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Coarse dimensions and partitions of unity

N. Brodskiy and J. Dydak

Abstract Gromov [11] and DranishnikoJ 2] introduced asymptotic aiwdirse dimensions of proper
metric spaces via quite different ways. We define coarse symiptotic dimension of all metric spaces in
a unified manner and we investigate relationships betweam tieneralizing results of Dranishnikav [2]
and Dranishnikov-Keesling-UspiensKij [5].

Dimensiones a gran escala y particiones de la unidad

Resumen. Gromov [11] y Dranishnikov[[R2] han introducido dimensioresintoticas y a gran escala
para espacios métricos propios de varias formas difeseN@sotros definimos dimensiones a gran escala
y asintoticas para todos los espacios métricos de modicanhd e investigamos las relaciones entre ellas,
generalizando resultados de Dranishnikdv [2] y DranistmiKeesling-Uspienskij15].

1 Introduction

There are three concepts of dimension associated withntaria the coarse category of proper metric
spaces. The original one, the asymptotic dimension of Grofiidl], and dimensionasdim*(X) and
dim®(X) introduced by DranishnikoV[2]. All three dimensions ardided in seemingly different ways:

1. The asymptotic dimension of Gromov (séel[11][dr [2, Deifimis 1-2 on p. 1103]) is the smallest
integern such that for evenM > 0 there is a uniformly bounded family of Lebesque number at
leastM and multiplicity (or order) at most + 1.

2. The asymptotic dimensiamdim™(X) of Dranishnikov (se€]2, Def. 3 on p. 1104]) is the smallest
integern such that for every proper functigh: X — R, there is a contracting map: X — K to
ann-dimensional asymptotic polyhedron such that for eAth- 0 there is a compact subsgtof X
with the property that—! (B(¢(x), M)) C B(z, f(x)) forallz € X \ C.

3. The coarse dimensiatim®(X) of Dranishnikov (se€12, Def. 4 on p. 1105]) is the smallestger
n such thatR™*+! is an absolute extensor df in the category of proper asymptotically Lipschitz
functions. That dimension coincides with the dimensiorhefidigson corona(X) of X (seeinl2,
Theorem 6.6 on p. 1111]).

One of the main motivations behind the research in asyngptitiension is the result of Yu (sele [16]
and [17]) that the Novikov Conjecture holds for groups oftBrasymptotic dimension.
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In this paper we work in the coarse category of all metric sgamnd we devise a unified way of defining
five dimensionscoarse dimensiodim (X)), major coarse dimensiodim 92 (X ), asymptotic dimen-

rse

sionasdim(X ), minor asymptotic dimensianl(X ), andlarge scale dimensiodim 25 (X).

In case of proper metric spaces, three of them coincide Witlabove dimensions. Namedym S92 (X)
= dim*(X), dim £22(X) = dim‘(X), andasdim(X) coincides with Gromov’s asymptotic dimension. The
fourth one, the minor asymptotic dimension, is a variant afr@ov’s dimension. The large scale dimension
is always equal to the coarse dimension and the reason wataseucing it is to simplify proofs of the
relations between the three basic dimensions which we donmueh simpler way than as described in

Dranishnikov’s papei]2]. The main relations between disiens are as follows:

1. There are two strands of inequalities:

asdim(X) > dim 92 (X) > dim £9*(X) and asdim(X) > ad(X) > dim {9*(X),

2. In each strand (for unbounded spadék finiteness of a larger dimension implies its equality with
all smaller dimensions in the strand.

We do not know of any unbounded spa¥esuch that a larger dimension in a strand is infinite and a
smaller dimension is finite.

Our fundamental concept is that of a coarse family and wewiothe well-established route of defining
the covering dimension by refining covers with covers of aspribed multiplicity. In classical dimension
theory one deals with two cases: finite covers and infiniteecsavThere, for paracompact spaces, the two
concepts coincide. In the case of coarse covers we get tweeptsof coarse dimension whose equality
remains unresolved.

A finite family ¢/ of subsets ofX is coarse if and only if there is a slowly oscillating paditiof unity
fonX \ B for some bounded subsg8tof X whose carrier€arr(f) refineld. That explains why, in the
case of a proper metric spadg its coarse dimension equals the covering dimension of fhyedt corona
of X.

Our basic strategy is to associate natural functions wifeaib and declare those objects to be coarse,
asymptotic, or large scale if the function is coarsely propegfunction f is coarsely properf f(E,) — oo
wheneverF,, — oo. Elementd,, related to objects could be points in a metric space, bousdeskts in a
metric space, or covers of a metric space (in which caseglvere to infinity is measured by the size of the
Lebesque number). I1][2, p. 1089] coarsely proper functivese defined as thosg: X — Y such that
f~1(A) is bounded whenevet is bounded irt". Notice that our definition generalizes the one frain [2].

2 Preliminaries

Given a subsetl # () of a metric spaceéX the most basic function ihe distance functiors: X — R,:
da(z) = dist(z, A).

Definition 1 Given a subsefl of a metric spacéX, dx ) the ballB(A, M) is defined to be the sé¢tz €
X | dist(z, A) < M } if M > 0, itis defined to be the s¢tr € X | dist(z, X \ A) > —M } if M < 0,
and itis simplyA if M = 0.

The distance function leads to the first concept of divergeadnfinity: =, — oo if dx (z,,z0) — o0
for some (and hence for alt)y € X. Howeverdist(z, A) is a function of two arguments and we can use
the second one to define divergence to infinity for boundedetsinfX . Here is a more general concept.

Definition 2 A family/ of bounded subsets &f is calledcoarsely propeif the functionlU' — dy (x¢) is
coarsely proper for some (and hence for all) € X. Herel{ is considered as a subspace of all bounded
subsets oX with the Hausdorff metric.
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Notice that a sequended,,} of bounded subsets df containing points:,, € A,, so thatr,, — oo is
coarsely proper if and only if every bounded subseXointersects at most finitely many elements of the
sequence. In that case we wrilg — oo and that form of divergence to infinity is of most interest & u

Lemmal If U is a coarsely proper cover ok, then every selection functiaf: X — U/ (that means
x € ¢(x)) is coarsely proper.

PROOE Supposer,, — oo andz,, € U,, € U. Clearly,U,, — oo in the Hausdorff metric. Pick, € X.
Sincedy, (xg) — oo, every bounded subset &f intersects at most finitely many elements of the sequence
{U,} and any selection functiopis coarsely proper. B

Definition 3 Given a familyl/ in X, the local Lebesque numbéy,(z) € Ry U o is defined as the
supremum oflist(xz, X \ U), U € U. If U = X for someU € U it is defined to be infinity.

Notice that eithell;; = oo at all points or it is a natural Lipschitz function assocthteith Z/. More
precisely| Ly () — Lu(y)| < dx (=, y).

Definition 4 ThelLebesque numbet (U, A) isinf{ Ly(z) | z € A}.

Definition 5 A family of subsets/ of a metric spaceX is called coarsef L, is coarsely proper (as a
function fromX to R U oo).

An alternative way to define coarse families is to requifé&/, A) — co asA — co. Yet another way is
to state thalL (U, X \ B(xo,t)) — oo ast — cc.

Proposition 1
1. Afamilyld = {A} consisting of one subsetof X is coarse if and only ifX \ A is bounded.

2. A familyY = {X;, X5} consisting of two subsets &f is coarse if and only ifix restricted to
(X \ X1) x (X \ X2) is coarsely proper.

3. Afamilyd = {X;, X»,..., X, } consisting of finitely many subsetsXfis coarse if and only if the
functiondy (z) := >, dist(z, X \ X;) is coarsely proper.

Proor 1. If X \ A is bounded, thery,(z) > dist(z, X \ A) and L, is coarsely proper. I \ A is
unbounded, thed;, () = 0 atallx € X \ A andLy, is not coarsely proper.

2. Supposé/ = {X;, X,} is coarse and,, — oo, y, — oo, for somez,, € X \ X1, y, € X \ Xo.
Notice Ly (2r,) < dx(Tn,Yn), SOdx (Xn, Yn) — 0.

If Y = {X1, X2} is not coarse, then there is a sequengce~ oo with Ly (z,) bounded byl . We can
producer,, € X \ X; andy,, € X \ X5 so thatdx (z,,,x,) < M + 1 anddx (z,,yn) < M + 1 for all n.
Now, dx (zn, yn) < 2M + 2, a contradiction.

3. Noticedy (x) > Ly (z) andm - Ly (z) > dy(z). B

Definition 6 Given a functionf: X — Y of metric spaces, itkebesque number transféf : R, —
R, Uoco is the supremum of all functioms R, — R Uoco suchthatl(i/,Y) > timpliesL(f (i), X) >
«a(t) for all familiesi/ of subsets o ".

Definition 7 A functionf: X — Y of metric spaces isoarseif the Lebesque number transfé&f is
coarsely proper.

An alternative definition of coarse functions is to requive functiori/ — L(f~*(i), X ) to be coarsely
proper on the set of covers ®f.
Let us show that our definition of coarse functions coincidéh that of Roe[[14].
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Proposition 2 A functionf: X — Y is coarse if and only if for everi® > 0 there isM > 0 such that
dx(z,y) < Rimpliesdy (f(z), f(y)) < M forall z,y € X.

PrRooOF Notice thatifA/ > 0 andN > 0 are numbers such thak (z, y) < M impliesdy (f(x), f(y)) <
N, thenL/(N) > M. Thereforef being coarse in the sense of Roe impligsbeing coarsely proper.

Conversely, ifL/(N) > M, then consider the covéf = {B(z, N)}.cy whose Lebesque number is
clearly atleastV. If dx (x,y) < M, thenthereis sothatr,y € f~(B(z,N)). Hencedy (f(x), f(y)) <
2- N andf is coarse. &

Dranishnikov [2, p. 1088] definedsymptotically Lipschitz functions: X — Y as those for which
there are constanf&/ > 0 and A such thatly (f(z), f(y)) < M - dx(z,y) + Aforall z,y € X. Letus
relate this concept to the Lebesque number transfer.

Proposition 3 A functionf: X — Y is asymptotically Lipschitz if and only if there is a lineainttion
t —m-t+bsothatn > 0andL/(t) > m-t+bforall t.

PROOF  Suppose there are constaifs> 0 and A such thatly (f(x), f(y)) < M -dx(z,y) + Aforall

x,y € X. Given a covetf of Y with L(U,Y) > ¢ and givenr € X, the ballB(z, (t — A — §)/M) is

mapped byf into the ballB(f(x),t — ¢) which is contained in an element&ffor all § > 0. That shows
the Lebesque number ¢f-1 (i) to be at leastt — A)/M. Conversely, ifLf (t) > m -t + b for all ¢ and
m > 0, then we claimdy (f(z), f(y)) < 2-dx(z,y)/m + 2(1 — b)/m. Indeed, putix(z,y) = s and
considerthe covéd = {B(z, (s+1—b)/m)}.cy Whose Lebesque number is clearly at I§ast1—b) /m.

Thereisz so thatr, y € f~1(B(z, (s + 1 — b)/m)). Hencedy (f(x), f(y)) < 2-(s+1—b)/mandf is

asymptotically Lipschitz. B

Proposition 4 Given a functionf: X — Y of metric spaces the following conditions are equivalent:

1. f sends bounded subsets¥to bounded subsets af and f ~! (1/) is coarse for every coarse family
uiny.

2. fis coarse and coarsely proper.

PrROOF 1= 2. Given a bounded subsétof Y the family{Y \ A} is coarse (see Propositibh 1). Since
{f~Y(Y\A)}iscoarseangd~}(Y'\ 4) = X\ f~1(A), f~1(A) must be bounded anflis coarsely proper.
If f is not coarse, we find sequences, y, € X so thatdy (f(z,), f(yn)) > n for eachn but
dx(zn,yn) < M for all n. Sincef sends bounded subsets &f to bounded subsets a&f, we may
assumer,, — oo, hencey, — oco. Put4A = {z,} and B = {y,}. Using Propositiof]1 we see that
U={Y\f(A),Y\f(B)}isacoarse family iry". Sincef~*(l{) is coarse, the family = {X\ A, X\ B},
to whichi/{ is a shrinking, is coarse as well. That however contradiotp®sitior].
2 — 1. Obviously, coarse functions: X — Y send bounded subsets &f to bounded subsets
of Y. PutV = f~Y(U) for some coarse family/ in Y. To find pointsz € X such thatLy(z) > t
we finds > 0 so thatL/(s) > t and we findu > 0 such thatZy(y) > s fory € Y \ B(yo,u). Put
W =UU{B(yo,u + s)}. Note LOW,Y) > s. SinceL(f~1(W), X) > t, pointsz lying outside of the
bounded sef ~'(B(yo,u + s)) satisfyLy(z) >¢. R

In the end of this section let us demonstrate the usefulrfeks concept of a coarse family by rewording
notions from [6].

In [Bl section 5.2] the concept @isymptotic neighborhoodd” of a subsetd of X is introduced by
requiringlim, . dist(A \ B(xo,7), X \ W) = oo for some (and hence for alfyy € X.

Proposition 5 W is an asymptotic neighborhood dfif and only if the pair{ X \ A, W} is coarse.

PrROOF  According to part 2 of Propositidd 1 the p4iX \ A, W} is coarse if and only iflx restricted to
A x (X \ W) is coarsely proper. That can be easily seen as equivalent to

lim dist(A4 \ B(zg,7), X \ W) =0

T—00



Coarse dimensions and patrtitions of unity

for some (and hence forally € X. B

In [6, section 5.2] (see alsbl[3]) the conceptasfymptotically disjoint subset$ and B of X is intro-
duced by requirindim, ., dist(A \ B(zo,7), B \ B(zg,r)) = oo for some (and hence for alj) € X.

Proposition 6 A and B are asymptotically disjoint if and only if the pafiX \ A, X \ B} is coarse.
PROOF  Apply part 2 of Propositiofl1. ®

Also notice that the concept of an asymptotic separatafdEfse section 5.2) can be introduced without
referring to the Higson corona.

Definition 8 A subsetC of X is anasymptotic separatdretween asymptotically disjoint subsetsand
B if there are asymptotic neighborhootl§, of A and Wp of B such thatC = X \ (W4 U Wg) and
WanWg =0.

3 Multiplicity and higher Lebesque numbers

Definition 9  Given a familyi{ of subsets oK we definghe multiplicity functionm;,: X — Z U oo by
settingmy,(x) to be equal to the number of elementZbtontainingz. Theglobal multiplicity m(U, A)
is the supremum ofi(x), x € A.

By acoarse refinemeny? of a coarse family/ we mean a coarse family such that every elemeémf
V is contained in an elemebt of /. V is called ashrinkingof I/ if they are indexed by the same seand
Vs C Ugsforall s € S. If Vis a coarse refinement of indexed by a different séf, then one can create a
shrinkingV’ of U as follows: find a functio: 7" — S satisfyingV; C Uy, forallt € T. DefineV; as
U{ Vi | s = ¢(t) }. Notice thaty’ has multiplicity at most that of and is a coarse shrinking of.

Given a family¢ = {¢s : X — R, }ses of functions itscarrier family Carr(¢) is the family
{¢51(0,00)}ses. Themultiplicity m () of ¢ is defined as the multiplicity of its carrier family and its
Lebesque numbdi(¢) is defined as the Lebesque number of its carrier family.

Lemma2 If U = {Us}ses is afamily inX such thatly,(z¢) = oo for somer, € X, then it has a coarse
refinemend’ of multiplicity at mose.

PROOF PutV,={ze€ X |(n—1)?<d(x,z0) < (n+1)?}forn>1. N

Lemma3 If U = {Us}ses is a family in X of multiplicity at mostn + 1, then it can be refined by
V= Visuch thatly (z) > Ly(x)/(2n + 2) for eachz € X and eachV’ consists of disjoint sets.

PrRooOF Definefs(z) = dist(z, X \ V5). For each finite sef’ of S define
Wr={z€X |min{ fi(z) [t €T} >sup{ fo(z)|s€S\T}}.

Notice W = 0 if T contains at least + 2 elements. Also, notice thdl/r N Wr = 0 if both T
and F' are different but contain the same number of elements. Letstimmate the Lebesque number of
W = {Wr}rcs. Givenz € X arrange all non-zero valugs(x) from the largest to the smallest. Addt
the end and look at gaps between those values. The largebenisvat leasf;,(z), there are at most+ 1
gaps, so one of themis at leds}(z)/(n + 1). Thatimplies the balB(x, Ly, (x)/(2n + 2)) is contained in
oneWr (T consists of alt to the left of the gap). Defin®; as{Wr}, all T containing exactly elements.

|

Lemmad If U = {Us}ses is a coarse family inX, then it has a coarse refinemeyitthat is coarsely
proper. Moreover, ifif is of finite multiplicity, then we may requitéto be of finite multiplicity as well.
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PROOR  LetV = {Vim}(s,myesxn: WhereVs,, = {x € U, | 2™ < d(z,x9) < 2™*2}. NoticeV is
coarse of multiplicity at most - m(i). Also, it consists of bounded sets so that for any sequepce oo
the conditionsey, € Vi) mk) iMPlY Vi) my — oo. M

Proposition 7 If U = {U,}scs is a coarse family inX, then it has a coarse shrinking = {V}ses
such that for anyM > 0 there is a bounded subsdty; of X with the property thalB(x, M) NV # 0
impliesB(z, M) C Us providedz € X \ Ayy.

PROOF Pickzy € X and definef(z) = min(d(z,z0)/2, Ly(x)/2). Notice f is a coarsely proper
function of Lipschitz constarit/2. For eachr € X pick s(x) € S so thatB(z, f(z)) C Uy DefineV
as the union of those balB(z, f(x)/2) so thats = s(z). It suffices to observe tha(z, M) NV, # 0
andM < f(x)/3 implies B(z, M) C U,. Indeed,B(y, f(y)) C U, for somey € B(z,M). Since
flx) = fly) < d(z,y)/2 < M/2, one hasf(y) > f(z) — M/2 > 3M — M/2 > 2M andB(z, M) C
By, f(y) CU,. W

Lemmab5 If U is a coarse family inX that is coarsely proper, then there is a coarsely proper fiomc
f: U — R4 such that the familf B(U, — f(U)) }veu is coarse.

Proor Definef(U) = inf{ Ly,(z)/4 | € U}. Noticef is a coarsely proper function. Piekz) € S so
that B(z, Lyy(x)/2) C Ugz). f(Us(zy) < Lu(x)/4 whichimpliesB(z, Ly/(x)/4) C B(Us(a), —f (Us(z)))-
Thus{B(U,—f(U))}ueu is coarse. B

In the large scale geometry one should think of bounded $sib$&” as points. Here is a generalization
of the Lebesque number.

Definition 10 Letn > 0. Supposé/ is a family inX and A is a bounded subset &f. Then-th Lebesque
numberL™ (U, A) is the supremum afe [0, oo] such thatf| 4 has a refinement of multiplicity at most- 1
and Lebesque number at least

Notice such supremum exists as the coverdotonsisting of points is of Lebesque numkeand
multiplicity 1.

Observe thal.” (U, A), n > 0, form an increasing sequence of numbers boundeB(b# A). If U] .4
is of finite order, then they eventually stabilize and areadq@L (U] 4, A).

Let us point out that Sperner's Lemma can be used to estimighehlLebesque numbers as follows:
Consider a 2-simpleXA with vertices labeled, 1, and2. Letl{ be the cover oA by starsU;, i = 0, 1,
2, of its vertices. Consider a subdivisidnof A with mesh/ (in this case it coincides with the longest
edge in the subdivision). LetY = A be the set of vertices df. Suppose&’ = {V;, V1, V2} is a shrinking
of U| 4. Obviously, there is a shrinking of multiplicity. However, if we requesy to be of large Lebesque
number, we run into problems. Namely! (i, A) < M. Indeed, ifL(V) > M, we assign to each vertex
of L number; such thatB(v, M) C V;. We are in the situation of the classical Sperner’'s Lemmatiogs
on the edges oA must be labeled with a number of one of the vertices of thaeedderefore one has a
simplex in L whose vertices were assigned all three numbets 2. SinceL(V) > M, the three vertices
belong tol, N Vi N V4 and multiplicity of V is 3. ThusL(V, A) < M.

We will use the observation above in the casébfscale connected spaces.

Definition 11 Supposé/ is a positive number. A metric spadeis called M -scale connectedlfor every
two pointsz, y € X there is a chain of points = x4, z2, ..., 2 = y such thatdx (z;, z;+1) < M for all
1< k.

Here is an application of Sperner’'s Lemma fesimplices.

Lemma 6 LetM be a positive number and be an) -scale connected metric spaceIff(U, X) > M
for some covet/ of X, thenl/ containsX as an element.
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PROOF Supposé’ is a refinement of/ of multiplicity at mostl and Lebesque number bigger than
If X is not an element of, then there are disjoint non-empty elemeVitsV; € V. Pick a chain of points
x = x1, X2, ..., 2 = ysuch thadx (z;,x;41) < M forall i < kandz € V4, y € V,. There is an index
j < ksuchthat; € V5 andz;4+1 ¢ V1. The ballB(z;41, M) is contained in an elemeft of V and
intersectd/;. Thereforel// = V1, a contradiction. W

4 The coarse category

Let us introduce the coarse category in a way that explainstwh coarse functions are considered equi-
valent if their distance is bounded.

Definition 12 Given a metric spaceX, dx) and its two subset¥’; and X, the notationX; < X, means
there is a positive numbé? such thatX is contained in the balB(X», R) = {z € X | dist(z, X2) < R}.

Proposition 8 A functionf: X — Y of metric spaces is coarse if and only if it preserves theti@ha<
of sets. ThusX; < X, impliesf(X;) < f(X3).

PROOFE Supposef: X — Y preserves the relatiort of sets but not in the sense of Roe. There-
fore, for someM > 0 there is a sequence of points, y, S0 thatdx (z,,y,) < M for eachn but

dy (f(xn), f(yn)) — o0 asn — oo. If f(A) is bounded for some subsequent®f x,,, then f(B) is
bounded for the corresponding subsequenag,dfn view of f(B) < f(A)) contradicting

dy (f(zn), f(yn)) = o0 asn — oo.

Thus f(z,) — oo and f(y,) — oo asn — oo. By induction define a subsequeneg of {x,},>1
and the corresponding subsequengeof {y,,},>1 with the property thatly (f(ax), f(b;)) > k and
dy (f(bk), f(a;)) > kforall k > i. Sinced = {an}tn>1 < B = {by}n>1 One hasf(4) < f(B), a
contradiction.

Supposef: X — Y is coarse in the sense of Roe alid < Xs in X. Pick R > 0 so thatX; C
B(X3, R) and choosé\/ > 0 satisfyingdy (f(z), f(y)) < M if dx(z,y) < Rforallz,y € X. Given
z € X picky € X, sothatdx (z,y) < R sincedy (f(z), f(y)) < M one getsf(X1) C B(f(X2), M).
Thusf(X1) < f(Xz). W

Notice thatX; < X, for every bounded subséf; of X providedXs # (). Also, X; < X5 implies
X, is bounded provideds is bounded. Thereforg(A) is bounded for every bounded subgebf X and
every coarse functiofi: X — Y.

Given a functionf: X — Y of metric spaces one can identify it with its graplf) ¢ X x Y.
Therefore it makes sense to ponder the meanidy ¢j < I'(g) for f,¢g: X — Y.

Proposition 9 Suppose, g: X — Y are functions of metric spaces.

1. If g is coarse, thed'(f) < I'(g) implies that the distancéist(f, g) betweenf andg is finite. In
particular, f is coarse.

2. If dist(f, g) is finite, therl'(f) < I'(g).

PROOF

1. Suppose the distandést( f, g) is not finite, so there are points, € X with dy (f(zy,), g(zn)) > n
foralln > 1. Let R > 0 be a number such th&(T'(g), R) containsI'(f). For eachn picky, € X
satisfyingdx (zn, yn) + dy (f(2n), 9(yn)) < R. ThereisM > 0 so thatdy (g(x»), g9(y»)) < M for all
n > 1asgis coarse. Nowdy (f(n), () < dy (f(20),9(yn)) + dy (9(yn), 9(xn)) < R+ M forall
n > 1, a contradiction.

2. NoticeI'(f) c B(T'(g),dist(f,g)). M
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Definition 13 Given a functionf: X — Y of metric spaces we define tfieward distance transfer
functiond;: Ry — R4 U oo as the infimum of all functions: Ry — R4 U oo with the property that
dx(z,y) < timpliesa(t) > dy (f(z), f(y)) forall z, y € X.

Thereverse distance transfemctiond’: R, — R, U oo as the infimum of all functions: R, —
R U oo with the property thatly (f(z), f(y)) < t impliesdx (z,y) < a(t) forall z, y € X.

Notice thatf is coarse if and only itl; mapsR, to R, i.e. the values of/; are finite. Also,f is
asymptotically Lipschitz if and only ifl; is bounded by a linear function.

Proposition 10 If f,g: X — Y are two coarsely proper coarse functions, then the follgnonditions
are equivalent:

1. dist(f, g) is finite.
2. For every coarse familyf = {U,}scs in Y the family{f~(Us) N g~ *(Us)}ses is coarse.

PROOF

1 = 2. Letdist(f,g) < M. Considery = {B(Us, —M)}scs. Itis a coarse family, sg~1(V) is
coarse by Propositidd 4. Notige™! (B(Us, —M)) C f~1(Us) N g~ (Us) forall s € S which is sufficient
to establish coarseness{of 1 (Us) N g~ (Us) }ses-

2 = 1. If dist(f, g) is not finite, there is a sequengg — oo such thatdy (f(zy), g(z,)) > n for
all n. PutA = {x,},>1. By PropositiorIL, the family/ = {Y"\ f(4),Y \ g(A)} is coarse. However,
{f71(Us) N g~ (Uy)}ses is not coarse as it refingsy \ A} which is not coarse. B

Our category is that of metric spaces and equivalence dagsmarse functions.
f~g ifdy(f(z),g(z))isabounded function of.

Generalizing the concept of < B for subsets of a given metric spa&e we sayY coarsely dominates
X (notation: X < ¢22Y) if there are coarse functions: X — Y andg: Y — X suchthatyo fisata

— Ise

finite distance fromd y.

Proposition 11 Suppose¢: X — Y andg: Y — X are coarse functions. if o f is at a finite distance
fromidx, then bothf: X — f(X)andg: f(X) — X are coarsely proper and o g is at finite distance
fromid ).

PROOF  Suppose:,, — oco. None of the subsequences{gf(z,)} can be bounded aswould send it to a
bounded subset of. Thusf(z,) — co. If f(z,) — oo, then none of subsequences{af, } is bounded.
Therefore none of the subsequencei@(ff(xn))} is bounded ang: f(X) — X is coarsely proper. If
dx (9(f(z)),xz) < M forallz € X, thendy (f(g(f(z))), f(z)) < ds(M) andf o g is at finite distance
fromidyx). W

Proposition 12 A surjective coarse functiofi: X — Y of metric spaces is a coarse isomorphism if and
only if the reverse distance transfer functiéhis finite.

PrROOFE If there is a coarse function: Y — X such thatg o f is at finite distancel/ to idx, then
d’(a) < dy(a) + 2M is finite.

Assumed/ is finite and pick a right inversg: ¥ — X. Noticedx (g(z), g(y)) < d’(dy (z,y)), sog
is coarse. B
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5 Coarse dimensions

Definition 14 Thecoarse dimensiodim ¢%(X) (respectivelythe major coarse dimensiehm $94 (X))

is the smallest integer such that any finite coarse family i (respectively, any coarse family i) has
a coarse refinement with multiplicity at most+ 1.

Remark 1 Using [2, Proposition 4.4 on p. 1104hotice that the words ‘uniformly bounded’ are erro-
neously inserted there) one can show that, for proper mepacesX, the major coarse dimension of
coincides with the asymptotic dimension of Dranishnikowiéw of Corollary§, our coarse dimension and
Dranishnikov coarse dimension are identical.

Given a coarse family/ = {Us}scs in a subsetd of X one can extend it to a coarse family/ =
{UsU (X \ A)}scs in X. Notice thaty N A is a coarse refinement df for any coarse refinemeimtof i/’
Therefore the following holds.

Corollary 1 If A is a subset of a metric spacé, then

dim 9 (A) < dim ;93 X) and dim §92 (A) < dim §92(X).

rse rse

Proposition 13  If Y coarsely dominateX’, then

dim S (X) < dim$H(Y)  and  dim g5 (X) < dim §8A(Y).
PROOFE The proof is almost the same for both dimensions. Suppb$e a coarse family inX and
f: X —Y,g:Y — X are coarse functions such that thereMis > 0 with dx (z,g(f(z))) < M
forall z € X. Replacing” by f(X) we may assum¢ is onto and bothf andg are coarsely proper
(see PropositioR—11). The idea of the proof is to refjné (/) by V and then refinegf ~1(V) to obtain

a desired refinementy of I/ of multiplicity at mostn + 1, wheren is the dimension ol’. Consider
U = {B(Us,—M)}cs. Itis acoarse family in\, so{g~! (B(U,, —M)) }scs is coarse and it has a coarse
shrinkingV = {V;}.cs of multiplicity at mostn+ 1. Suppose: € f~(V,)\ Us. Sincedx (z, g(f(z))) <
M, g(f(z)) ¢ B(Us,—M). However,f(z) € V, C g~'(B(U,,—M)), a contradiction. M

Definition 15 Theminor asymptotic dimensioad(X) (resp., theasymptotic dimensionsdim(X)) is
the smallest integet such that the functiotld — L™ (U, X) is coarsely proper on the space of finite covers
(resp., arbitrary covers)y/ of X.

Let us show that our definition of asymptotic dimension isiegjent to that of Gromov.

Proposition 14  asdim(X) < n if and only if for eachM > 0 there is a uniformly bounded family in
X of Lebesque number at leakf and multiplicity at most: + 1.

PROOF If asdim(X) < n as in Definitior’Ib and/ > 0, then there isV > 0 such that every covey of
X satisfyingL(V, X) > N has a refinemerdt of multiplicity at mostn + 1 and Lebesque number at least
M. PickV to be the cover o by balls of radiusV. The resultind/ is uniformly bounded.

Suppose for each/ > 0 there is a uniformly bounded family of multiplicity at mostn + 1 and
Lebesque number at leadf. Leta(M) be the supremum of diameters of elementé/df. Given any
family V of Lebesque number at leastM) + 1, U™ is a refinement of o which proves that the
functionV — L™(V, X) is coarsely proper on the space of all covgrsf X. W

Quite often it is useful to have even stronger conditionsdsga on covers appearing in Proposifioh 14.

Proposition 15 (Gromov)  If Gromov asymptotic dimensiasdim(X ) does not exceed, then for any
M, N > 0 there exist uniformly bounded familizg, 1 < i < n + 1, such that each(? is N-disjoint and
U =" U is of Lebesque number at leat.



N. Brodskiy and J. Dydak

PrROOE Consider a uniformly bounded family = {V;} <, of multiplicity at mostn + 1 and Lebesque
number at leas2(n + 1) - (M + N). LemmalB says it can be refined by = U?jll V¢ such that

Ly(z) > Ly(x)/(2n +2) > M + N for eachz € X and eachV? consists of disjoint sets. Defidé as
{BW,-N)}, WeVi. =R

Let us characterize spaces of asymptotic dimen@ion

Proposition 16  asdim(X) > 0if and only if there exista numbér > 0 and a coarsely proper sequence
{(zn,yn)}>2, of pairs of points inX such thatdist(z,,, y,) — oo and the points,, andy,, can beM-
scale connected iX \ B(zo,n).

PROOF If asdim(X) = 0, then for anyM > 0 there exists ar/-disjoint cover ofX by uniformly
bounded sets. Therefore, the distance between two poentsly which can bel/-scale connected iX is
uniformly bounded.

Supposesdim(X) > 0. Letn be a positive integer and, be the base pointiX. There isL > 0 such
that X does not have a uniformly bounded cover of Lebesque numiggebithanl. and multiplicity 1.
Define an equivalence relation df \ B(zg,n) by sayingz ~ y if and only if z andy can be2L-scale
connected inX \ B(zg,n). The cover ofX by the equivalence classes has Lebesque number atleast
therefore these classes are not uniformly bounded by thieelod L. Thus, there exist points,, andy,,
which can be2L-scale connected iX \ B(x,n) such thatlist(z,,, y.,) is arbitrarily large. B

Proposition 17  If Y coarsely dominateX’, thenasdim(X) < asdim(Y") andad(X) < ad(Y).

PROOFE The proof is almost the same for both dimensions. Suppb$e a coarse family inX and
f: X —-Y,g:Y — X are coarse functions such that there\is > 0 with dx (z, g(f(z))) < M for
all z € X. By replacingl” with f(X) we may assumg is onto and bottf andg are coarsely proper
(see Propositiohi11). The idea of the proof is to refjné (/) by V and then refing/ =1 (V) to obtain a
desired refinementy of & of multiplicity at mostn + 1, wheren is the dimension o. Take a coarsely
proper function: R, — R, with the property that any finite cover (respectively, amdniy cover){ of Y
satisfyingL(U,Y) > a(t) has a refinement of multiplicity at mostn + 1 so thatZL(V,Y") > t.

Givent > 0 pick 5(t) so thatLd(5(t)) > a(t) (see Definitiofid7). Assumg(U) > M + 5(t). Consider
U ={BUs,—M)}ses- LU’") > B(t), so{g~* (B(Us,—M))}ses is of Lebesque number at leastt)
and it has a shrinkiny = {V;} ;<5 of multiplicity at mostn+1 andL(V) > t. Suppose: € f~1(V,)\ Us.
Sincedx (z,9(f(z))) < M, g(f(z)) ¢ B(Us,—M). However,f(z) € V, C g~ (B(U,,—M)), a
contradiction. W

Theorem 1 The major coarse dimension &f does not exceed the asymptotic dimensioH of

PROOF  Supposesdim(X) =n < co andif = {U,}ses is a coarse family inX. By Lemmd3 we may
assumd/ is coarsely proper. By induction dnfind a sequence of numbekg, = 1, My, Mo, ..., and
coversy* = {Vitiery, k> 1, of multiplicity at mostn 4 1 and satisfying the following conditions:

a. L(Vk, X) > My_, fork > 1.

b. The diameter of each elementiof is smaller than\z;,.

c. The family{ B(z, My_1) | d(z,x0) > My } refinesl/ for eachk > 1.
d. My >2M forall k > 1.

Find functions;j(k): T'(k) — T'(k + 1) so thatV; C V). Denote{ z : My < d(x,z0) < Myy1 }
by A;. Givent € T'(k) so thatV; is contained in some element@fdefinea(t) € S by looking at the
sequencé’; C V) C ---, picking the latest element contained in sobieand settingx(t) = s (it is
possible each element of the sequence is contained in EQrimewhich case all of them are contained in

10
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someU, and thats is picked asx(t)). DefineW; as follows: it is the union of non-empty sets of the form
Vi N Ay so thatV; € V*~! anda(t) = s. Notice thatn (W) < n + 1 as in the annulud,, the family W is
obtained fromV*~! by assembling some of its elements together.

We plan to showV is coarse by proving that #/;, < d(z,xo) < My+1, thenB(z, Mj_3) is contained
in someW;. Indeed, there i$ € T'(k — 2) so thatB(z, My_3) C V;. Putr = j(k — 2)(¢t) andu =
j(k — 1)(r). Paints of B(z, M}_3) can belong to only two of the following three annuly,_1, Ay, and
Agy1. If z € B(z, Mi_3) N Ay, thenV,, C B(z, My) C U, for somes € S. We might as well put
s = a(t) = a(u) = a(r). In this caseB(z, My_3) C Ws. If B(x, Mj_3) misses the last annulus, then
only «(r) is definitely definedd(u) may not exist) andv(t) = «(r). Now, B(z, My_3) C W, where
s=a(r). N

Remark 2 Theorenfll generalize$2, Proposition 4.5 on p. 1105]

6 The large scale dimension

In this section we prove that any dimensionflasymptotic, major coarse, or minor asymptotic), if finite,
equals the coarse dimension &f. That corresponds to results of DranishnikdV [2] thatim(X) or
asdim™(X), if finite, are equal to the dimension of the Higson coronarof proper metric spac&. Our
proofs are direct and become simpler by introducing a newedsion, thdarge scale dimensioof X.
That dimension turns out to be identical with the coarse disien.
Definition 16 Thelarge scale dimensiodim [*’8°(X) of X is the smallest integen such thatA —
L™(U, A) is a coarsely proper function on the set of bounded subseXs fofr all finite coarse familieg/
in X.

Noticedim **8°(X) = —1if X is bounded.

scale

Obviously,dim ¢ (X) > dim *'8°(A) for any subset! of X .

scale scale

Proposition 18 ad(X) > dim **%°(X) anddim °*(X) > dim *'8°(X).

scale rse scale

PROOF.  The inequalitydim ¢2*(X) > dim *"°(X) is almost obvious. Indeed, given= dim (X))

and given a coarse family in X consisting ofm elements one has a coarse refinemeéwof ¢/ such that
the multiplicity m(V) is at most: + 1. In that case

a€c

and is a coarsely proper function df
Supposed(X) = n andl/ is a coarse cover of consisting ofn elements. Given > 0 find a bounded
subsel of X such that{| x\ ¢ has a refinement of multiplicity at mostn + 1 and Lebesque number at

leastt. For any bounded subsetof X \ U, L™(U, A) > L(V, A) > t which proveslim *’8°(X) < n.

scale

As shown in [5], the asymptotic dimension Bf* is at mostn (see p. 793). For the convenience of
the reader let us reword the argument frarn [5] as follows:e®iv/ > 0 consider the triangulation on the
unit n-cubel™ obtained by starring at the center of each face. It is invgder symmetries af* and
the cover ofl™ by stars of vertices has a positive Lebesque nurktaerd is of multiplicity at most: + 1.
Rescale/™ by the factor ofM /k and extend its triangulation over the wh@®é by reflections. The cover
of R™ by stars of vertices has Lebesque number at 1&asind is of multiplicity at most + 1.

Let us show how to use the large scale dimension to estimatestic dimension from below.
Proposition 19  dim 8°(R™) > n.

scale

11
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PrROOE Sincedim(I™) = n, there is a finite open covéf of I™ with no open refinement of multiplicity
at mostn. Let I C R" be a copy off enlargedk times with the corresponding covir*. We request
I — oo so thatV obtained by adding the corresponding elements{éfis a finite coarse family on
A =2, I Notice L™~ (V, I7") = 0 for all k. Thusdim [*"%°(R") > n. M

scale

Proposition 20  If dim [*#¢(X) = 0, thenasdim(X) = 0 anddim $92(X) = 0.

scale

ProOF It suffices to shovasdim(X) = 0 (see Theorefl1). Suppose&lim(X) > 0. By Propositior.I6
there exist a numbel/ > 0 and a coarsely proper sequeride,, v, )}>2 , of pairs of paints inX such
thatdist(z,, y,) — oo and the points;,, andy,, can be)M -scale connected iX \ B(zy,n) by a chainP,.
Consider a coarse family consisting of two setsX \ [ J,~ ,{z,} andX \ U,~; {yn}.

SinceC — L°(U, C) is a coarsely proper function, there is a ch&nsuch that .’ (i, P,) > M. This
contradicts LemmEl6 sincB, is M -scale connected and the covéis non-trivial onP,,. W

Definition 17 Given a point-finite family/ = {Us}cs in X (that means each point df belongs to at
most finitely many elementsigj by the canonical partition of unitgf Z/ we mean the family of functions
{fs/f}ses, wheref,(x) = dist(z, X \ U,) and f(x) = Y ¢ fs(x). If T is a subset ob, thenXr is
definedto bz € X | > 1 fs(x)/f(x) = 1} and byo X, we mean the set of all € X7 such that
fs(z) =0 for somes € T.

Notice thatf(z) > 0 for all z € X such thatly,(z) > 0 andf is a Lipschitz function it/ is of finite
multiplicity.

Lemma 7 Ifthe large scale dimension &f is at most:, then any coarse family in X of finite multiplicity
m has a coarse refinemebtof multiplicity at most + 1.

PROOF  Supposé/ exists with no coarse refinement of multiplicity at mest- 1. Using Lemmd¥
we reduce the general case to thatof= {U;}scs consisting of bounded sets so that for any sequence
xy, — oo the conditionsey, € U,y € U imply Ui,y — oo. Forinduction onm — n it suffices to assume
the multiplicity ofi/ isn + 2.

Pick a coarse shrinkingy = {W;}scs (see Propositiofll 7) so that givéd > 0 there is a bounded
subsetd of X with the property that, fox € X \ A, B(z, M) NW, # () implies B(x, M) C Us. Consider
the canonical partition of unity of WW. Given a sefl’ in S consisting ofn 4+ 2 elements pick a shrinking
WT of W|x,. of order at most: + 1 and the Lebesque number at least half the maxinithV ™, Xr)
possible (if the maximum is infinity we pick a shrinking of Ledmjue number twice the size &f;). We
can addiW, N 90X to WI without increasing the order d¥/7 beyondn + 1 (obviously, the Lebesque
number does not decrease). By pasting those shrinkingdl fér@ne gets a refinemeimtof W on X \ A
for some bounded subsdtof X of multiplicity at mostn + 1. Therefore) cannot be coarse and there is
M > 0 and a sequence of pointg — oo such that none oB(zy, M) is contained in an element of.

In particularB(z, M) is not contained in the-skeleton ofX (the points where the order ¢fis at most
n + 1) for largek.

Pick setsT'(k) so thatX ;) \ Xk contains an elemeni, € B(xx, M). For largek, B(xy, M)
intersectinglV, implies B(xzx, M) C Us. Therefore the sef’ of s € S so thatB(xzy, M) intersectdV;
is of cardinality at most + 2 and B(z, M) C Xp. For largek the coverW|x,.,, has a refinement
of order at most: + 1 and Lebesque number at le@st/. Therefore,B(xy, M) is contained in a single
element of), a contradiction. W

Corollary 2 The coarse dimension &f equals the large scale dimensionXf
Corollary 3 If the major coarse dimension d&f is finite, then it equals the large scale dimensioXof
Theorem 2 If the asymptotic dimension (respectively, the minor aggtigpdimension) of unbounded

is finite, then it equals the large scale dimensioXof

12
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large

PROOF  Supposewsdim(X) = n (respectivelyad(X) = n) anddim 5 (X) < n. Noticen > 0 as
dim '#°(X) < 0 is possible only for bounded. Therefore there i9/ > 0 and a sequence of covers
(respectively, finite coverg)* indexed by set$ (k) of Lebesque number at ledst- 3 and multiplicity

at mostn + 1 so that no refinement 8f* of multiplicity » has Lebesque number bigger thah Augment
eachl/* by shrinking it to the familyB(U, — M), U € U*. Let f* be the canonical partition of unity of
that augmentation.

Notice that for anyk and anyr € X there is a subséft of S(k) consisting of at mostn + 1) elements
so thatB(z, M) C Xr. We are going to show that for evekythere isN > 0 such that for anyk > N
there isT'(k) C S(k) consisting of at mostn + 1) elements withX ) C X \ B(zo, R), xo a fixed point
in X, so thatCarr(f’“|XT(k)) does not admit a refinement of multiplicity at mesaind Lebesque number
bigger than) .

Suppose that, for some and R > 0, all Carr(f*|x,) so thatXr C X \ B(xo, R) do admit a
refinementV(T") of multiplicity at mostn and Lebesque number bigger thaf. By converting those
refinements to shrinkings and pasting one gets a refinebhehfit/* on X \ U for some bounded subsgt
of X of multiplicity at mostn and Lebesque number bigger th&h More precisely, for eacl” C T'(k)
so thatXr C X \ B(wo, R), we pick a shrinking V,” },cr of Carr(f*|x,.) of multiplicity at mostn and
Lebesque number bigger thad. If 7' contains at most elements, that shrinking is picked to be exactly
Carr(f*|x,) as the multiplicity is at most in such caseV is a shrinking of4*| x\ /), U being the union
of X that are not contained i \ B(zo, R), andV;, s € S(k), is defined as the union of all7" with
s € T. The reasorV has Lebesque number at leddtis that for anyx € X there is a subsél of S(k)
consisting of at mostn + 1) elements so thaB(x, M) C Xy.

Now, the cover consisting of the union 8f(U, 2M/) and all the elements df intersectingB(U, 2M)
and of all elements op that do not intersecB(U, 2M) is uniformly bounded, of multiplicity at most
(recalln > 0), and of Lebesque number bigger thh a contradiction.

Construct by induction a sequence of sE(g) C S(i) with Xp(;) being mutually disjoint and tending
to infinity so thatCarr(fﬂXTm) does not have a refinement of multiplicity at masind Lebesque number
bigger than)/. Paste all those carriers according to their index withichesetT'(¢) and get a coarse cover
on a subsetl of X that does not admit a refinement of multiplicity at masind Lebesque number bigger
thanM on infinitely manyXr;), a contradiction. B

7 Slowly oscillating functions

Definition 18 A functionf: X — Y is slowly oscillating iff ~!(Z/) is coarse for every cové¥ of Y of
positive Lebesque number.

Definition 19 Given a functionf: X — Y of metric spaces itsscillation functionOsc(f, M): X —
R U oo for everyM > 0 is defined by declarin@sc(f, M)(a) to be the supremum ak (f(z), f(a)
overallz € B(a, M).

Proposition 21 f is slowly oscillating if and only iDsc(f, M)(x) — 0 asax — oo for all M > 0.

PROOFR  Suppos&sc(f, M)(x) — 0asx — oo forall M > 0. Given a coveld of Y of positive
Lebesque number and givey, — oo in X there isN > 0 such that eactf(B(xn, M)) is of diameter
smaller thatZ (U, Y') for n > N. ThereforeB(xz,, M) is contained in an element ¢f- (1/) and f ~(U)
is coarse.

Supposef ~1(U) is coarse for every cover of Y of positive Lebesque number. Given, — oo
in X and givenM > 0 such that diameters of (B(z,, M)) are bigger than a fixed > 0, consider
U ={B(y,5/2)},ey. Sincef~1(U) is coarse, there i& > 0 such that for allh > N setsB(z,,, M) are
contained in an element ¢f-! (i/). Therefore diameters of( B(z,,, M)) are smaller than afor n > N,
a contradiction. W

Our basic way of constructing slowly oscillating real-vadLfunctions is based on the following.

13
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Lemma 8 Supposed, g: X — R, andOsc(f, M), Osc(g, M) < e for somee > 0. If f(z)+g(z) > N
forall z € X, thenOsc(f/(f + g), M) < 3¢/N.

PROOF Leth = f/(f + g) anda = 3¢/N. If h(z) — h(y) > a for somez, y € X satisfying
dx(x,y) < M, then
f(x) flz) —€

— >a

f(@)+g(@)  fl@)+g(@)+2-¢

as well. Since

f(x) flz) —€ f(x) - 2e+ e (f(z) + g(x)) 3¢

fl@)+gl@)  fl@)+g(@)+2-€  (f(z)+g(2) (f(x) +g(x) + 2€) = F(@) + 9(x) T 2¢

we arrive at a contradiction. l

a,

Corollary 4 If f andg are coarse functions frolX to R such thatf + g is coarsely proper and positive,
thenf/(f + g) is slowly oscillating.

Here is a simple connection between oscillation and the $aisenumber.

Lemma9 If ¢ = {¢s: X — R, }scs is a family of functions with finite supremwmp(¢) such that
Osc(¢s, M) < 1 sup(¢) for eachs € S, thenL(¢) > M.

PROOF  Givena € X finds € S so thatp,(a) > 1 sup(¢)(a). If dx (z,a) < M, then|gs(z) — ¢s(a)| <
1 sup(¢)(a), s0¢s(x) cannot b thus affirmingB(a, M) C ¢;1(0,00). M

A partition of unity ¢ = {¢s: X — R, }ses is calledslowly oscillatingif the corresponding function
¢: X — I} is slowly oscillating.

¢ is calledequi-slowly oscillatingf the oscillation of all¢, is synchronized in the following way: for
every M > 0 and everye > 0 there is a bounded subsEtof X such thatOsc(¢s, M)(z) < e for all
xz € X\ U andalls € S. Obviously, every finite partition of unity into slowly odleting functions is
globally slowly oscillating and is equi-slowly oscillain Also, every slowly oscillating partition of unity
is equi-slowly oscillating.

Lemma 10 If ¢ = {¢s: X — R, }ses is a partition of unity of finite multiplicityn, then¢ is slowly
oscillating if and only if it is equi-slowly oscillating.

PROOF GivenlM, ¢ > 0 we can find a bounded sEtsuch thaOsc(¢s, M) < ¢/(2m) forallz € X \U
andalls € S. If a € X\U andz € B(a, M), thenthe complemett of setT’ = { s € S| ¢s(x)+ds(a) =
0} contains at mostm elements. Sinckp(x) — ¢)(a)| = D g |0s(2) — ds(a)] < |F|-€/(2m) <€, ¢
is slowly oscillating. W

Lemmall If ¢ = {¢s: X — R4 }secs is an equi-slowly oscillating partition of unity of finite ftiplicity
m, then its carrier familyCarr(¢) is coarse.

PRoOOF Noticesup(¢) > 1/m. Given M > 0 we can find a bounded s&t such thatOsc(¢s, M) <
1/(2m)forallz € X \ U and alls € S. By Lemmé&®,L(¢| x\v), X \ U) > M which provegCarr(¢) is
coarse. N

Remark 3 If one drops the assumption ¢fbeing of finite multiplicity, then the carrier family may rug
coarse: Take a cloud’,, of 2" + 1 points at locatior2™ with mutual distances equal For eachz € X
defineg, as taking value at = and all points not in its cloud. For pointg € Cloud(z) \ {z} we put

Px(y) =27".

Corollary 5 If U4 = {Us}secs is a cover ofX of finite multiplicity, then the following conditions are
equivalent:
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1. U is coarse.

2. There is a continuous slowly oscillating partition of ynjt = {¢s}scs on X \ A for some bounded
subsetd of X such thatCarr(¢,) C U, for eachs € S.

3. There is a slowly oscillating partition of unity = {¢s}scs on X \ A for some bounded subsétof
X such thatCarr(¢,) C U, for eachs € S.

PROOF 1 = 2. Definef(x) = >  gdist(z, X \ Us) and f,(z) = dist(z, X \ U,). Notice thatf
is a coarsely proper Lipschitz function and Corollaly 4 sthat { fs/ f }ses is an equi-slowly oscillating
partition of unity onX \ A, whereA is the zero-set of . By Lemmé[ID it is a slowly oscillating partition
of unity.

2 = 3is obvious.

3 = 1 follows from Lemm4TlL. W

8 Coarse dimension and Higson corona

Given a metric spac&’ by theHigson compactificatioof X we mean a compact Hausdorff spadeX)
containingX as a dense subset with the property that a bounded contifwoetfon f: X — R extends
overh(X) if and only if f is slowly oscillating. If the metric otX is proper andX is locally compact, then
X is open ink(X) and the remaindét(X) \ X is called theHigson coroneof X and denoted by (X).

A metric spaceX is calledj-disjointfor somed > 0 if dx (z,y) > ¢ forall x # y.

Theorem 3 If X is ad-disjoint metric space for some> 0, then its coarse dimension equals the dimen-
sion of the Higson compactification &f.

PROOF Supposelim 3 (X) = m < oco. Given a finite open covel = {U,}ses of the Higson
compactificatiork (X ) of X we find a partition of unityf = { fs}scs onh(X) suchthatl(f;1(0,1]) C U

for eachs € S (seel[7]). Asf|x is slowly oscillating (see Lemniall0), the family’; (0, 1] N X }scs is
coarse inX (see Lemm&d1). By Corollafil 5 there is a slowly oscillatiragtjtion of unityg = {gs}scs
on X whose multiplicity is at mostn + 1 andg;*(0,1]  f;(0,1] N X for eachs € S. Extend each
gs overh(X) to ky: h(X) — [0, 1]. The resulting familyk = {k;}scs is a partition of unity o (X). It
remains to shown(k) < m + 1 andk;*(0,1] C U, for eachs € S. If there is a pointr € h(X) \ X
such thatk,(x) > 0 forall s € T, T containing at leastr + 2 elements, then the same would be true
for some neighborhootl,, of z in h(X). SinceU, N X # () one arrives at a contradiction with the fact
thatm(g) < m + 1. If k;1(0, 1] is not a subset of/; for somes € 9, then there isc € h(X) \ X so
thatz € k;1(0,1] \ cl(f;1(0,1]). That means there is a neighborhddgd of = in 2(X) on which £, is
identically0. Hencey,|(y,\ x) = 0 implying ks(x) = 0, a contradiction. W

Corollary 6 If X is a proper metric space, then the dimension of its Higsolomrarequals the coarse
dimension ofX.

PrROOF Consider a maximal-disjoint subsetd of X. Noticedim £22(A4) = dim £22(X) and Higson

coronas/(A) andv(X) for both A andX are identical. Sincel is 1-disjoint,dim $22(A4) = dim(h(A)) =
dim(r(4)) = dim(v(X)). N

Corollary 7 If X = AU B, then the coarse dimension &f equals maximum of the coarse dimensions of
AandB.
PROOF Letm = max (dim 3 (A),dim 3 (B)). By Corollary[l, dim §52(X) > m. By switching

rse rse rse

to maximal1-disjoint subsets ofA and B, respectively, we reduce the general case to thaX dieing
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1-disjoint. Consider the Higson compactificatiéfiX) of X. Notice cl(A) is the Higson compactifi-
cation of A as any slowly oscillating and bounded functifn A — R, extends ovetX to a bounded
and slowly oscillating function. The same is true 8Br Sinceh(X) = cl(A) U cl(B), dim(h(X)) =
max (dim(cl(A)), dim(cl(B))) = max (dim *(A4),dim$*(B)) =m. N

rse rse
We plan to extend Corollafd 7 to other dimensions as well. Sitategy is to show finiteness of the

appropriate dimension of first, then use Corollalid7 as well as the fact that all othaeratisions are equal
to the coarse dimension &f once they are finite (see Corollddy 3 and Theokém 2).

Corollary 8 If X = A U B, then the asymptotic dimension &f equals maximum of the asymptotic
dimensions ofA and B.

PROOF Letm = max (asdim(A), asdim(B)). Obviouslyasdim(X) > m. GivenM > 0 find uni-
formly bounded familyi/4 in A coveringA and being the union of: + 1 families, each of then3 M-
disjoint. Similarly, find uniformly bounded anglM -disjoint family /p in B covering B and being the
union ofm + 1 families, each of ther M -disjoint. Considet/ = U4 UUp and lety = {B(U, M) }vecu.
NoticeV is uniformly bounded inX, is of multiplicity at mos2(m + 1), andL(V, X) > M. Therefore
asdim(X) < 2m + 1 and (see Theoref 2pdim(X) = dim&*(X)=m. N

Remark 4 Corollary@was proved iffd] (see the Finite Union Theorem there) f&rbeing a proper metric
space by using totally different methods.

Corollary 9 If X = A U B, then the major coarse dimensionXfequals maximum of the major coarse
dimensions of and B.

PROOF Letm = max (dim?(A),dim%*(B)). By Corollary[l,dim g9 (X) > m. Given a coarse
family U in X put f(x) = Ly(z). If f(z) = oo for someX, thenl{ has a coarse refinement of order at
most2 (see LemmEl2). Assumiz) < oo forall z € X. Pick a coarse refinemefit,, },c 4 of multiplicity

at mostm + 1 of the family{ B(a, f(a)/2)}4c . Pick a coarse refinemefiV;, } ,c g of multiplicity at most
m + 1 of the family {B(b, f(b)/2)}vep. If Vo # 0 definee(V,) = {z € B(a, f(a)) | dist(z,V,) <
dist(x, A\ Vo }. Observg ), e(Va) # 0 implies(,.,. Vo # 0 for every finite subsel” of S. Indeed,
supposer € (,cre(Va) and finds > 0 such thatdist(z, V,) + 6 < dist(x, A\ V,} foralla € T.
Picky € A so thatdist(z, A) + § > d(z,y). Ify € A\ V, forsomea € T, thendist(z, A) + § <
dist(z,V,) + 6 < dist(x, A\ V,) < d(z,y), a contradiction. Therefore the multiplicity §&(V,)}aca

is at mostm + 1. Do the same procedure f@& and producge(V,)}ep. If 2 € a, M < f(a) and
B(z,M)N A C V,, thenB(z,M/2) C e(V,). Therefore{e(V,)}aca U {e(Vs)}vep is coarse inX,
refinesi/, and is of multiplicity at mos(m + 1). Thusdim $94(X) < 2m + 1 and (see Corollarf]3)
dim§2(X) =dim2(X)=m. N

Corollary 10 If X = A U B, then the minor asymptotic dimensionXfequals maximum of the minor
asymptotic dimensions ¢f and B.

PROOF Letm = max (ad(A),ad(B)). Obviouslyad(X) > m. SupposeV > 0 and findN > 0
such thatL™ (U, A) > 2M for all finite covers/ of A satisfyingL (U4, A) > N. We can use the sanié
and claimL™ (U, B) > 2M for all finite covers{ of B satisfyingL(i, B) > N. Given a finite family
U = {Us}ses in X satisfyingL(U, X) > M + N, consider{ B(Us,—M)}scs and shrink it onA to
a family {V; }scs of multiplicity at mostm + 1 and Lebesque number at le&st/. Do the same foB
and shrink{ B(U;, —M)}scs on B to a family {W,}.cs of multiplicity at mostm + 1 and Lebesque
number at leas2M. If Vy # ) definee(Vs) = {x € U, | dist(z,Vs) < dist(z, A\ Vs }. Observe
Neere(Vs) # 0 implies(,. Vs # 0 for every finite subsef” of S (see the proof of Corollar{]9).
Therefore the multiplicity of{e(V;)}ses is at mostm + 1. Do the same procedure f@ and produce
{e(Ws)}ses. Obviously{e(Vs)}ses U {e(Vs)}ses refinesd and is of multiplicity at mosg(m + 1). If
we show its Lebesque number is at leastwe will demonstratend(X) < 2m + 1 and (see Theorel 2)

16



Coarse dimensions and patrtitions of unity

ad(X) = dim $*(X) = m. Suppose: € X. Without loss of generality we may assumes B. There is
s € S such thatB(z,2M) N B C W,. HenceB(z, M) ¢ B(Ws, M) C U, and, since any € B(z, M)
satisfiesdist(y, W) < d(y,z) < M < dist(y, B\ W), we gety € e(W,) which completes the proof.

9 Coarse dimension and absolute extensors

In [2, Remark 2 on p. 1097] Dranishnikov pointed out tiRat is not an absolute extensor in the category
of proper metric spaces and coarse functions. He charaeteproper metric spaces of coarse dimension at
mostn as those for whicfR™*! is an absolute extensor in the category of proper approxiypatpschitz
functions (Definition 4 on p. 1105 and Theorem 6.6 on p. 11That still left the door open to the possibi-
lity of characterizing coarse dimension &2 *! being an absolute extensor in the proper coarse category.
The following result clarifies that issue in negative.

Theorem 4 For a metric spaceX the following conditions are equivalent:
1. The coarse dimension &f is at mosp.
2. Y is an absolute extensor &f in the proper coarse category for ail.
3. R, is an absolute extensor of in the proper coarse category.

PrROOE 1 — 2. It suffices to show that any unbounded subsetf X is a coarsely proper and coarse
retract of X. Pickzy € X. Define by induction om an increasing sequendé,, of natural numbers and
coverd{™ of X satisfying the following properties:

a. M, =1.
b. U™ is M, -disjoint, the diameters of its elements are smaller thn,, andL(U", X) > M,,.

Foreach/ € U™ so thatU N A # (), pickxzy € U N A satisfyingdx (xy, z¢) > sup{ dx(z,zo) | z €
UNA}—1/n.

By induction onn define a sequence of subsets of X and a sequence of functions: A,, — A as
follows:

i A=A andrl =idy4.
ii. A, isthe union ofthose elementsif*! that intersectd.
ii. If z €U\ A, andU N A # 0 for someU € U™+, thenr, 1 (x) = xyp.

Notice X = |J°7, A, and letr: X — A be obtained by pasting all,. Observe that € U € U* and
UnNA# 0impliesr(x) € U. Indeed, for each there is a unique elemeft’ € U{™ containingz and
Ul c Ulif i < j. Find the smallest number so thatr € A,,. In that case(xz) € U™ by definition and
k must be at least soU™ C UF = U.

We will show thatr is coarse by provingx (z,y) < M, impliesdx (r(z),r(y)) < My2. Indeed, if
dx(z,y) < M,, then one of the following cases occurs:

Case 1U N A,, = (), whereU is the unique element "' containing bothe,, andy,,.

Case 2U N A,, # 0, whereU is the unique element " *! containing both,, andy,,.

In Case 1 the valueqz) andr(y) are identical. In Case 2 bottiz) andr(y) belong toU N A and the
setU N A'is of diameter at most/,, 2, sodx (r(xz),7(y)) < My holds.

If r is not coarsely proper, then there is a sequence~ oo such that(z,,) is bounded. Obviously,
x, ¢ Aforalmost alln. Consider an elemefif U* containing all ofr(x, ). The way functions,,, were
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defined implies that there is a sequence of elem@pts /(™ with a(n) — oo and alll,, containingU,
such that/,, N A is of almost the same diameter@s) A. That contradicts! being unbounded.

2 = 3is obvious.

3 = 1. Supposelim £22(X) > 0. By Propositior I there exists a numbér > 0 and a coarsely
proper sequencf(x,,, y, )52, of pairs of points inX such thatlist(z,, y,) — oo and the points:,, and
yn can beM-scale connected iX \ B(zq,n) by long chain of length.,, so thatL,, — oo asn — co.
We may assuméx (zn4;,zn) > n anddx (Yn+j,yn) > nforalln, j > 1. Let B = {z,} U {yn}.
Define f: B — R4 by sendingz,, to n andy,, ton + n - L,,. Notice f is coarsely proper and coarse.
Supposef extends to a coarse functign X — R;. Find K > 0 such thatdx (z,y) < M implies
d(f(:v), f(y)) < K. Sincez,, andy,, can be connected by a chain bf, points, with consecutive points
being separated by at maf, L, - n+n—n = d(f(xn), f(yn)) < L,, - K which leads to a contradiction
forn>K. N

10 Open problems

In [2, Problem 1 on p. 1126] it is asked if the asymptotic disien of a proper metric spac€ equals the
covering dimension of its Higson corona. Here is our versibthat problem.

Problem 1 Is there a metric spac& of infinite asymptotic dimension and finite coarse dimerision
Problem 2 Is there a metric spac& of infinite major coarse dimension and finite coarse dimen&io

Definition 20 A metric spaceX is of bounded geometrf for everyM > 0 there is a uniformly bounded
cover/ of X of finite multiplicity and the Lebesque number at lebkt

Definition 21 ([2,p. 1005]) SupposeX is a metric space of bounded geometry. Given > 0 let
d(M) = m(U) — 1, wherel{ is a uniformly bounded cove¥ of minimal multiplicity among those of
the Lebesque number at ledst. X is of slow dimension growthf limy; . d(M)/M = 0.

Just as in[]2, Problem 6 on p. 1126] one can ask variants ofigmadf]l and2 for spaces of bounded
geometry or slow dimension growth.

Problem 3 SupposeX is of slow dimension growth and finite coarse dimension. ysgotic dimension
of X finite?

Problem 4 SupposeX is of slow dimension growth and finite coarse dimension. ésrttajor coarse
dimension ofX finite?

The above problems remain open for minor asymptotic dineensAll of the above problems are of
interest in case aX being a finitely generated group with word metric, espegi@lAT(0) groups.

Problem 5 Itis stated in4] thatasdim(X xY") < asdim(X)+asdim(Y"). Are the corresponding results
true for other dimensions?
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