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Abstract 

In the analysis of time series, it is frequent to classify perturbations 
as Additive Outliers (AO), Innovative Outliers (10), Level Shift (LS) 
outliers or Transitory Change (TC) outliers. When a time series with 
a clear seasonal behaviour is considered, this classification may be too 
restrictive since none of the four outlier types is adequate to model 
changes in the seasonal pattern of the series. In this paper, a new outlier 
type, the Seasonal Level Shift (SLS), is introduced in order to complete 
the usual classification. The iterative proced u re for the detection of 
outliers in Chen and Liu (1993) is extended to detect SLS outliers. We 
use simulations and real examples to assess the properties of the new 
type of outlier. 





1 Introduction 

Outlier detection has become an important part of the analysis of time' series 
and influences modelling, inference, and data processing, because outliers can 
lead to model misspecification, biased parameter estimation, and poor fore­
casts. Outlier detection has become a key feature in seasonal adjustment and 
in automatic time-series model identification; examples are the REG-ARIMA 
routine in the X-12 ARIMA program (see Findley et al., 1998); program 
TRAMO ("Time series Regression with Arima noise, Missing observations, and 
Outliers"; see G6mez and Maravall, 1996), and the time series module in the 
Scientific Computing Associates package (see Chen et aL, 1990). 

Four outlier types are traditionally considered (see, for instance, Fox, 1972, 
Tsay, 1986 or Chen and Liu, 1993): Additive Outliers (AO), Innovative Out­
liers (10), Level Shift (LS) outliers and Transitory Change (TC) outliers. 
These four outlier types affect an observed time series in different ways. The 
effect of an AO, an LS or a TC on an observed. series is independent of the 
ARIMA model; the effect of an 10 on an observed series consists on an initial 
shock that propagates in the subsequent observations with the weights of the 
ARIMA modeL When unobserved (trend-cycle, seasonal and irregular) com­
ponents of the time series are considered, it is generally a.ccepted (see Harvey, 
1989) that AOs and TC outliers can be related with outliers affecting the irreg­
ular component, LS outliers can be associated with the trend-cycle component 
and, finally, lOs are the result of an outlier that simultaneously affects the 
trend-cycle and the seasonal components. 

This classification is too restrictive when analysing time series with seasonal 
behavior since none of the considered outlier types can describe a perturbation 
mostly related to the seasonal component. In this paper, we present a new 
outlier type, the Seasonal Level Shift (SLS), which completes the previous 
classification. The iterative procedure for the detection of outliers, initially 
proposed by Chang (1982) and further modified by Tsay (1986), Chang et al. 
(1988), Chen and Liu (1993) and G6mez and Maravall(1998), is extended to 
consider the new outlier type. Finally, the consequences of ignoring (or not 
correcting) the presence of SLS outliers are investigated in simulated and real 
examples. 

2 Outliers and unobserved components 

Let y, be a time series that can be described with the ARIMA (p,d,q)(P,D,Q) 
model 

<I>(B)'Vdip(B')'V�y, = c + O(B)0(B')a" t = 1 ,  . . .  , N, (2.1) 
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where N is the number of observations; s is the number of observations per 
year; c is a constant term; at is a white-noise process with zero mean and 
variance Va; B is the lag operator, such that By, = Y'-l; and 'land V, are 
the regular and seasonal difference operators, such that 'ldy, = (y, - y,_.)d 
and 'l,y, = y, - y,_,; <p(B) and O(B) are regular polynomials in B of orders 
f.> and q, respectively; <1>(B') and 0(B') are seasonal polynomials, of orders 
P and Q, respectively, with the roots of all 4 polynomials lying outside the 
unit circle. The observed series y, can be additively decomposed (perhaps in 
the logs) into orthogonal unobserved components of trend-cycle (zp')' seasonal 
(z,,) and irregular (zu,) as, 

Yt = LZit, � = p,S,U. (2.2) 

In this paper. we use the s(}-called ARIMA model-based approach to achieve 
the decomposition (2.2) (see, for example, Box, Hillmer and Tiao, 1978, Bur­
man, 1980, Bell and Hillmer, 1 984 or Maravall, 1995). Under this approach, 
the unobserved components can be formulated in an ARIMA-type format as: 

(2.3) 

where <pi(B) and Oi(B) are finite polynomials in B with no root in com­
mon and with all roots on or outside the unit circle; and air are uncorre­
lated white-noise errors with zero mean and varia.nce Vi. For ease of notation, 
let 4,(B) = <p(B)'ld<1>(B')'lf and O(B) = 0(B)0(B'). Since aggregation of 
ARIMA models yields ARIMA models, the y, series also follows an ARIMA 
model like the one in (2. 1). It is straightforward to show that, under the 
assumption that the components share no AR root in common, 

J,(B) = II <pi(B), (2.4 ) 

(2.5) 
where <Pni(B) is the product of all <Pi(B), j # i. Prior to the ARIMA mod­
elling stage, some modifications to the series are often needed (see Gomez and 
Maravall, 1998). Outlier correction is essential since the presence of one or 
more outliers in the observed series, may have serious consequences on the 
identification and estimation of the ARIMA models (see Chang, 1982). 

Following the seminal work of Fox (1972), four different types of outliers 
have been proposed, together with several procedures to detect them (see, 
for instance, Tsay, 1986, Chen and Liu, 1993, Gomez and Maravall, 1998, and 
Kaiser, 1998). The outliers are classified as Additive Outliers (AO), Innovative 
Oulli,,'s (IO), Level Shift (LS) outliers or Transitory Change (TC) outliers. 
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Assuming the observed series contains k outliers, their combined effect can be 
expressed in general as 

y; = t �j(B)w}It') + y" (2.6) 
;=1 

where y; denotes the observed "contaminated" series; y, follows the ARIMA 

process (2 .1); Wj is the initial impact of the outlier at time t = Tj; liT,) is 
an indicator variable such that it is 1 for t = Tj, and 0 otherwise; and �j(B) 
determines the dynamics of the outlier occurring at t = Tj according to the 
following scheme: 

AO: �;(B) = 1, (2.7a ) 

LS: UB) = 1/(1 - B), (2.7b ) 

TC: �j(B) = 1/(1 - liB), 0<1i<1, (2.7c) 

10: �j(B) = 8(B)/4>(B). (2.7d ) 

An AO represents an isolated spike, an LS a step function, a TC a spike 
. that takes a few periods to disappear and an 10 represents effects that depend 
on the ARIMA model for the observed series, as shown by expression (2.7d). 
Examples of the 4 types of outliers are displayed in Figure 1. 
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Figure 1. Effect of different types of outliers on, the observed series a) AO, b) LS, c) TC 
and d) 10 for an <cAiriine model" (see section 4). 

If y; is to be decomposed into trend-cycle, seasonal, and irregular compo­
nents, as in 

(2.8) 
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the effect of the outliers has to be assigned to the components in (2.2). Given 
that the irregular component is aimed at capturing transitory, mostly unsys­
tematic, behavior, it seems natural that z:, be equal to zu' plus the AO and 
TC effects. On the other hand, given that an LS outlier represents a perma­
nent effect on the mean level of the series, it also seems natural to associate 
its effects to the trend-cycle component. While the allocation of these three 
types of outliers to the components is straightforward, the allocation of the 
effects of an 10 is not a clear-cut issue (see Bell, Hillmer and Tiao, 1983, and 
Kaiser, 1995); in series displaying trend and seasonality, both components will 
be affected by it. 

From expression (2.6), an expression equivalent to (2.5) is given by, 

O(B)a, + t�j(B)¢(B)Wli") = 2(¢n,(B) (O,(B)O;: + t,�j(B)¢'(B)WI!T;)), 
(2.9) 

from which it is straightforward to see that an error in the specification or es­
timation stage of the model for the observed series (detecting spurious outliers 
or confusing the outlier type, for instance) results in errors in the specification 
and estimation of the correct models. If, for example, an .'1.0 is wrongly de­
tected instead of one LS, the estimated components of the trend-cycle and the 
irregular component will be affected. In particular, even if the true ARIMA 
model and the coefficients involved are known, the variance of the irregular 
component will be underestimated and the variance of the trend-cycle compo­
nent will be overestimated. 

2.1 Seasonal outliers 
Of the 4 types of outliers mentioned above, only the 10 type may display 
seasonal features in its pattern, which are restricted to follow the pattern of 
the ARIMA model for y" and have to be always accompanied moreover by an 
associated (also restricted) pattern for a trend outlier. Many economic series, 
however, display breaks and anomalies in their seasonal behavior that cannot 
be accommodated within the previous restrictions. In order to illustrate the 
argument, we consider the monthly Italian Industrial Production Index (GIPI) 
for the period 1981.1 to 1996.12. The seasonal component (obtained running· 
TRAMO and SEATS programs in an automatic manner) is presented in Figure 
2. Direct inspection of the figure reveals that the level of the seasonal factors 
for August changes in 1988 and in 1994. The mean level for the August factor 
was 46.01 during the first seven years, it increased to 47.70 for the following 
six years and, it was 49.29 for the last three years (the discontinuous line in 
the figure represents the change in the mean factor for August) .  This seasonal 
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level shift cannot be modelled as an 10 outlier because the model for the series 
implies a V'V'12 differencing, that would produce an 10 of the type displayed 
in Figure 1 .  In the standard approach, these seasonal shifts could of course 
be handled with strings of AOs for the months of August, which would pro­
duce an unparsimonious model where, basically, one would be renouncing to 
model August, a rather unsatisfactory procedure. Addressing the sarne'exam­
pie of the August outliers in the Italian GIPI series, Proietti (1998) developed 
a nonlinear-nonstationary unobserved components model with heteroskedastic 
innovations in the seasonal component. An alternative approach; methodolog­
ically and computationally less complex, would be to extend outlier detection 
procedures to cover breaks in the seasonal component. Moreover, a proper 
outlier correction procedure should have ways to deal with some of the basic 
anomalies of a seasonal nature. 

90 

eo 

70 

60 

50 ,----

e2 e4 e. ee 90 92 94 96 

Figure 2. Italian industrial production index (GIPI). Seasonal factors. 

Several basic structures seem possible for a seasonal outlier. If S denotes the 
annual aggregation operator, in terms of the representation (2.6), the simplest 
structure would be to set 

�(B) = 1/5; 5 = 1 + B + ... +8'-1; (2.10) 

which would generate a " purely seasonal" outlier of the type displayed in'Figure 
3a. It is seen that this seasonal effect does not properly capture the seasonal 
level shift we aim to capture. An immediate extension of (2.10) is to set 

�(B) = 1/V'" (2. 1 1 )  

which generates the outlier of Figure 3b. This type of outlier seems quite 
appropriate for our purpose, and is the one we should use. The outlier effect, 
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however, is not anymore purely seasonal. From the factorization 'V s = 'V S, 
the polynomial S will affect the seasonal component, but the '1 factor will 
affect the trend. This is apparent from Figure 3b; because the sum of 12 
(deterministic) seasonal outlier effects should be zero, the outlier effect for the 
last years of the figure have to be centered around zero. Therefore, the Seasonal 
Level Shift (SLS) outlier given by (2.1 1 )  has an effect on the trend given by 
the step function of Figure 3c, and an effect on the seasonal component shown 
in Figure 3d. Notice that both effects are permanent (due to the unit roots of 
'1,,) though not explosive. 

More general expressions for �(B) are obviously possible. An example could 
be 

�(B) = (1 - o:B)/'1" 

which, for 0: = 1 yields (2.10), and for a = 0 yields (2:11); it implies, however, 
estimation of an additional parameter. We shall stick to the simple specifi­
cation (2. 1 1 )  and try to asses its possible usefulness. Specifically. using the 
previous terminology, a SLS outlier at period t = T would affect the series Yt 
as in 
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Figure 3. Seasonal Outliers effect. a) purely seasonal outlier b) Seasonal Level Shift c) 
effect of a SLS on the trend-cycle component d)effect of a SLS on the seasonal component 
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3 Detection and estimation 

In this section we discuss how the iterative detection procedure described in 
Tsay (1986) and Gomez and Maravall(1998), to be denoted "standard pro­
cedure" can be extended to allow for both detection and estimation of SLS 
outliers ("extended procedure"). 

3.1 A single outlier 
Let a be the vector of parameters in model (2.1) and let us suppose, for the 
moment, that it is known. Further) suppose that the observed series is subject 
to the influence of a perturbation at time t = T such that, 

y� = �(B)wlt) + y" (3. 1) 

where we first assume that the model �(B)y, = O(B)a, is stationary. Model 
(3.1) can be rewritten as a linear regression model as follows, 

Y; = Z;(T)W +Yt (3.2) 

where Z;(T) = �(B)IiT) is an N x 1 vector. Let y' = (Yi""'YN)'; y = 

(YIo ... ,YN)' and Z· = (Zi(T)"",ZN(T))'. Writing (3.2) III matrix terms 
yields, 

y'=Z'w + y. (3.3) 

The model in (3.3) is a regression model with autocorrelated residuals and, 
therefore, the problem of estimating w can be solved by Generalized Least 
Squares (GLS). Let var(y) = Van with n a N x !I' matrix which depends 
on a and which is assumed to be positive definite; and let n = L'L be the 
Cholesky decomposition of n with L lower triangular. Premultiplying (3.3) 
by L-', and setting e' = L-'y', Z = L-'Z' and e = L-'y, we obtain the 
Ordinary Least Squares (OLS) model, 

e* = Zw + e, (3.4) 

where var(e) = VaIN. The OLS estimator of wand its variance are obtained 
from (3.4) as, 

w = (Z'Zr' Z'e' var(w) = (Z'Zr' Va. (3.5) 

As argued in Gomez and Maravall (1994), to move from the GLS model in 
(3.3) to the OLS model in (3.4), there is no need to evaluate the matrix n, 
since the application of the Kalman filter on the observed series y'. yields the 
vector of standardized residuals e' = L -'y'. Similarly, the application of the 
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same filter on vector Z· provides the vector Z = L -lZ' from which (3.5) can 
be computed. 

To test the null hypothesis that the observation at time t = T is not an 
outlier, one can use the standardized statistic, 

w 
).. = r---;:-

yvar(w) 
(3.6) 

which, for known a, follows a standard normal distribution. By setting appro­
priate starting conditions (see, for example, Khon and Ansley, 1985, Bell and 
Hillmer, 1991 , or Gomez and Maravall, 1994), the previous scheme extends in 
a straightforward manner to nonstationary series, for which y, follows model 
(2. 1 ) . 

If the objective of the analysis is to determine the type of the outlier at 
time t = T, one possibility, suggested by Chang et al. (1988), is to calculate 
the estimates Wi and their respective statistics Ai, where the subscript i makes 
reference to the outlier type, i=AO,IO,LS,TC,SLS. The test statistic to use is 

'1(T,l) = m!'x{1 A; I}. , (3.7) 

If 1)( T, I) > C, where C is a predetermined critical value, then it is thought 
. possible that the observed series is subject to the influence of an outlier of type 

i=[ at time t = T. 
The timing T is seldom known a priori, but as suggested by Chang et al. 

(1988), the likelihood ratio criterion leads to, 

t = 1 ,  . . . , N, (3.8) 

where T denotes the period at which the maximum of 1)( T" f,) occurs and J 
the associated type of outlier. Then, if'1T.J > C, there is a possibility that the 
observed series is subject to the influence of one outlier of type J at time t = T. 
In order to compute the '1T,J statistic above, the Kalman filter should be run 
on the vector of observations to obtain the vector e", and on N x 5 different 
Zi(Tt! vectors. for i = AO, fO, LS, T C, SLS and t = 1 ,  . . .  , N. The procedure 
is thus computationally cumbersome. This problem can be overcome by using 
the filter il(B) = 4>(B)/8(B), appropiately truncated. The GLS estimator of 
w can be computed by using the Kalman filter to obtain the vector of exact 
residuals e", and then the truncated filter il(B) can be applied on Z· to obtain 
the vector Z. 

Once the location and the type of the outlier are determined, its effect can 
be adjusted from the residuals using (3.4); the adjusted series can also be 
obtained as 

(3.9) 
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In practice, the true parameters in Q are usually unknown in the modelling 
stage, although they can be estimated consistently; the>. -statistic given by 
(3.6) still has in this case an asymptotic normal distribution (see Chang et aI., 
1988). 

3.2 Multiple outliers 
In a more general framework, one can consider the observed series as being 
affected by k deterministic shocks at times t = T" . . .  , Tk. In this case, the 
representation of y; consists of, 

k 
y; = 2: Z;,,(Tj)Wj + Yt, j=l 

(3.10) 

where Zj,,(Tj) = �j(B)Ii") represents the effect of the outlier at time t = Ti' 
The extended iterative procedure described in the Appendix does not detect 
the k outliers at the same time but proceeds in several iterations detecting 
them one by one. In the detection stage, the procedure starts by applying 
the Kalman filter on the vector of observations to obtain the residuals and the 
truncated filter II(B) on the vectors Zj,,(j) to determine the location and type 
of the k outliers in (3.10). Following Chen and Liu (1993). once the detection 
stage is completed, in order to avoid possi ble masking effects, the final WjS are 
obtained within the following multiple regression model, 

y'=Z'w+y, 
where Z· is an N x k matrix with columns Zj(Tj) = (Zj�I(Tj), . .. ,Zj,N(Tj)) 
and W is a k x 1 vector with elements Wj. The application of the h:alman filter 
recursions on the vector of observations y. and on the k columns of the Dlatrix 
Z· allows the specification of an OLS model, from which the vector W can be 
estimated as in (3.5). Kohn and Ansley (1985) proposed an efficient way to 
estimate the vector W using the QR algorithm, in which an orthogonal N x k 
matrix Q is obtained, such that Q'L -IZ' = (R', 0)', where R is a non-singular 
k x k upper-triangular matrix. Then w = R-1VI' where VI consists of the first 
k elements of the vector v = QL -ly'. 

Once w is obtained, residuals are identified and corrected, the linear series 
obtained, a new estimator of a computed, and iterations proceed as described 
in the Appendix. 

4 Performance of the extended procedure 

In this section, we briefly investigate the performance of t he standard proce­
dure when it is extended to include the SLS outlier type. We focus our analysis 
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on two aspects of the procedure: i) the relative frequency of detection of at 
least one outlier while no one is effectively present, which is a measure of a 
type I error; and ii) the relative frequency of correct detection, which is a mea­
sure of the power. The simulations in this section were performed using the 
monthly "Airline model", popularized by Box and Jenkins (1970), and found 
to be very often appropriate for series displaying trend and seasonality (see 
the large-scale study in Fischer and Planas, 1998). The model is given by 

(4 .1  ) 

with at being a white-noise innovation, -1 < 0, < 1, and -1  < 0" < 0. The 
performance of the extended procedure in terms of type I errors was found to 
be associated with: i) the number of observations; and ii) the critical value. 
We performed a simulation in MATLAB, whereby, for each of the considered 
samples sizes (N=50,100, 200 or 400), 1000 noncontaminated "Airline" series 
were generated with 8, = 8" = -0.6; the extended procedure, described in 
the Appendix. was then applied using critical values C=3.0,3.5,4.0 and 4.5. 
Table 1 gives the mean relative frequency of a type I error, decomposed into 
the different outlier types, for each combination of sample size and critical 
value. (Note that the total mean relative frequency of a type I error is the sum 
of columns 3 to 7 for C=3.0, 3.5 and the sum of columns 9 to 13 for C=4.0, 
4.5) 

Outlier type Outlier type 
AO IO LS TC SLS AO 10 LS TC SLS 

N_50 C-3.0 .05 .05 .07 .06 .08 C_4.0 .00 .00 .00 .00 .00 
100 .13 . 1 0  .11 .09 .16 .00 .00 .00 .00 .00 
200 .16 . 1 6  .17 .15 .22 .01 .01 .01 .00 .01 
400 .18 .17 .21 .18 .24 .02 .03 .02 .01 .02 

N_50 C-3.5 .01 .00 .01 .01 .01 C_4.5 .00 .00 .00 .00 .00 
100 .03 .02 .02 .02 .01 .00 .00 .00 .00 .00 
200 .06 .04 .06 .06 .06 .00 .00 .00 .00 .00 
400 . 1 1  .08 .10 . 1 1  .12 .00 .00 .00 .00 .00 

Table 1. Type I error in the extended itera.tive procedure 

As expected, the relative frequency of a type I error is a decreasing function 
of the critical value, but an increasing function of the number of observa­
tions. When the critical value is too low for the sample size, an SLS outlier 
is spuriously detected with a mean relative frequency slightly higher than for 
the other outlier types. Nevertheless, when the critical value is adequate for 
the sample size (C � 3.5 for N=50, 100 and C � 4.0 for N=200,400), the 
mean relative frequency of a type I error is, for all cases, smaller than 5% 
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and there are not significant differences among the outlier types. In a sec­
ond simulation exercise, the influence of parameters 81 and 012 on the type 
I error was investigated. We considered values of 0, = 0.5,0 and - 0.5 and 
012 = -0.1, -0.3, -0.5, -0.7 and - 0.9. As before, 1000 series of 100 observa­
tions each were generated. The results for this simulation exercise indicated 
that the relative frequency of a type I error is (almost) insensitive to changes 
in the parameters 0, and 0'2' (These results are not reported here but are 
available from the authors.) 

Next, to investigate the power of the extended iterative procedure in terms 
of outlier detection, we study the relative frequency of correct detection (type 
and location are correctly identified) of one outlier. The "Airline" model with 
0, = -0.6 and 0'2 = -0.1, -0.3, -0.5, -0.7, -0.9 is used to generate simulated 
series of 100 observations. We consider one outlier aff�cting the observed series 
at the middle of the sample, t = 50. (Simulation of more than one outlier 
and different locations can be found in Kaiser, 1998.) The size of the initial 
impact w is considered equal to 4 or 5. For each combination of outlier types 
and parameters 0'2, 1000 simulated series were generated. Table 2 reports 
the mean relative frequency of correct detection for critical values C=3.5 and 
C=4.0. 

Outlier type 
AO IO LS TC SLS 

C=3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 

012 - . 1  w_4 .97 .93 .51  .32 .99 .99 .96 .94 .67 .50 
5 1 1 .79 .66 1 1 .99 99 .88 .88 

-.3 4 .95 .85 .50 .33 .98 .95 .92 .85 .74 .60 
5 .99 .98 .79 .66 .99 .99 .98 .98 .92 .91 

- .5 4 .87 .77 .50 .32 .95 .90 .87 .73 .90 .79 
5 .98 .97 .79 .66 .99 .99 .97 .95 .98 .98 

-.7 4 .79 .62 .49 .31 .91  .84 .77 .65 .99 .97 
5 .95 .90 .78 .65 .99 .98 .93 .93 1 

- .9 4 .69 .54 .44 .27 .87 .74 .71 .52 1 
5 .90 .86 .71 .58 .97 .95 .90 .84 1 

Table 2. Mean relative frequency of correct detection using the extended procedure 

The power of the extended procedure increases with the size of the initial 
impact and decreases with the critical value. Table 2 shows that the power is 
a decreasing function of the absolute value of the parameter 0'2 for all outlier 
types except for the SLS. What Table 2 implies is that, when the seasonal 
component is highly erratic, (012 is close to zero), the outliers assigned to 
the trend or to the irregular component are correctly detected with a higher 
frequency than the SLS type. As the seasonal component approaches stability, 
the mean relative frequency of correct detection of an SLS increases. For the 
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range 012 = -0.6 to -0.9, which is the value most often found in practice (see 
Fischer and Planas, 1998), the power of the iterative procedure in correctly 
detecting one SLS is superior to the power in detecting any other outlier type. 
The most insensitive outlier type is the 10, which is also the type for which 
the worst results for the power of the procedure are obtained (always less than 
80% and, in 7 out of 20 cases, less than 50%). 

5 Consequences of not including the SLS type 

In this section} we compare the performance of the standard iterative procedure 
with that of the extended procedure when the observed series is subject to the 
presence of one SLS. 

Using the monthly Airline model in (4.1 )  with 01 = -0.6 and 812 in the 
range [-0.1, -0.9]' 1000 series of 100 observations each were generated for each 
combination of Bl and 812, Next, the series were contaminated at time t = 50 
with one SLS of size w = 4 or w = 5 and the standard iterative procedure 
was applied three times with critical values C=3.5, C=4.0 and C=4.5. Table 
3 presents the mean relative frequency of wrongly detecting one 10 (columns 
labeled 10) or of not detecting any outlier (columns labeled NO). Notice that 
the relative frequency of detecting other outlier types, different from an 10, is 
extremely low. 

8" 
- . 1  -.3 -.5 -.7 -.9 

C w NO 10 NO 10 NO 10 NO 10 NO 10 
3.5 4 .37 .56 Al .58 .50 .50 .55 .45 .73 .26 

5 .11 .83 .14 .84 . 1 7  .82 .28 .72 .53 A6 
4.0 4 .65 .32 68 .31 .69 .31 .80 .20 .90 .10  

5 .30 .67 .33 .66 AD .60 .51 .49 .81 . 1 9  
4.5 4 .86 . 1 3  .88 .12 .90 .10 .92 .08 .98 .02 

5 .56 A2 .58 Al .67 .33 .79 .21  .97 .03 

Table 3. Performance of the standard procedure for a SLS·contaminated series 

The results in Table 3 indicate that, when the time series is subject to the 
presence of one SLS, the standard outlier detection procedure performs poorly. 
The mean relative frequency of wrongly detecting one 10 is high, being larger 
than 50% in 9 out of 30 cases; this frequency increases with the size of the 
initial impact, w. Table 3 shows a trade-off between not detecting any outlier 
or detecting one 10. This trade-off depends on the value of parameter 012 and, 
therefore, on the stability or instability of the seasonal component. When the 
seasonal component is highly erratic, it is more likely to detect one 10 than 
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nothing and, in contrast, when the seasonal component is very stable, the 
procedure, most often will not detect any outlier. 

We now compare the estimates of the parameter 012 when the "cl.eaning" 
or preadjustment of the observed series is carried out using the standard pro­
cedure or the extended procedures. For this comparison, we generated 1000 
Airline series of 100 observations each, with 8, = -0.6 and 8" = -0.5, and 
then included one SLS of size w = 5 at time t=50. Table 4 presents the first 
two moments of the distribution for 0" when the SLS is correctly adjusted (us­
ing the extended procedure) and, when it is treated as an 10 or not adjusted 
(using the standard procedure) .  Figure 4 compares both densities. 

0" (T, 
Mean Std. Error Mean Std. Error 

True parameter -.500 1.000 

Standard procedure -.330 .097 1.081 .096 

Extended procedure -.536 .133 .977 .082 

Table 4. 812 and Ua estimates for a SLS contaminated. series 

a b 
.5 5 
4 4 
3 3 
2 2 � � 0 0 -1 -0.5 0 -1 -0.5 0 

c 
5 
4 10 or not corrected seri.es 

SLS corrected series 3 

2 

'.'.,L -- _-o:".'"'9 ==-:::o:;..8O-- --o".-=7- --O�.6=:.:..:.-..,0�.5,,----O�. 4,---- -O�.3--=:::_"0" .�2�-_:': O':". ,c..c�--.JO 
Figure 4. Densities for 012 estimates. a) Histogram and normal approximation for the 
Extended procedure; b) Histogram and normal approximation for the Standard procedure; 
c ) Comparison of the two normal approximations. 

In the two top panels of Figure 4 the two histograms are displayed and ap­
proximated by the normal distribution. In the bottom panel, the two normal 
approximations are plot together, and it is seen that the density for the stan­
dard procedure is strongly biased. The estimator of 8" under the extended 
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procedure still contains 'some bias, although of a smaller size. The conclusion 
to this exercise is, therefore, that ignoring or missidentifying one SLS leads to 
an important bias in the estimation of the parameter 812 towards the region 
of unstable seasonality, which would have the effect of yielding estimates of 
the seasonal component unreasonably erratic. The first two moments of the 
distribution of ira (the residual standard error) obtained with the standard 
and the extended procedures are also displayed in Table 4. It is seen that, on 
average, ira for the standard procedure is higher than for the extended one (in 
fact, the frequency of replications for which fro is higher for the former than 
for the latter is close to 80%). 

One important consequence of fitting 10 instead of SLS outliers is the effect 
on the underlying components of the series. Figure 5 displays the estimates of 
the stochastic seasonal and trend-cycle components for one of the series of the 
previous simulation, when an SLS outlier has been treated as an 10. Removal 
of the 10 outlier produces a more unstable seasonal and strongly affects the 
trend-cycle component. 

• 
'0 

• 

1- SLS removed _ , o� ________ 
��_

�,
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,,
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,,
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==

�
�� 

________ �.� ______ j 
o 50 100 150 200 

b 
o.-------�--------------------------�------� 

�.�-=��-----�'---- ---� _10 -

_20 
---I SLS removed I - - 10 removed - - - _ _ 

-300�====���,�0�==�--�,�00�------�'�'� 0--------�2�0�0------� 

Figure 5. a) Seasonal component b) Trend-cycle component. 

Finally, we investigate the consequences of ignoring or missidentifying one 
SLS on some diagnostics for the model. In particular, we consider the effects 
on the residual autocorrelation P12 and on the Box-Ljung statistic Q(36) for 
the residuals. Using the contaminated series that were generated for the simu­
lation exercise of Table 3, the standard and extended iterative procedures were 
applied with critical value C=4.0. The values of P12 and Q(36) obtained for 
the residuals with the two procedures are compared in Figures 6 and 7. Each 
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point in Figure 6 is a representation of the pair of values (p�fS, pi?) and each 
point in Figure 7 is a representation of the pair of values (Q(36)SLS, Q(36)1O). 
Points on the straight line (x=y) indicate cases for which the two procedures 
lead to the same value of P12 or Q(36); values over the line indicate cases for 
which the standard procedure leads to values of P12 or Q(36) larger than for 
the extended procedure. Figures 6 and 7 indicate that, as seasonality hecomes 
more stable, the P12 and Q estimates obtained with the two procedures tend to 
diverge. The use of the standard iterative procedure, when an SLS is present 
on the observed series, may lea:d to significant P12 coefficients for the residu­
als, indicating that not all seasonality has been removed, and to high values 
of the Ljung-Box statistics, indicating the presence of autocorrelation in the 
residua.ls. 

a 
0.6 

Q 0.4 

� 0.2 
� 
� 0 
§-O.2 

_0.4 
_0.5 0 0.5 

corrected with SLS 
e 

_0.5 0.5 
corrected with SLS 

Q 

'i 
� § 

-0.5 

0.6 

b 

o 
corrected with SLS 

d 

Q 0.4 
1i 0.2 iIJII!;.:. .. ." '  .-"" 

. �  .; 
. ��. -...., I _o � .- . ' 

-0.'.'-="=-___ -=-_____ ...] -0.5 0 0.5 
corrected with SLS 

Figure 6. Coefficient P12 for residuals in an Airline model with 81 = -0.6 and a) 912 = -0.1; 
b) 8" = -0.5 ; c) 8" = -0.7; d) 812 " -0.9. 
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, 50 100 
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Figure 7. Box-Ljung statistic for residuals in the Airline model with 91 = -0.6 and a) 
0" = -0.1; b) 0" = -0.5; c) 0" = -0.7; d) 0" = -0.9. 

6 Real examples 

As mentioned before, on occasion, seasonal level shifts seem to be present in 
aggregate production series. Yet the SLS outlier may accept not only quantity 
series, but also price series. We return to the Italian GIPI example of Sec­
tion 2 and use, as additional examples, the aggregate European price index of 
industrial production EUPRIN and the Spanish production index of metal prod­
ucts METIPI. The series span the periods 1981.1-1996.12, 1981.1-1993.12, and 
1980.1-1997.7, respectively, and are represented in Figure 8, panels a, c and e. 
ARIMA identification of the three series (made with the program TRAMO run 
in the automatic mode) results in the identification of an ARIMA (0,1,1 )(0,1,1) 
with significant trading and Easter effects for tbe GIPI and METIPI series, and 
an ARIMA (0,2,1)(0,1,1) for the EUPRIN series. The three original series were 
decomposed (using the program SEATS in an automatic mode) into unobserved 
components of trend-cycle, seasonal and irregular. Panels b, d and f in Figure 
8 represent the three series of seasonal factors; it is seen that the three series 
are subject to some seasonal heteroscedasticity. 

The standard procedure (included in the program TRAMO) was first ap­
plied with a critical value of C=3.5, the recommended (and default) value for 
medium sensitivity in series of moderate length. The detected outliers are 
listed in Table 5. The standard procedure finds two AOs in August for GIPI, 
only one 10 in January of 1986 for EUPRIN, and three AOs and two lOs in 
August for METIPI . 
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Figure 8. Italian industrial production index a) Original series b) Seasonal factors; Euro­
pean price index for industrial production. c) Original series d) Seasonal factors; Spanish 
industrial production index of metal products. e) Original series; f) Seasonal factors 

Series Procedure C Type Date of Detected outliers 
GIPI Standard 3.5 AO 1984.8,1995.8 

Standard 3.3 AO 1984.8,1995.8, 1987. 1,1990.8,1984.4 
TC 1989.8,1992.12 
IO 1994.8 

Extended 3.5 AO 1984.8,1987.1 
SLS 1994.8,1988.8 

EUPRIN Standard 3.5 IO 1986.1 
Standard 3.3 10 1986.1,1985.1,1987.1 

LS 1988.1 
Extended 3.5 SLS 1985.12,1986.12 

METIP! Standard 3.5 AO 1980.8, 1983.8, 1990.8 
10 1985.8, 1994.8 

Standard 3.3 AO 1980.8, 1983.8, 1990.8,1 982.8 
TC 1982.12 
10 1985.8, 1994.8 

Extended 3.5 AO 1990.8 
SLS 1981.8, 1984.8, 1994.8 

Table 5. Detected outliers using the standard and the extended procedures 
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Multiple regression-ARIMA models were fit, such that effects for outliers, 
trading day and Easter were included. A summary of the results is given 
in Table 6. The value .of the Box-Ljung test for the residuals in the model 
for GIPI is bigger than the critical value of 33.9 and leads to the rejection of 
the null hypothesis of white noise residuals (especially high is the value of 
(>" = . 18) .  Also, the null hypothesis of normal residuals would be rejected for 
the EUPRIN and METIPI models (critical value is 5.99). In order to see if these 
misspecifications are due to the presence of non-detected outliers, the standard 
procedure was applied with lowered critical value C=3.3. The location and 
type of the. detected outliers are listed in Table 5. A total of 8 outliers were 
detected for the G1PI series, five of them for August. For the EUPRIN series, four 
outliers are detected, all of them for January. Finally, for the METIPI series, 
7 outliers are detected, six of them for August. A summary of the results 
for the multiple-regression ARIMA models can be found in Table 6. There is 
no evidence of misspecification for any of the three new models, although the 
number of outliers is high. 

Series Procedure 0, 0" BIC u. Q(24) N spec.effects outliers 
GIPI Standard -.613 -.650 -7.09 .027 37.97 0.86 trading 2 

C;3.5 Easter 
Standard -.623 -.655 -7.22 .024 2 1.08 0.36 trading 8 

C;3.3 Easter 
Extended -.602 -.781 -7.22 .024 29.58 0.33 trading 4 

C;3.5 Easter 
EUPRIN Standard -.461 -.535 -12.62 .002 16.00 7.03 no 

C;3.5 
Standard -.462 -.594 -12.75 .001 16.72 1.64 no 4 

C;3.3 
Ext-ended -.339 -.729 -12.81 .001 13.76 1.34 no 2 

C;3.5 
METIP! Standard -.552 -.324 -5.48 .062 15.36 6.87 trading 5 

C;3.5 Easter 
Standard -.541 -.406 - 6.06 .043 21.04 4.03 trading 7 

C;3.3 Easter 
Extended -.503 -.654 - 6.09 .043 25.09 4.42 trading 4 

C;3.5 Easter 

Table 6. Summary of ARIMA estimation results. 

The extended procedure, including the SLS outlier type, was then applied 
with the default value for the critical level (C=3.5). The location and type 
of the detected outliers can also be found in Table 5. In the three cases. 
SLS outliers are detected. The aggregate effect of the outliers detected usin� 
the two (standard with lowered critical value and extended) procedures is 
represented in Figure 9. The results for the estimation of the ARIMA models 
are summarized in Table 6. There is no evidence of misspecification in any 
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of the new models; the 8" estimates are closer to -1 indicating more stable 
seasonal components, which possibly result from a better modelling of the 
seasonal outlier. This effect can be seen in Figure 10 which compares the 
stochastic seasonal component obtained with the standard and the extended 
procedures. For the EUPRIN and METIPI series, the BIC criterion indicates 
preference for the model with SLS outliers; for the GIPI series, the BIC criterion 
do not distinguish between the two models. Comparing Figures 8 and 10 it 
is seen how the extended procedure has removed heterocedasticity from the 
seasonal component, which behaves now in a more regular manner. 

To further compare the models, two out-of-sample forecasting exercises were 
performed. First, for each of the three series, multiple regression-ARIMA 
models were re-estimated with 20 fewer observations (C=3.3 for the standard 
procedure; C=3.5 for the extended one). One-period-ahead forecasts were 
then computed for the last 20 months. Table 7 gives, for the two models 
of each series, the out-of-sample variance and the value of the F-test for the 
equality of the variances (approximate critical value 1.6). The comparison of 
these magnitudes reveals that the models that include SLS outliers have: ( 1 )  
smaller out-sample variance; and (2) smaller values for the F-test. 

a b 

. :� ,011 ':bJ;� 
-0.1 -0.1 

o 50 'cOO 150 0 50 100 150 
X 1 0-3 Cf 

:1 :sJ �I • 
o 50 e 1 00 0 50 1 00 

J�6=?1 �:I III""" ' III I 
o 50 1 00 150 200 0 50 1 00 150 200 

Figure 9. Effect of detected outliers on the observed. series. GIPI series a) Standard proce­

dure b) Extended procedure; EUPRIN series c) Standard procedure d) Extended procedure; 

METIPI e) Standard procedure f) Exten�ed. procedure 
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Figure 10. Stochastic seasonal components. GIPt series a) Standard procedure b) Extended 
procedure; EUPRIN series c) Standard procedure d) Extended procedure: �fETIPl e),Standard 
procedure f) Extended procedure 

G1PI EUPRIN METIPl 

Standard Extended Standard Extended Staildard Extended 
C-3.3 C-3.5 C-3.3 C-3.5 C=3.3 C=3.5 

Variance .1051E-02 .4780 0.03 .1475 E-05 . 1 189 0.05 .2504 E-02 .1\85 0.02 
F-test 1 .817 .805 .632 .483 1 .545 0.618 

Table 1. Summary of the out-oC-sample forecasting results. 

Second, to asses the stability of the models, the following exercise was per­
formed. The series GIPI (192 observations) was stopped at observation 92. 
The model was reestimated, including the outliers detected for that subperiod 
and, with all parameters fixed, one-period-ahead forecasts were subsequently 
computed for the last 100 observations. A similar computation was made for 
the EUPRIN series (144 observations) , reestimating in this case, the model for 
the first 64 observations, and obtaining the one-period-ahead forecast errors 
for the next 80 observations. Finally, for the METIPI series (211 observations) , 
the model for the first 121 observations was reestimated, and one-period-ahead 
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forecast errors were obtained for the next 90 observations. Table 8 compares 
the forecast standard errors, and Figure 1 1  the forecast errors. From the table, 
it is seen that the extended method decreases, in the three cases, the forecasts 
standard error, although the differences are small. Comparing the forecast 
standard errors for the subperiods with the residual standard error for the 
full sample given in Table 6, the proximity of the two is remarkable. This 
model stability is further confirmed by Figure 11 ,  which displays (considering 
the length of the out-of-sample forecasting period) very well-behaved errors. 
Although moderate, the superiority of the extended approach is noticeable. 
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Figure 11. One-period-ahead forecast errors a)series GlPI b) series EUPRIN c) series MET!PI 

Series Procedure Fore.::ast SE 
GIPI Standard .0288 

"Extended .0276 
EUPRIN Standard .0018 

Extended .0015 
METIP! Standard .0139 

Extended .0125 

Table 8. Standard error of the one-period-ahead forecast. 

The three real examples in this section suggest that the consideration of 
the SLS outlier in the extended outlier detection procedure yields more par­
simonious models, more stable seasonal components, and better forecasting 
performance. The improvements are not dramatic, but they appear to be 
quite general. 
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7 A final remark: innovational versus seasonal 

outlier 

With series containing trend and seasonality, that follow, for example, a model 
of the type 

\l\l,y, = O(B)a" (7.1) 

where O( B)a, is a stationary process, the 10 has the form 

and Figure l.d showed an example. On the one hand, the effect of the outlier is 
explosive; on the other hand, its profile, forced to follow the divergent MA ex­
pression of the model for the series, is therefore very restricted. An 10 imposes 
thus a relatively complicated and quantitatively important deterministic effect 
on the series. This is shown in Figure 12, which displays a series generated with 
a model of the type given by (7.1), with ". = 1, perturbed by an 10 at period 
t=36, with w = 5. As seen in the figure, the two series keep diverging, and 
the outlier effect accounts for an increasingly larger share of the series level; 
it follows that if lOs have occurred in the relatively distant past, we would be 
dealing with mostly deterministic series. The unbounded effect of the outlier 
seems thus an undesirable property. In other words, requiring an outlier to 
have a bounded (even if permanent) effect seems a sensible requirement. 

We further showed in Section 4 that the test used to detect outliers has, for 
the case of the 10, consistently low power for different model specifications, in 
part.icular, considerably lower than for the other types of outliers: AO, LS, TC 
or SLS (further limitations of innovational outliers in the time series context 
are discussed in Pena, 1990). It is a fact, besides, that 10 may produce, on 
occasion, unattractive decomposition of series and, for example, by default, lOs 
are-removed from the automatic .outlier detection and correction procedure of 
the TRAMO-SEATS methodology. Removing lOs from the procedure, however, 
presents a drawback: none of the remaining types of outliers is capable of 
explaining any seasonal structure. 

Considering the examples of Section 6, in all cases, the standard procedure 
yields innovational outliers. The extended procedure (which simply adds the 
SLS outlier to the four considered by the standard method) besides a moderate 
(though general) improvement in the results and a more parsimonious outlier 
representation, yields no 10. In its place, SLS outliers appear. (We have 
checked with more examples that this feature happens often.)  10 outliers 
present another relative disadvantage. If an 10 were to perturbate the series 
under consideration, a combination of LS and SLS outliers should approximate 
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it welL On the contrary, if an SLS outlier is present, its replacement by an 
10 outlier, as seen in Section 5, can be seriously damaging. All considered, a 
conclusion emerges: instead of complicating the standard method by adding 
an additional outlier, the procedure could be simply modified by replacing 
the 10 outlier with the SLS one. In this way, all outlier effects are bounded, 
outliers are modelled in a more parsimonious manner, and diagnostics and 
forecasts are likely to improve. One last point should be mentioned: we have 
looked at the effect of a very particular outlier structure (associated with the 
polynomial \7;1 ) . Other specifications may well be appropriate, and this is a 
point of further research. 
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Appendix 

A extended procedure for outlier detection 

The procedure starts with the specification of the model for the observed series 
as if there were no outliers, and the following stages are followed: 

1.1 Obtain the maximum likelihood estimators for the unknown parameters 
in vector a based on the vector of standardized residuals e'. In the first 
iteration, the residuals obtained from the application of the Kalman filter on 
the observed series are used; after the first iteration, the adjusted residuals are 
used to evaluate the likelihood function. 

Detection inner loop 
1.2 For t = 1, . . .  , N and i = AO, IO, LS, TC, S L8, compute .\i(t) using 

(3.6), and the statistic ry(t) = maXi { I .\;(I ) I } .  If ryT = max,ry(t) > C, where C 
is a predetermined critical value, then there is a possibility of one outlier at 
time t = T. 

In the presence of outlying observations, the standardized residuals, obtained 
with the Kalman filter, are contaminated and, hence, a;; = {if N}e"e' may 
be overestimated. One method to overcome this problem, which is not time 
consuming, is the omit-one method, in which a� is calculated, such that the 
residual at time I = T is omitted. Other alternatives include the MAD method 
or the a % trimmed method, see Chen and Liu (1993). 

1.3 If a possible outlier is found, remove its effect from the residuals and 
obtain the adjusted residuals e using, 

e = e'" - Zw, 

and go back to 1.2 to iterate. Otherwise, proceed to 1.4. 
1.4 If no outlier is found in the first iteration, then stop. If one or more 

outliers have been detected in the previous iterations from steps 1.2-1.3, then 
go back to 1.1 to revise the parameter estimates. Continue to repeat 1.1-1.3 
until no new outliers are found, then go to II. 

J oint estimation stage 
II The effects of the identified outliers are jointly estimated in the multiple 

regression model in (3.10) by applying the Kalman filter on the vector of 
observat.ions and on each column in matrix Z; and applying the QR algorithm 
on Z. This provides an efficient estimator for vector w .  Compute the t­
statistic for the estimated effects and check if there is any outlier for which the 
t-statistic is smaller than C ,  where C is the critical value used in 1.2. If there 
are not, then obtain the adjusted series, check whether the initial specification 
of its ARIMA model is still valid, apply the Kalman filter on the adjusted 
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series, obtain the new residuals and go back to stage I to repeat the complete 
process until no new outliers can be detected. Otherwise, delete one by one 
the insignificant effects and re-estimate the multiple regression model until all 
the WiS are significant, then obtain the vector of adjusted observations, apply 
the Kalman filter on it, obtain the new residuals and go back to stage I to 
iterate until no new outliers can be detected. 
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