementV of U such that
the multiplicitym(V) is at mostn + 1. In that case

Ln(U , A) ≥ L(V , A) ≥ inf
a∈A

LV(a)

and is a coarsely proper function ofA.
Supposead(X) = n andU is a coarse cover ofX consisting ofm elements. Givent > 0 find a bounded

subsetU of X such thatU|(X\U) has a refinementV of multiplicity at mostn + 1 and Lebesque number at

leastt. For any bounded subsetA of X \ U , Ln(U , A) ≥ L(V , A) ≥ t which provesdim large
scale(X) ≤ n.

�

As shown in [5], the asymptotic dimension ofR
n is at mostn (see p. 793). For the convenience of

the reader let us reword the argument from [5] as follows: GivenM > 0 consider the triangulation on the
unit n-cubeIn obtained by starring at the center of each face. It is invariant under symmetries ofIn and
the cover ofIn by stars of vertices has a positive Lebesque numberk and is of multiplicity at mostn + 1.
RescaleIn by the factor ofM/k and extend its triangulation over the wholeR

n by reflections. The cover
of R

n by stars of vertices has Lebesque number at leastM and is of multiplicity at mostn + 1.
Let us show how to use the large scale dimension to estimate asymptotic dimension from below.

Proposition 19 dim large
scale(R

n) ≥ n.

11
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PROOF. Sincedim(In) = n, there is a finite open coverU of In with no open refinement of multiplicity
at mostn. Let In

k ⊂ R
n be a copy ofIn enlargedk times with the corresponding coverU k. We request

In
k → ∞ so thatV obtained by adding the corresponding elements ofU k is a finite coarse family on

A =
⋃∞

k=1 In
k . NoticeLn−1(V , In

k ) = 0 for all k. Thusdim large
scale(R

n) ≥ n. �

Proposition 20 If dim large
scale(X) = 0, thenasdim(X) = 0 anddim COA

RSE (X) = 0.

PROOF. It suffices to showasdim(X) = 0 (see Theorem 1). Supposeasdim(X) > 0. By Proposition 16
there exist a numberM > 0 and a coarsely proper sequence{(xn, yn)}∞n=1 of pairs of points inX such
thatdist(xn, yn) → ∞ and the pointsxn andyn can beM -scale connected inX \B(x0, n) by a chainPn.
Consider a coarse familyU consisting of two sets:X \

⋃∞
n=1{xn} andX \

⋃∞
n=1{yn}.

SinceC → L0(U , C) is a coarsely proper function, there is a chainPn such thatL0(U , Pn) > M . This
contradicts Lemma 6 sincePn is M -scale connected and the coverU is non-trivial onPn. �

Definition 17 Given a point-finite familyU = {Us}s∈S in X (that means each point ofX belongs to at
most finitely many elements ofU) by the canonical partition of unityof U we mean the family of functions
{fs/f}s∈S, wherefs(x) = dist(x, X \ Us) andf(x) =

∑

s∈S fs(x). If T is a subset ofS, thenXT is
defined to be{ x ∈ X |

∑

s∈T fs(x)/f(x) = 1 } and by∂XT we mean the set of allx ∈ XT such that
fs(x) = 0 for somes ∈ T .

Notice thatf(x) > 0 for all x ∈ X such thatLU(x) > 0 andf is a Lipschitz function ifU is of finite
multiplicity.

Lemma 7 If the large scale dimension ofX is at mostn, then any coarse familyU in X of finite multiplicity
m has a coarse refinementV of multiplicity at mostn + 1.

PROOF. SupposeU exists with no coarse refinement of multiplicity at mostn + 1. Using Lemma 4
we reduce the general case to that ofU = {Us}s∈S consisting of bounded sets so that for any sequence
xk → ∞ the conditionsxk ∈ Us(k) ∈ U imply Us(k) → ∞. For induction onm − n it suffices to assume
the multiplicity ofU is n + 2.

Pick a coarse shrinkingW = {Ws}s∈S (see Proposition 7) so that givenM > 0 there is a bounded
subsetA of X with the property that, forx ∈ X \A, B(x, M)∩Ws 6= ∅ impliesB(x, M) ⊂ Us. Consider
the canonical partition of unityf of W . Given a setT in S consisting ofn + 2 elements pick a shrinking
W T of W|XT

of order at mostn + 1 and the Lebesque number at least half the maximumLn(W T , XT )
possible (if the maximum is infinity we pick a shrinking of Lebesque number twice the size ofXT ). We
can addWs ∩ ∂XT to WT

s without increasing the order ofWT beyondn + 1 (obviously, the Lebesque
number does not decrease). By pasting those shrinkings for all T one gets a refinementV of W onX \ A
for some bounded subsetA of X of multiplicity at mostn + 1. ThereforeV cannot be coarse and there is
M > 0 and a sequence of pointsxk → ∞ such that none ofB(xk, M) is contained in an element ofV .
In particularB(xk, M) is not contained in then-skeleton ofX (the points where the order off is at most
n + 1) for largek.

Pick setsT (k) so thatXT (k) \ ∂XT (k) contains an elementyk ∈ B(xk, M). For largek, B(xk, M)
intersectingWs impliesB(xk, M) ⊂ Us. Therefore the setT of s ∈ S so thatB(xk, M) intersectsWs

is of cardinality at mostn + 2 andB(xk, M) ⊂ XT (k). For largek the coverW|XT (k)
has a refinement

of order at mostn + 1 and Lebesque number at least3M . Therefore,B(xk, M) is contained in a single
element ofV , a contradiction. �

Corollary 2 The coarse dimension ofX equals the large scale dimension ofX .

Corollary 3 If the major coarse dimension ofX is finite, then it equals the large scale dimension ofX .

Theorem 2 If the asymptotic dimension (respectively, the minor asymptotic dimension) of unboundedX
is finite, then it equals the large scale dimension ofX .
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PROOF. Supposeasdim(X) = n (respectively,ad(X) = n) anddim large
scale(X) < n. Noticen > 0 as

dim large
scale(X) < 0 is possible only for boundedX . Therefore there isM > 0 and a sequence of covers

(respectively, finite covers)U k indexed by setsS(k) of Lebesque number at leastk + 3M and multiplicity
at mostn + 1 so that no refinement ofUk of multiplicity n has Lebesque number bigger thanM . Augment
eachU k by shrinking it to the familyB(U,−M), U ∈ U k. Let fk be the canonical partition of unity of
that augmentation.

Notice that for anyk and anyx ∈ X there is a subsetT of S(k) consisting of at most(n + 1) elements
so thatB(x, M) ⊂ XT . We are going to show that for everyk there isN > 0 such that for anyR > N
there isT (k) ⊂ S(k) consisting of at most(n + 1) elements withXT (k) ⊂ X \B(x0, R), x0 a fixed point
in X , so thatCarr(fk|XT (k)

) does not admit a refinement of multiplicity at mostn and Lebesque number
bigger thanM .

Suppose that, for somek and R > 0, all Carr(fk|XT
) so thatXT ⊂ X \ B(x0, R) do admit a

refinementV(T ) of multiplicity at mostn and Lebesque number bigger thanM . By converting those
refinements to shrinkings and pasting one gets a refinementV of U k onX \ U for some bounded subsetU
of X of multiplicity at mostn and Lebesque number bigger thanM . More precisely, for eachT ⊂ T (k)
so thatXT ⊂ X \ B(x0, R), we pick a shrinking{V T

t }t∈T of Carr(fk|XT
) of multiplicity at mostn and

Lebesque number bigger thanM . If T contains at mostn elements, that shrinking is picked to be exactly
Carr(fk|XT

) as the multiplicity is at mostn in such case.V is a shrinking ofUk|(X\U), U being the union
of XT that are not contained inX \ B(x0, R), andVs, s ∈ S(k), is defined as the union of allV T

s with
s ∈ T . The reasonV has Lebesque number at leastM is that for anyx ∈ X there is a subsetT of S(k)
consisting of at most(n + 1) elements so thatB(x, M) ⊂ XT .

Now, the cover consisting of the union ofB(U, 2M) and all the elements ofV intersectingB(U, 2M)
and of all elements ofV that do not intersectB(U, 2M) is uniformly bounded, of multiplicity at mostn
(recalln > 0), and of Lebesque number bigger thanM , a contradiction.

Construct by induction a sequence of setsT (i) ⊂ S(i) with XT (i) being mutually disjoint and tending
to infinity so thatCarr(f i|XT (i)

) does not have a refinement of multiplicity at mostn and Lebesque number
bigger thanM . Paste all those carriers according to their index within each setT (i) and get a coarse cover
on a subsetA of X that does not admit a refinement of multiplicity at mostn and Lebesque number bigger
thanM on infinitely manyXT (i), a contradiction. �

7 Slowly oscillating functions

Definition 18 A functionf : X → Y is slowly oscillating iff−1(U) is coarse for every coverU of Y of
positive Lebesque number.

Definition 19 Given a functionf : X → Y of metric spaces itsoscillation functionOsc(f, M) : X →
R+ ∪ ∞ for everyM > 0 is defined by declaringOsc(f, M)(a) to be the supremum ofdY

(

f(x), f(a)
)

over allx ∈ B(a, M).

Proposition 21 f is slowly oscillating if and only ifOsc(f, M)(x) → 0 asx → ∞ for all M > 0.

PROOF. SupposeOsc(f, M)(x) → 0 asx → ∞ for all M > 0. Given a coverU of Y of positive
Lebesque number and givenxn → ∞ in X there isN > 0 such that eachf

(

B(xn, M)
)

is of diameter
smaller thatL(U , Y ) for n > N . ThereforeB(xn, M) is contained in an element off−1(U) andf−1(U)
is coarse.

Supposef−1(U) is coarse for every coverU of Y of positive Lebesque number. Givenxn → ∞
in X and givenM > 0 such that diameters off

(

B(xn, M)
)

are bigger than a fixedδ > 0, consider
U = {B(y, δ/2)}y∈Y . Sincef−1(U) is coarse, there isN > 0 such that for alln > N setsB(xn, M) are
contained in an element off−1(U). Therefore diameters off

(

B(xn, M)
)

are smaller than aδ for n > N ,
a contradiction. �

Our basic way of constructing slowly oscillating real-valued functions is based on the following.
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Lemma 8 Supposef , g : X → R+ andOsc(f, M), Osc(g, M) < ǫ for someǫ > 0. If f(x) + g(x) > N
for all x ∈ X , thenOsc(f/(f + g), M) < 3ǫ/N .

PROOF. Let h = f/(f + g) and a = 3ǫ/N . If h(x) − h(y) ≥ a for somex, y ∈ X satisfying
dX(x, y) < M , then

f(x)

f(x) + g(x)
−

f(x) − ǫ

f(x) + g(x) + 2 · ǫ
≥ a

as well. Since

f(x)

f(x) + g(x)
−

f(x) − ǫ

f(x) + g(x) + 2 · ǫ
=

f(x) · 2ǫ + ǫ · (f(x) + g(x))

(f(x) + g(x)) · (f(x) + g(x) + 2ǫ)
≤

3ǫ

f(x) + g(x) + 2ǫ
< a,

we arrive at a contradiction. �

Corollary 4 If f andg are coarse functions fromX to R+ such thatf + g is coarsely proper and positive,
thenf/(f + g) is slowly oscillating.

Here is a simple connection between oscillation and the Lebesque number.

Lemma 9 If φ = {φs : X → R+}s∈S is a family of functions with finite supremumsup(φ) such that
Osc(φs, M) < 1

2 sup(φ) for eachs ∈ S, thenL(φ) ≥ M .

PROOF. Givena ∈ X find s ∈ S so thatφs(a) > 1
2 sup(φ)(a). If dX(x, a) < M , then|φs(x)−φs(a)| <

1
2 sup(φ)(a), soφs(x) cannot be0 thus affirmingB(a, M) ⊂ φ−1

s (0,∞). �

A partition of unityφ = {φs : X → R+}s∈S is calledslowly oscillatingif the corresponding function
φ : X → l1S is slowly oscillating.

φ is calledequi-slowly oscillatingif the oscillation of allφs is synchronized in the following way: for
everyM > 0 and everyǫ > 0 there is a bounded subsetU of X such thatOsc(φs, M)(x) < ǫ for all
x ∈ X \ U and alls ∈ S. Obviously, every finite partition of unity into slowly oscillating functions is
globally slowly oscillating and is equi-slowly oscillating. Also, every slowly oscillating partition of unity
is equi-slowly oscillating.

Lemma 10 If φ = {φs : X → R+}s∈S is a partition of unity of finite multiplicitym, thenφ is slowly
oscillating if and only if it is equi-slowly oscillating.

PROOF. GivenM , ǫ > 0 we can find a bounded setU such thatOsc(φs, M) < ǫ/(2m) for all x ∈ X \U
and alls ∈ S. If a ∈ X\U andx ∈ B(a, M), then the complementF of setT = { s ∈ S | φs(x)+φs(a) =
0 } contains at most2m elements. Since|φ(x) − φ)(a)| =

∑

s∈F |φs(x) − φs(a)| < |F | · ǫ/(2m) ≤ ǫ, φ
is slowly oscillating. �

Lemma 11 If φ = {φs : X → R+}s∈S is an equi-slowly oscillating partition of unity of finite multiplicity
m, then its carrier familyCarr(φ) is coarse.

PROOF. Notice sup(φ) ≥ 1/m. GivenM > 0 we can find a bounded setU such thatOsc(φs, M) <
1/(2m) for all x ∈ X \ U and alls ∈ S. By Lemma 9,L(φ|(X\U), X \ U) > M which provesCarr(φ) is
coarse. �

Remark 3 If one drops the assumption ofφ being of finite multiplicity, then the carrier family may notbe
coarse: Take a cloudCn of 2n + 1 points at location2n with mutual distances equal1. For eachx ∈ X
defineφx as taking value0 at x and all points not in its cloud. For pointsy ∈ Cloud(x) \ {x} we put
φx(y) = 2−n.

Corollary 5 If U = {Us}s∈S is a cover ofX of finite multiplicity, then the following conditions are
equivalent:
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1. U is coarse.

2. There is a continuous slowly oscillating partition of unity φ = {φs}s∈S onX \ A for some bounded
subsetA of X such thatCarr(φs) ⊂ Us for eachs ∈ S.

3. There is a slowly oscillating partition of unityφ = {φs}s∈S onX \ A for some bounded subsetA of
X such thatCarr(φs) ⊂ Us for eachs ∈ S.

PROOF. 1 =⇒ 2. Definef(x) =
∑

s∈S dist(x, X \ Us) andfs(x) = dist(x, X \ Us). Notice thatf
is a coarsely proper Lipschitz function and Corollary 4 saysthat{fs/f}s∈S is an equi-slowly oscillating
partition of unity onX \ A, whereA is the zero-set off . By Lemma 10 it is a slowly oscillating partition
of unity.

2 =⇒ 3 is obvious.
3 =⇒ 1 follows from Lemma 11. �

8 Coarse dimension and Higson corona

Given a metric spaceX by theHigson compactificationof X we mean a compact Hausdorff spaceh(X)
containingX as a dense subset with the property that a bounded continuousfunctionf : X → R+ extends
overh(X) if and only if f is slowly oscillating. If the metric onX is proper andX is locally compact, then
X is open inh(X) and the remainderh(X) \ X is called theHigson coronaof X and denoted byν(X).

A metric spaceX is calledδ-disjoint for someδ > 0 if dX(x, y) ≥ δ for all x 6= y.

Theorem 3 If X is a δ-disjoint metric space for someδ > 0, then its coarse dimension equals the dimen-
sion of the Higson compactification ofX .

PROOF. Supposedim coa
rse (X) = m < ∞. Given a finite open coverU = {Us}s∈S of the Higson

compactificationh(X) of X we find a partition of unityf = {fs}s∈S onh(X) such thatcl(f−1
s (0, 1]) ⊂ Us

for eachs ∈ S (see [7]). Asf |X is slowly oscillating (see Lemma 10), the family{f−1
s (0, 1] ∩ X}s∈S is

coarse inX (see Lemma 11). By Corollary 5 there is a slowly oscillating partition of unityg = {gs}s∈S

on X whose multiplicity is at mostm + 1 andg−1
s (0, 1] ⊂ f−1

s (0, 1] ∩ X for eachs ∈ S. Extend each
gs overh(X) to ks : h(X) → [0, 1]. The resulting familyk = {ks}s∈S is a partition of unity onh(X). It
remains to showm(k) ≤ m + 1 andk−1

s (0, 1] ⊂ Us for eachs ∈ S. If there is a pointx ∈ h(X) \ X
such thatks(x) > 0 for all s ∈ T , T containing at leastm + 2 elements, then the same would be true
for some neighborhoodUx of x in h(X). SinceUx ∩ X 6= ∅ one arrives at a contradiction with the fact
thatm(g) ≤ m + 1. If k−1

s (0, 1] is not a subset ofUs for somes ∈ S, then there isx ∈ h(X) \ X so
thatx ∈ k−1

s (0, 1] \ cl(f−1
s (0, 1]). That means there is a neighborhoodUx of x in h(X) on whichfs is

identically0. Hencegs|(Ux\X) ≡ 0 implying ks(x) = 0, a contradiction. �

Corollary 6 If X is a proper metric space, then the dimension of its Higson corona equals the coarse
dimension ofX .

PROOF. Consider a maximal1-disjoint subsetA of X . Noticedim coa
rse (A) = dim coa

rse (X) and Higson
coronasν(A) andν(X) for bothA andX are identical. SinceA is 1-disjoint,dim coa

rse (A) = dim(h(A)) =
dim(ν(A)) = dim(ν(X)). �

Corollary 7 If X = A ∪B, then the coarse dimension ofX equals maximum of the coarse dimensions of
A andB.

PROOF. Let m = max
(

dim coa
rse (A), dim coa

rse (B)
)

. By Corollary 1,dim coa
rse (X) ≥ m. By switching

to maximal1-disjoint subsets ofA andB, respectively, we reduce the general case to that ofX being
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1-disjoint. Consider the Higson compactificationh(X) of X . Notice cl(A) is the Higson compactifi-
cation ofA as any slowly oscillating and bounded functionf : A → R+ extends overX to a bounded
and slowly oscillating function. The same is true forB. Sinceh(X) = cl(A) ∪ cl(B), dim(h(X)) =
max

(

dim(cl(A)
)

, dim(cl(B))) = max
(

dim coa
rse (A), dim coa

rse (B)
)

= m. �

We plan to extend Corollary 7 to other dimensions as well. Ourstrategy is to show finiteness of the
appropriate dimension ofX first, then use Corollary 7 as well as the fact that all other dimensions are equal
to the coarse dimension ofX once they are finite (see Corollary 3 and Theorem 2).

Corollary 8 If X = A ∪ B, then the asymptotic dimension ofX equals maximum of the asymptotic
dimensions ofA andB.

PROOF. Let m = max
(

asdim(A), asdim(B)
)

. Obviouslyasdim(X) ≥ m. GivenM > 0 find uni-
formly bounded familyUA in A coveringA and being the union ofm + 1 families, each of them3M -
disjoint. Similarly, find uniformly bounded and3M -disjoint family UB in B coveringB and being the
union ofm + 1 families, each of them3M -disjoint. ConsiderU = UA ∪ UB and letV = {B(U, M)}U∈U .
NoticeV is uniformly bounded inX , is of multiplicity at most2(m + 1), andL(V , X) ≥ M . Therefore
asdim(X) ≤ 2m + 1 and (see Theorem 2)asdim(X) = dim coa

rse (X) = m. �

Remark 4 Corollary 8 was proved in[1] (see the Finite Union Theorem there) forX being a proper metric
space by using totally different methods.

Corollary 9 If X = A ∪ B, then the major coarse dimension ofX equals maximum of the major coarse
dimensions ofA andB.

PROOF. Let m = max
(

dim coa
rse (A), dim coa

rse (B)
)

. By Corollary 1,dim COA
RSE (X) ≥ m. Given a coarse

family U in X put f(x) = LU (x). If f(x) = ∞ for someX , thenU has a coarse refinement of order at
most2 (see Lemma 2). Assumef(x) < ∞ for all x ∈ X . Pick a coarse refinement{Va}a∈A of multiplicity
at mostm + 1 of the family{B(a, f(a)/2)}a∈A. Pick a coarse refinement{Vb}b∈B of multiplicity at most
m + 1 of the family {B(b, f(b)/2)}b∈B. If Va 6= ∅ definee(Va) = {x ∈ B

(

a, f(a)
)

| dist(x, Va) <
dist(x, A \ Va}. Observe

⋂

a∈T e(Va) 6= ∅ implies
⋂

a∈T Va 6= ∅ for every finite subsetT of S. Indeed,
supposex ∈

⋂

a∈T e(Va) and findδ > 0 such thatdist(x, Va) + δ < dist(x, A \ Va} for all a ∈ T .
Pick y ∈ A so thatdist(x, A) + δ > d(x, y). If y ∈ A \ Va for somea ∈ T , thendist(x, A) + δ ≤
dist(x, Va) + δ < dist(x, A \ Va) ≤ d(x, y), a contradiction. Therefore the multiplicity of{e(Va)}a∈A

is at mostm + 1. Do the same procedure forB and produce{e(Vb)}b∈B. If x ∈ a, M < f(a) and
B(x, M) ∩ A ⊂ Va, thenB(x, M/2) ⊂ e(Va). Therefore{e(Va)}a∈A ∪ {e(Vb)}b∈B is coarse inX ,
refinesU , and is of multiplicity at most2(m + 1). Thusdim COA

RSE (X) ≤ 2m + 1 and (see Corollary 3)
dim COA

RSE (X) = dim coa
rse (X) = m. �

Corollary 10 If X = A ∪ B, then the minor asymptotic dimension ofX equals maximum of the minor
asymptotic dimensions ofA andB.

PROOF. Let m = max
(

ad(A), ad(B)
)

. Obviouslyad(X) ≥ m. SupposeM > 0 and findN > 0
such thatLm(U , A) > 2M for all finite coversU of A satisfyingL(U , A) > N . We can use the sameN
and claimLm(U , B) > 2M for all finite coversU of B satisfyingL(U , B) > N . Given a finite family
U = {Us}s∈S in X satisfyingL(U , X) > M + N , consider{B(Us,−M)}s∈S and shrink it onA to
a family {Vs}s∈S of multiplicity at mostm + 1 and Lebesque number at least2M . Do the same forB
and shrink{B(Us,−M)}s∈S on B to a family {Ws}s∈S of multiplicity at mostm + 1 and Lebesque
number at least2M . If Vs 6= ∅ definee(Vs) = { x ∈ Us | dist(x, Vs) < dist(x, A \ Vs }. Observe
⋂

s∈T e(Vs) 6= ∅ implies
⋂

s∈T Vs 6= ∅ for every finite subsetT of S (see the proof of Corollary 9).
Therefore the multiplicity of{e(Vs)}s∈S is at mostm + 1. Do the same procedure forB and produce
{e(Ws)}s∈S . Obviously{e(Vs)}s∈S ∪ {e(Vs)}s∈S refinesU and is of multiplicity at most2(m + 1). If
we show its Lebesque number is at leastM we will demonstratead(X) ≤ 2m + 1 and (see Theorem 2)
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ad(X) = dim coa
rse (X) = m. Supposex ∈ X . Without loss of generality we may assumex ∈ B. There is

s ∈ S such thatB(x, 2M) ∩ B ⊂ Ws. HenceB(x, M) ⊂ B(Ws, M) ⊂ Us and, since anyy ∈ B(x, M)
satisfiesdist(y, Ws) ≤ d(y, x) < M < dist(y, B \ Ws), we gety ∈ e(Ws) which completes the proof.

�

9 Coarse dimension and absolute extensors

In [2, Remark 2 on p. 1097] Dranishnikov pointed out thatR+ is not an absolute extensor in the category
of proper metric spaces and coarse functions. He characterized proper metric spaces of coarse dimension at
mostn as those for whichRn+1 is an absolute extensor in the category of proper approximately Lipschitz
functions (Definition 4 on p. 1105 and Theorem 6.6 on p. 1111).That still left the door open to the possibi-
lity of characterizing coarse dimension viaR

n+1 being an absolute extensor in the proper coarse category.
The following result clarifies that issue in negative.

Theorem 4 For a metric spaceX the following conditions are equivalent:

1. The coarse dimension ofX is at most0.

2. Y is an absolute extensor ofX in the proper coarse category for allY .

3. R+ is an absolute extensor ofX in the proper coarse category.

PROOF. 1 =⇒ 2. It suffices to show that any unbounded subsetA of X is a coarsely proper and coarse
retract ofX . Pickx0 ∈ X . Define by induction onn an increasing sequenceMn of natural numbers and
coversU n of X satisfying the following properties:

a. M1 = 1.

b. U n is Mn-disjoint, the diameters of its elements are smaller thanMn+1, andL(U n, X) > Mn.

For eachU ∈ Un so thatU ∩A 6= ∅, pickxU ∈ U ∩A satisfyingdX(xU , x0) > sup{ dX(x, x0) | x ∈
U ∩ A } − 1/n.

By induction onn define a sequence of subsetsAn of X and a sequence of functionsrn : An → A as
follows:

i. A1 = A andr1 = idA.

ii. An+1 is the union of those elements ofU n+1 that intersectA.

iii. If x ∈ U \ An andU ∩ A 6= ∅ for someU ∈ U n+1, thenrn+1(x) = xU .

NoticeX =
⋃∞

n=1 An and letr : X → A be obtained by pasting allrn. Observe thatx ∈ U ∈ U k and
U ∩ A 6= ∅ impliesr(x) ∈ U . Indeed, for eachn there is a unique elementUn

x ∈ U n containingx and
U i

x ⊂ U j
x if i < j. Find the smallest numberm so thatx ∈ Am. In that caser(x) ∈ Um

x by definition and
k must be at leastm soUm

x ⊂ Uk
x = U .

We will show thatr is coarse by provingdX(x, y) < Mn impliesdX

(

r(x), r(y)
)

≤ Mn+2. Indeed, if
dX(x, y) < Mn, then one of the following cases occurs:

Case 1.U ∩ An = ∅, whereU is the unique element ofU n+1 containing bothxn andyn.
Case 2.U ∩ An 6= ∅, whereU is the unique element ofU n+1 containing bothxn andyn.
In Case 1 the valuesr(x) andr(y) are identical. In Case 2 bothr(x) andr(y) belong toU ∩ A and the

setU ∩ A is of diameter at mostMn+2, sodX

(

r(x), r(y)
)

≤ Mn+2 holds.
If r is not coarsely proper, then there is a sequencexn → ∞ such thatr(xn) is bounded. Obviously,

xn /∈ A for almost alln. Consider an elementU ∈ Uk containing all ofr(xn). The way functionsrm were
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defined implies that there is a sequence of elementsUn ∈ Uα(n) with α(n) → ∞ and allUn containingU ,
such thatUn ∩ A is of almost the same diameter asU ∩ A. That contradictsA being unbounded.

2 =⇒ 3 is obvious.
3 =⇒ 1. Supposedim coa

rse (X) > 0. By Proposition 16 there exists a numberM > 0 and a coarsely
proper sequence{(xn, yn)}∞n=1 of pairs of points inX such thatdist(xn, yn) → ∞ and the pointsxn and
yn can beM -scale connected inX \ B(x0, n) by long chain of lengthLn so thatLn → ∞ asn → ∞.
We may assumedX(xn+j , xn) > n anddX(yn+j , yn) > n for all n, j ≥ 1. Let B = {xn} ∪ {yn}.
Definef : B → R+ by sendingxn to n andyn to n + n · Ln. Noticef is coarsely proper and coarse.
Supposef extends to a coarse functiong : X → R+. Find K > 0 such thatdX(x, y) ≤ M implies
d
(

f(x), f(y)
)

≤ K. Sincexn andyn can be connected by a chain ofLn points, with consecutive points
being separated by at mostM , Ln ·n + n−n = d

(

f(xn), f(yn)
)

≤ Ln ·K which leads to a contradiction
for n > K. �

10 Open problems

In [2, Problem 1 on p. 1126] it is asked if the asymptotic dimension of a proper metric spaceX equals the
covering dimension of its Higson corona. Here is our versionof that problem.

Problem 1 Is there a metric spaceX of infinite asymptotic dimension and finite coarse dimension?

Problem 2 Is there a metric spaceX of infinite major coarse dimension and finite coarse dimension?

Definition 20 A metric spaceX is of bounded geometryif for everyM > 0 there is a uniformly bounded
coverU of X of finite multiplicity and the Lebesque number at leastM .

Definition 21 ([2, p. 1005]) SupposeX is a metric space of bounded geometry. GivenM > 0 let
d(M) = m(U) − 1, whereU is a uniformly bounded coverU of minimal multiplicity among those of
the Lebesque number at leastM . X is of slow dimension growthif limM→∞ d(M)/M = 0.

Just as in [2, Problem 6 on p. 1126] one can ask variants of problems 1 and 2 for spaces of bounded
geometry or slow dimension growth.

Problem 3 SupposeX is of slow dimension growth and finite coarse dimension. Is asymptotic dimension
of X finite?

Problem 4 SupposeX is of slow dimension growth and finite coarse dimension. Is the major coarse
dimension ofX finite?

The above problems remain open for minor asymptotic dimension. All of the above problems are of
interest in case ofX being a finitely generated group with word metric, especially CAT(0) groups.

Problem 5 It is stated in[4] thatasdim(X×Y ) ≤ asdim(X)+asdim(Y ). Are the corresponding results
true for other dimensions?
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