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Abstract

The triangle longest-edge bisection constitutes an efficient scheme for refining a mesh by reducing the obtuse triangles, since the
largest interior angles are subdivided. In this paper we specifically introduce a new local refinement for triangulations based on the
longest-edge trisection, the 7-triangle longest-edge (7T-LE) local refinement algorithm. Each triangle to be refined is subdivided
in seven sub-triangles by determining its longest edge. The conformity of the new mesh is assured by an automatic point insertion
criterion using the oriented 1-skeleton graph of the triangulation and three partial division patterns.
© 2009 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

In the last years many different strategies have been developed to locally refine triangular and tetrahedral meshes.
There are two main steps in local adaptive refinement: the refinement of a subset of elements based on local error
indicators, and the consistent transition between refined and unrefined cells [1,3]. We refer to the latter as ‘mesh con-
formity’. Several refinement and improvement techniques for two- and three-dimensional triangulations are available
[2,5,13,4,7]. Some of them are based on edge bisection of the elements, triangles or tetrahedra.

In two dimensions, the 4-Triangle Longest-Edge (4T-LE) partition and the associated local refinement was introduced
by Rivara in [13,16,14]. This partition was extended to tetrahedral meshes in [8], where the tetrahedral mesh is locally
refined after the skeleton of the triangulation, that is, the set of triangular faces of the tetrahedra, has been divided by
the 4T-LE partition. The 4T-LE partition of a given triangle t never produces an angle smaller than half the minimum
original angle [18], and besides, it shows a remarkable mesh quality improvement [16] between certain limits, as
recently studied in [12]. In order to devise a new strategy to improve mesh quality through iterative refinement, in
this paper we use a new triangle partition, the seven-triangle longest-edge (7T-LE) partition [6]. This partition, first,
positions two equally spaced points per edge and, then, the interior of the triangle is divided into seven sub-triangles
in a manner compatible with the subdivision of the edges. Three of the new sub-triangles are similar to the original,
two are similar to the new triangle also generated by the 4T-LE, and the other two triangles are, in general, better
shaped.
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Fig. 1. (a) LE partition of triangle t0 and (b) 4T-LE partition of triangle t0.

The outline of this paper is as follows: Section 2 summarizes the 4T-LE partition and its improvement property,
showing the limitations of this improvement. Section 3 presents the new 7T-LE partition and shows in a geometric
diagram that the new triangles generated by the 7T-LE partition are better shaped that those generated by the 4T-LE
partition. Section 4 introduces the new local refinement algorithm based on the 7T-LE partition, by using the 1-skeleton
oriented graph approach [20]. Also the inverse counterpart algorithm for derefining a sequence of triangulation is
presented. The paper closes with some conclusions and ongoing research.

2. The 4T-LE partition and its improvement property

Here the 4-triangle longest-edge partition and its self-improvement is summarized. The section closes with an
example illustrating the limits of the characteristic improvement.

In the following, for any triangle t, the edges and angles will be respectively denoted in decreasing order r1 ≥ r2 ≥ r3,
and γ ≥ β ≥ α. Furthermore, t(α, β, γ) will be the class of similar triangles with angles γ ≥ β ≥ α. Interchangeably,
t will represent an element of the class t ∈ t(α, β, γ) or the class itself.

Definition 1. (edge bisection and longest-edge bisection) The longest-edge (LE) partition of a triangle t0 is obtained
by joining the midpoint of the longest edge of t0 with the opposite vertex (Fig. 1 (a)). The 4-triangle longest-edge
(4T-LE) partition is obtained by joining the midpoint of the longest edge to the opposite vertex and to the midpoints
of the two remaining edges (see Fig. 1(b)).

Note that the two subtriangles with edges coincident with the longest edge of the parent are similar to the parent.
The remaining two subtriangles form a similar pair that, in general, are not similar to the parent triangle. We refer to
such new triangle shapes as ‘dissimilar’ to those preceding.

Since the first 4T-LE partition of any triangle t0 introduces two new edges parallel to the edges of t0, the first
4T-LE partition of a single triangle t0 produces two triangles similar to t0 and two (potentially) new similar triangles
t1; and, consequently, the iterative 4T-LE partition of any triangle t0 introduces (at most) one new dissimilar triangle
per iteration [16].

The iterative 4-triangle longest-edge partition produces a finite sequence of ‘better’ triangles satisfying the properties
illustrated in the following diagram until triangle tN becomes non-obtuse, where αI , and γI are respectively the smallest
and the largest angles of triangle ti. The arrow emanating from triangle ti to triangle ti+1 means that the (first) 4-triangle
longest-edge partition of triangle ti produces the new dissimilar triangle ti+1:

We refer the reader to [12] in which the self-improvement property of the 4T-LE partition has been studied in detail.
By way of example, consider the initial triangle t0 with angles (α, β, γ) = (1.95, 32.595, 145.455). The evolution of
the smallest angle and largest angle for each of the new triangles generated by the 4T-LE partition is shown in Fig. 2.
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Fig. 2. Evolution of minimum and maximum angles by the 4T-LE partition of an initial triangle through iterative refinement.

Therefore, the self-improvement property of the 4T-LE partition, as proved both experimentally and mathematically
in [12], needs to be handled with caution as this example clearly demonstrates.

Since the 4T-LE partition is based on the bisection of the edges, by locating midpoints on the edges of the triangle,
we have introduced here a new triangular partition based on the trisection of the edges at equally spaced points. Our
goal is to use this partition to introduce a new local refinement algorithm.

3. The 7-triangle longest-edge partition

In this section, a new longest-edge partition is presented. This partition is based on the trisection of the edges of the
triangle, instead of the bisection of the edges as the 4T-LE.

Definition 2. (7-triangle longest-edge partition) The 7-triangle longest-edge (7T-LE) partition of a triangle t0 is
obtained as follows:

1. Position two equally spaced points per edge and join them, using parallel segments, to the edges, at the points
closest to each vertex (see Fig. 3 (a)).

2. Join the two interior points of the longest edge of the initial triangle to the base points of the opposite sub-triangle
in such a way that they do not intersect (see Fig. 3(b)).

3. Triangulate the interior quadrangle by the shortest diagonal (see Fig. 3(c)).

Fig. 3. 7T-LE partition of triangle t0: (a) edge trisection and cut off the corner triangles by parallel segments to the edges, (b) interior points of the
LE are connected to the base points of opposite triangle and (c) triangulation of the interior quadrangle by the shortest diagonal.
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Fig. 4. Evolution of minimum and maximum angles by the 7T-LE partition.

It should be noted that, due to parallelism, the first three sub-triangles obtained are similar to the initial one (t0),
whereas the second two sub-triangles are similar to the first-class Rivara triangle (t1). Finally, the last two triangles
are not given with the 4T-LE Rivara partition and, consequently, will be called here, tn1. Note also that the area of
sub-triangles t0 and t1 is 1/9 of the area of the initial triangle, whereas the area of each sub-triangle tn1 is 2/9 of the
area of the initial triangle.

In order to compare the evolution of new triangles for the 7T-LE partition we consider the same initial triangle as
before, that is t0 with angles (α, β, γ) = (1.95, 32.595, 145.455). The evolution of the smallest angle and largest angle
for each of the new triangles generated by the 7T-LE partition is shown in Fig. 4. It should be noted that the new
triangles are better shaped that those produced by the 4T-LE partition.

Basing our hypotheses on the trisection of the edges, some other partitions may be considered. We present here one
of these possibilities, also based on a local Delaunay triangulation:

Definition 3. (7-triangle Delaunay partition) The 7-triangle Delaunay (7T-D) partition of a triangle t0 is obtained as
follows:

1. Position two equally spaced points per edge.
2. Triangulate the cloud of points using the Delaunay triangulation (see Fig. 5(b)).

It should be noted that the 7T-D partition is not equivalent to the 7T-LE partition since the division of the interior
hexagon depends upon the specific distribution of the distances between the vertices (see Fig. 5).

Fig. 5. Two different 7T partitions of an obtuse triangle t0.
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Fig. 6. 7T-LE partition and 3T-LE partition of an obtuse triangle t0.

3.1. Mesh quality improvement for the 7T-LE partition

Note that the new triangle tn1 generated by the 7T-LE partition may also be seen as one of the triangles generated
by the 3T-LE partition division, used in the local refinement associated with the 4T-LE partition (see Fig. 6).

Lemma 4. The number of dissimilar triangles arising in the iterative application of the 7T-LE partition to any initial
triangle t0 ≡ �ABC is bounded.

See reference [6] for a proof of this result, and for a discussion and comparison between partition 4T-LE and 7T-LE
depending on the shape of the initial triangle.

In order to experimentally show the result of previous Lemma, we use here a geometrical diagram introduced in
[10]. For a given triangle the longest edge is scaled to have unit length. It follows that the set of all triangles is bounded
by this horizontal segment (longest edge) and by two bounding exterior circular arcs of unit radius. This mapping
domain comprised by the horizontal segment of extreme points (0, 0) and (1, 0), the unit circular arcs which center at
these extreme points, allows us to represent the shape evolution for the new triangles generated by iterative application
of any triangle partition.

Here we carried out the following computational experiment. Select a point (x, y) within the mapping domain. Point
(x, y) defines the apex of a target triangle with additional vertices at (0, 0) and (1, 0). For this triangle, 7T-LE division
is successively applied as long as a new dissimilar tn1 triangle appears. This means that we recursively apply 7T-LE
and stop when the shapes of new generated triangles are the same as those already generated in previous refinement
steps. The number of such refinements to reach termination defines the number of dissimilar triangles associated with
the initial triangles associated with the initial triangle and this numerical value is assigned to the initial point (x, y)
chosen. This process is progressively applied to a large sample of triangles (points) uniformly distributed over the
domain. Finally, we graph the respective values of dissimilar triangles in a corresponding color map to obtain the result
in Fig. 7. The same experiment for the 4T-LE partition is shown in Fig. 8.

It should be noted that the dark blue region in the previous figure corresponds to the region in which all the
trajectories end, with total independence of the initial position. Therefore, for the 7T-LE partition, a lower bound for
the maximum of the smallest angles for triangles tn1 is α = 30◦ corresponding to the apex with x = 1/4, or the apex
with x = 3/4. Note also that the smallest angle in each of the regions generated in this way, is bounded from below with
total independence of the initial point of the respective trajectories. This is a remarkable feature in comparison with
the evolution of the angles for the 4T-LE partition. In the 4T-LE partition these lower bounds depend on the geometry
of the initial triangle. See [12] for details, and observe, for instance, Fig. 9 left.

For a better understanding of the self-improvement property of the 4T-LE partition and the limits of this property
as given in this paper, the successive triangles obtained have been normalized to share the longest edge. The various
triangles obtained in the first test problem are depicted in Fig. 9.

The evolution of the new triangles generated by the 7T-LE partition vs. the triangles generated by the 4T-LE partition
can be observed, at a first glance, from the diagrams in Fig. 10. There, the apexes of the triangles have been numbered
in the order in which they have been generated. Apexes of triangles generated by the 4T-LE partition are joined by a
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Fig. 7. Color diagram representing triangle classes generated by a Montecarlo experiment for the 7T-LE partition.

Fig. 8. Dissimilar triangle classes generated by computer experiment for the 4T-LE partition.

Fig. 9. Evolution of dissimilar triangles of example test 1.
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Fig. 10. Evolution of the triangles given by the 4T-LE partition (bold line) vs. 7T-LE partition (dashed line) for different initial triangles.

bold line, while the apexes of the new triangles coming from the 7T-LE partition are jointed by a dashed line. Note,
that in general, triangles on the dashed line are better shaped that the corresponding triangles on the bold line.

4. Local refinement algorithm based on the 7T-LE partition

Similarly to the local refinement based on the 4T-LE partition, we present here a local refinement based now on
the 7T-LE partition. That is, the particular triangles to be refined the 7T-LE partition is chosen for dividing. Then, in
order to assure the conformity of the arising new mesh we use one of the partial partitions given in Fig. 11, where for
comparison the partial partitions used by the local refinement based on the 4T-LE partition are also shown. Observe
that 4T-LE partitions used 1 midpoint per edge subdivided, while 7T-LE partition used two interior, equally spaced,
points per edge subdivided.

In the local refinement algorithm presented here we use the concept of 1-skeleton, see reference [20] for details.
Here we use the concepts of longest-edge propagation path (LEPP) and 1-skeleton of a two-dimensional triangu-

lation. The (LEPP) of a triangle t into a given triangulation as defined by Rivara [14] is the ordered list of triangles
{t = t0, t1, . . . , tn} such that triangle ti is the neighbor triangle of ti−1 adjacent to the longest-edge of ti−1.
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Fig. 11. Partial partitions of a triangle depending on the number of edges subdivided for the 4T-LE local refinement (left) and for the 7T-LE local
refinement (right).

On the other hand for a triangulation τ its 1-skeleton is the undirected graph G1(τ) = G1(P, L), where P is the
set of edges of τ and L represents the topological adjacency relationship between two different nodes (edges) of
P. So two edges A, and B are connected in G1(P, L), that is ∃ l ∈ L such that l ≈ (A, B) if they share a extreme
node in τ, that is, if A ∩ B /= ∅. The edges of any triangle may be classified into two types. The longest-edge will
be edge type 1, and the other two edges will be type 2. This classification induces an order into the 1-skeleton
graph by considering the relation R = ‘length of edge x in the triangle is less than length of edge y′. This order
relation induces an orientation into the graph representing such order. See Fig. 12 for the 1-skeleton (oriented) graph
associated to a single triangle (a) and to a whole triangulation (b). Let t0 a triangle in a given triangulation τ, and
ei an edge of t0. We will denote by LEPP (ei, G

1(τ)) the LEPP of the neighbor triangle to t0 sharing with t0 edge
ei.

The refinement of triangular meshes involves two main tasks. The first is the subdivision of the target triangles
and the second is the propagation to successive neighbor triangles to preserve conformity. If the refinement is uniform
then all triangles in the mesh are refined and no propagation is induced on the mesh. Refinement can also be used
locally for a small group of triangles in a mesh and in this case a neighbor triangle refinement (propagation) is

Fig. 12. 1-skeleton oriented graph for a single triangle (a) and for a whole triangulation (b).
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induced in the mesh to preserve conformity. In the LE schemes the longest edge of triangle t is first bisected (or
trisected) to form two (or three) subtriangles. Then, to preserve mesh conformity, the refinement is continued to
the associated edge neighbor using a longest-edge strategy until the propagating path terminates. In the 4T-LE
and also for the 7T-LE scheme, LE refinement propagates through all three neighbors triangles of t as in the basic
LE scheme preceding. The refinement may also be viewed as follows: (1) identify and divide by trisection the
edges specified by the overall refinement indicators (steps 1 and 2 in the scheme of the algorithm bellow) and (2)
subdivide the individual triangles to define the new triangulation (step 3). Concerning computational efficiency, it
should be noted that the 7T-LE algorithm is of linear complexity with respect to the number of nodes. In this sense,
from the computational efficiency point of view, the 4T-LE and the 7T-LE algorithms are equivalent. However,
as can be observed in the example bellow, the 7T-LE algorithm produces denser meshes for the same refinement
steps.

It is interesting to note that if G1 is the 1-skeleton directed graph of a 2D conforming triangulation τ, then G1 does
not contain cycles [20]. In addition, updating the 1-skeleton directed graph data structure by applying 4T-LE (and also
the 7T-LE) partition affects only up to three graph nodes in each refinement step. Note that from a computational point
of view, this fact ensures the locality of the 1-skeleton directed graph data structure.

An example of local refinement based on the 7T-LE partition is presented in Fig. 13. In both cases only a small region
is chosen to be subdivided by the 4T-LE partition, and by the 7T-LE partition. Notice that by the 7T-LE procedure a
more localized refinement is achieved in fewer refinement steps. For a comparison of the quality measurement evolution
when each partition is locally applied, the mean value of the quality measurement η has been used in this example.
Bearing in mind that for each triangle t, the quality measurement η is defined by

η(t) = 4A
√

3

l21 + l22 + l23
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Fig. 13. Example of local refinement. Based on the 4T-LE partition and based on the 7T-LE partition (a) 4T-LE partition. 1826 triangles after 33
refinement steps. (b) 7T-LE partition. 1838 triangles after 28 refinement steps.

where A is the area of t, and l1, l2, and l3 the lengths of the sides of the triangle. For the equilateral triangle η = 1 where

l1 = l2 = l3 =
√

(4A
√

3/3). It should also be noted that other quality measurements may be used for this purpose,
but they give similar patterns [6].

Fig. 14 shows the evolution of the average of η(t) for the triangles t, at each mesh level, when the two reference
partitions, 4T-LE, and 7T-LE are repeatedly applied locally. The quality evolution showed by the 7T-LE partition in
this example is slightly better than that given with the 4T-LE partition. However, further research on the quality of the
meshes obtained by local refinement is needed.

The fractal appearance of the adapted meshes in the neighborhood of the critical point is clear both for the 4T-LE
local refinement and for the 7T-LE approach. In this sense is useful to use the concept of stable molecule associated to
a node P as follows [15,11].

Theorem 5 (Given any conforming triangulation). τ, for any vertex P of τ, the arbitrary iterative use of the 7T-LE
refinement algorithm to refine the triangulation around the vertex P, divides the angles converging in P in a finite
number of k parts.

Fig. 14. Evolution of mesh quality (mean value of the quality measure for each triangle per refinement step).
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Fig. 15. Stable molecule at point P by the 4T-LE local refinement (b and c), and by the 7T-LE local refinement partition (b’ and c’).

Definition 6. (stable molecule) For any conforming triangulation τ and any vertex P of τ, the stable molecule
associated with vertex P is the partition of the plane around vertex P, induced by the use of some triangle refinement
scheme of each triangle around the vertex P, such that further refinements of the triangles around P do not change the
number of triangles sharing P.

The following result holds:

Theorem 7. Let τ be any conforming triangulation and consider any vertex P of τ. The use of the 7T-LE refinement
algorithm to refine the triangulation around the vertex P produces triangulations that have the following characteristics:
(a)After a finite number of iterations, the algorithm produces a triangulation τ∗ such that, the stable molecule associated
with vertex P is obtained. (b) The next iterations of the algorithm do not partition the angles of the stable molecule,
but only introduce a set of new vertices distributed in geometric progression along the sides of the stable molecule
of P.

An example of the stable molecule with vertex P is shown in Fig. 15. Note that by using longest-edge based
algorithms for refining, the stable molecule with vertex P is achieved once the opposite edge to vertex P is not longer
the longest-edge of all the triangles sharing P. This explains previous Theorem.

4.1. 7T-LE derefinement algorithm

In should be noted here that the inverse counterpart algorithm for derefining a triangulation can be developed, in
the same way that it has been introduced for the 4T-LE scheme [11]. To this end, the edges of a triangulation will be
marked or unmarked respectively if their interior nodes remain or can be eliminated according to some derefinement
criterion. In addition, if an edge must remain into the triangulation, this fact induces that some other edges have also
to remain for conforming considerations. An outline of the 7T-LE derefinement algorithm is given below:
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It is worth noting that the derefinement condition is checked in a minimum number of nodes: only the interior nodes
of eligible edges in each mesh-level, and out of these, only those suitable to be cancelled are taken for evaluation. If
one node cannot be eliminated no neighboring nodes can be cancelled either.

Basically the derefinement algorithm proposed here is based into three main steps:

• Derefinement condition
• Assuring conformity
• Definition new connections

Conformity of the arising new mesh is assured in the same way that for the refinement procedure, that is, by using
locally, for each remaining edge, the 1-skeleton oriented graph associated to the triangulation. Once all the edges have
been evaluated every triangle of the preceding mesh level is taken to re-define the new connection of its descendants.
This issue comprises two operations: clean up of the triangle and re-definition of the new connections. The second one
is done by the same procedure used at refining.
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Finally, since the conformity is assured locally, and only the eligible edges at each level are chosen for evaluating
the derefining condition, the derefining algorithm is linear in the number of edges.

5. Conclusions and current research

In this paper, the 7-triangle longest-edge (7T-LE) partition has been used to develop a new local refinement algo-
rithm based on the trisection of the edges. The so-called self-improvement property of this partition has been shown
numerically and compared with the same property of the 4-triangle longest-edge partition. The proposed 7T-LE refine-
ment algorithm is an alternative algorithm for the local refinement problem. Finally the use of the LEPP concept along
with the 1-skeleton of the triangulation allow us to implement a fully local 7T-LE algorithm, and also to implement its
counterpart inverse derefinement algorithm.

Since the improvement of the triangulation is much better that for the 4T-LE algorithm in the case of obtuse triangles
one could ask how to combine the proposed algorithm with other compatible partition for the case of acute triangles.
Other related open problems, under further consideration are the following:

• Study of the propagation path due to the extension for conformity, in a similar way that it has been studied for the
4T-LE algorithm [21,22].

• Study of the number of dissimilar triangles generated by the iterative application of the 7T-LE partition [12].
• Study of a lower bound on the angles of triangles constructed by longest-edge trisection [18,9].
• Study of a the convergence of the longest-edge trisection partition method for all the triangles [19].
• Use of longest-edge trisection techniques for the automatic refinement of Delaunay triangulations [15].
• Cost analysis of the conformity extension for the longest-edge trisection based refinement [17].
• Study of the mesh smoothness, that is if the transition between small and large elements is gradual depending on

the particular triangular partition used. Smoothness is directly connected with the propagation problem in the local
refinement of meshes.
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