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Abstract

We consider the joint modelling of the mean and covariance structures for the general antedependence
model, estimating their parameters and the innovation variances in a longitudinal data context. We
propose a new and computationally efficient classic estimation method based on the Fisher scoring
algorithm to obtain the maximum likelihood estimates of the parameters. In addition, we also propose
a new and innovative Bayesian methodology based on the Gibbs sampling, properly adapted for
longitudinal data analysis, a methodology that considers linear mean structures and unrestricted
covariance structures for normal longitudinal data. We illustrate the proposed methodology and study
its strengths and weaknesses by analyzing two examples, the race and the cattle data sets.
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1 Introduction

Continuous longitudinal data consist of repeated measurements on the same subject over
time. These measurements are typically correlated and there have been several proposals
in the literature to handle stationary or nonstationary correlations and variances, as well
as balanced or unbalanced longitudinal data (see, e.g., Laird and Ware, 1982; Diggle et
al., 1994 or Zimmerman and Núñez-Antón, 2001).
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In the context of the parametric multivariate regression model for longitudinal
data and under normality, the response variable for each of the m experimental units
under study, each having n observations over time, is denoted by Yi = (Yi1, . . . ,Yin)′,
i = 1, . . . ,m. In this way, the nm × 1 response vector Y = (Y1, . . . ,Ym)′ contains the
responses for all subjects under study, and it is assumed that the Yi’s are independently
normally distributed as N(μμμ,Σi = σ2 In), with μμμ = (μ1, . . . , μn)′ = Xβββ and In being
the identity matrix of order n. Here, X is the n × p design matrix containing the set of
explanatory variables, and βββ is the set of mean parameters, so that βββ = (β1, . . . , βp)′. This
model can be formally written as

Yi = μμμ + εεε i, with εεε i ∼ N(0,Σi = σ
2 In), (1)

As is well known, this model assumes that the errors are independently and normally
distributed with mean zero and unknown constant variance σ2. Under the model above,
we have that E(Y) = μμμ∗ = (μμμ, . . . , μμμ)′ and that ΣY is a block-diagonal matrix with
diagonal matrix elements given by Σi = σ

2 In, i = 1, . . . ,m.
If εi j and εik, j � k, i = 1, . . . ,m, are not independent, then Var(εεε i) = Σi is no

longer a diagonal matrix and it would be necessary to model and estimate the off-
diagonal elements of the covariance matrix. This modelling approach usually requires
to impose some constraints on the elements of Σi to guarantee its positive definiteness.
For example, in stationary Gaussian processes, such as the ones used in Geostatistics,
the covariance between two observations is explicitly determined by their correlation
function. More specifically, it is modelled as a function of the (Euclidean) distance
between these two observations. Moreover, and given that some of the properties of
this function are imposed by its spatial structure, only correlation functions belonging
to the families where these requirements hold can be considered (see, e.g., Diggle and
Verbyla, 1998, or Stein, 1999).

Longitudinal data typically consist of several measurements taken over time in
each of the experimental units in the sample. It falls into the framework of correlated
observations on the same subject and/or experimental unit, and it requires the
specification and estimation of both the mean and the covariance structures. Most
of the parametric approaches have concentrated on normal linear models (see, e.g.,
Pourahmadi, 1999 and 2000, or Zimmerman and Núñez-Antón, 2001). A central idea to
be able to efficiently estimate the covariance matrix was first introduced by Macchiavelli
and Arnold (1994) and Macchiavelli and Moser (1997) and it was based on its Cholesky
decomposition. This approach has been used for several joint modelling proposals
for the mean and covariance structures in the context of longitudinal data (see, e.g.,
Pourahmadi, 1999 and 2000, Pan and MacKenzie, 2003, 2006 and 2007 or Pan and
Ye, 2006). Zimmerman and Núñez-Antón (1997) and Zimmerman, Núñez-Antón and
El Barmi (1998) also proposed a joint modelling of the mean and covariance structures,
and Núñez-Antón and Zimmerman (2000) addressed the possibility of having random
coefficients and other alternative nonstationary models in a joint modelling proposal for
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the mean and covariance structures in the context of longitudinal data. In addition, there
have been only a few proposals within the Bayesian framework (see, e.g., Cepeda, 2001,
Cepeda and Gamerman, 2000 and 2004, Daniels and Pourahmadi, 2002, or Pourahmadi
and Daniels, 2002) and all of them proposed specific and restricted parametric structures
for the mean, the innovation variances and the autoregressive parameters in the model.
Cepeda and Gamerman (2000) proposed a Bayesian methodology for modeling mean
and variance heterogeneity, using normal prior distributions for both the mean and
variance parameters in the regression model. Cepeda (2001), also using normal prior
distributions, extended this methodology to allow for a joint modelling of the mean
and covariance structures. These latter results are included in Cepeda and Gamerman
(2004). Independently, Daniels and Pourahmadi (2002) and Pourahmadi and Daniels
(2002), also proposed the use of normal prior distributions for both the mean and
covariance parameters, but they did not include any explicit algorithm to fit the joint
mean and covariance model and use a data set (Pourahmadi and Daniels, 2002) and
simulations (Daniels and Pourahmadi, 2002) to illustrate their proposals. Moreover, their
proposals focused on modelling the covariance structure and did not include simulations
or applications where there was a joint modelling approach proposal for the mean
and covariance structure. In this paper, we consider the general antedependence model
(Gabriel, 1962, Macchiavelli and Arnold, 1994, or Zimmerman and Núñez-Antón,
1997), and propose a joint modelling approach for the mean and covariance structures,
estimating the mean and autoregressive parameters, and the innovation variances in the
longitudinal data context. This general model does not impose any specific or restricted
parametric structure on the innovation variances and autoregressive parameters, as was
the case in previous proposal. We initially consider a new and computationally efficient
classical estimation algorithm based on the Fisher scoring algorithm to obtain the
estimators of the parameters. This proposal is very convenient and appealing in many
cases, especially in the ones where the number of observational units in the study is
large, such as in the examples used here to illustrate our proposals (i.e., the race data and
the cattle data). In these cases there is a better agreement between sample regressograms
and fitted autoregressive parameters and innovation variances, resulting in a better
estimation of the parameters in the mean structure. In addition, we also propose a
new and innovative Bayesian methodology based on the Gibbs Sampling (Geman
and Geman, 1984), properly adapted for longitudinal data analysis, a methodology
that considers linear mean structures and unrestricted covariance structures for normal
longitudinal data. This methodology allows the researcher to be able to incorporate
relevant prior information in the data analysis, as well as to obtain the parameter
estimates when the number of observational units in the study is small. In this specific
case, we can also estimate credibility intervals for the parameters of interest in the
model.

We illustrate the proposed methodology and study its relative strengths and
weaknesses when compared to other proposed methods by analyzing two examples,
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the race and the cattle data sets. Moreover and for the cases where no prior information
is available to be implemented in our Bayesian methodology proposal, we also include
the methodology for the possibility of using noninformative priors. The comparison of
the results obtained with the classic methodology proposal and with the noninformative
priors Bayesian proposal allows us to be able to evaluate their efficiency. As will be
seen in the examples presented here, the estimates obtained under these two alternative
proposals are very similar.

The paper is organized as follows. Section 2 introduces the general model used
in the context of longitudinal data analysis. In Section 3 we introduce the proposed
classic methodology for this type of data. Section 4 includes the proposed Bayesian
methodology, which is finally applied to the race and cattle data sets in Section 5. Section
6 includes some general conclusions.

2 The General Model

As we have already indicated, one of the main issues in the modelling approach we
propose requires Var(εεε i) = Σi, i = 1, . . . ,m, to be nonnegative definite so that its inverse
can be efficiently calculated and, in addition, it should also be allowed to have a general
form so that it is not too restrictive. Pourahmadi (1999) proposed a general approach
where all of these conditions hold. Note that, since observations on different subjects
are assumed to be independent and, thus, only within-subject covariance structures need
to be considered, we suppress the subscript i (identifying the subjects) when describing
these structures. More specifically and following the general model settings presented
in Cepeda and Gamerman (2004), let us consider the general antedependence model
(Gabriel, 1962 or Zimmerman and Núñez-Antón, 1997), where for a given individual
having n observations we have that:

Yi j − μ j =

j−1∑
k=1

φ jk(Yik − μk) + ν j, ν j ∼ N(0, σ2
j), (2)

i = 1, . . . ,m, j = 1, . . . , n,

and that E(Yi j) = μ j, where μ j is assumed to be a linear function of the vector of
parameters βββ. In addition, the ν j’s are assumed to be mutually independent and, by
convention, we set all empty sums to zero, that is

∑0
k=1 zk = 0. In this way, (2) can

be rewritten in matrix form as

ννν = T (Yi − μμμ), ννν ∼ N(0,D), and D = diag(σ2
1, . . . , σ

2
n), (3)
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where ννν = (ν1, . . . , νn)′, μμμ = (μ1, . . . , μn)′, T = {ti j} j=1,...,n
i=1,...,n , with

ti j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if j = i
−φi j if j < i

0 otherwise

and

Var(ννν) = D = T Var(Yi − μμμ) T′ = TΣiT
′ = TΣT′ (4)

As a direct result of equations (3) and (4), Σ can be indirectly calculated by computing
D and T. In addition, we should point out that the triangular decomposition in equation
(4) is unique. Moreover, given that Σ is a symmetric matrix if and only if there exists
a unique lower triangular matrix T, with ones in the diagonal, and a unique diagonal
matrix D with positive diagonal entries such that TΣT′ = D, we also have that Σ is
positive definite (Pourahmadi, 1999). Therefore, from (3), we have that

Ỹi = (In − T)Ỹi + ννν = ΦỸi + ννν, i = 1, . . . ,m, (5)

where Ỹi = (Yi − μμμ), and the k-th row of the n × n matrix Φ = (In − T) contains
[n − (k − 1)] zeroes and the (k − 1) components of the autoregressive parameter vector
φφφk = (φk1, . . . , φk,k−1)′, k = 2, . . . , n.

3 Classic Methodology

Under the assumption that Yi = (Yi1, . . . ,Yin)′ ∼ i.i.d. N(μμμ,Σ), i = 1, . . . ,m, where μμμ is
assumed to depend linearly on βββ (i.e., μμμ = Xβββ, X being the n × p design matrix), and
Σ−1 = T′D−1T, the likelihood function is given by

L(βββ,Φ,D|Y) ∝ |D|−m/2 exp

{
−1

2
(Y − μμμ∗)′Σ−1

Y (Y − μμμ∗)
}
,

where Y = (Y1, . . . ,Ym)′ ∼ N(μμμ∗,ΣY) and |Σ| = |T′| |D| |T| = |D|. Note that in the
equation above, μμμ∗ = (E(Y1), . . . , E(Ym))′ = (μμμ, . . . , μμμ)′ and ΣY is a block diagonal
matrix with diagonal matrix elements given by Σ, so that Σ−1

Y is a block diagonal matrix
with diagonal matrix elements given by Σ−1 = T′D−1T.

Therefore, the log-likelihood function can be written as �(βββ,Φ,D|Y) =

log L(βββ,Φ,D|Y) ∝ −m log |D| − (Y − μμμ∗)′Σ−1
Y (Y − μμμ∗), so that the components of the

corresponding score function are given by
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∂�

∂βββ
= −X∗′Σ−1

Y (Y − X∗βββ)

∂�

∂φi j

= −1
2

(Y − X∗βββ)′
(
∂Σ−1

Y

∂φi j

)
(Y − X∗βββ)

(i = 1, . . . , n, j = 1, . . . , i − 1),

where X∗ = (X′, . . . , X′)′ is the nm × p design matrix. Thus, we have that

Iβββ,φ = E

(
∂2�

∂βββ∂φ

)
= 0

Iβββ,σ2 = E

(
∂2�

∂βββ∂σ2

)
= 0

Now, given that the log-likelihood function can be written as � = log L ∝ −m log |D| −
1
σ2

1
Y∗′1 Y∗1 − · · · − 1

σ2
n
(Y∗n − μ̃μμn)(Y

∗
n − μ̃μμn), where Y∗1 is the m-dimensional vector with i-th

component given by (Yi1 − μ1), Y∗k (k = 2, . . . , n) is the m-dimensional vector with i-th
component given by (Yik − μk), and μ̃μμk, k = 2, . . . , n, is the m-dimensional vector with
i-th component given by φk1(Yi1 − μ1) + · · · + φk,k−1(Yi,k−1 − μk−1), we can write

∂�

∂μ1

=
1
σ2

1

m∑
i=1

(Yi1 − μ1)

∂�

∂σ2
1

= − m
2σ2

1

+
1

2σ4
1

Y∗′1 Y∗1

Therefore, the maximum likelihood estimators of μ1 and σ2
1 are given by μ̂1 =

1
m

∑m
i=1 Yi1

and σ̂2
1 =

1
m

Y∗′1 Y∗1. Now, for φφφk = (φk1, . . . , φk,k−1) and σ2
k , k = 2, . . . , n, and if we let X̃k

be an m × (k − 1) matrix with columns given by Y∗1, . . . ,Y
∗
k−1, we have that

∂�

∂φφφk

=
1
σ2

1

X̃
′
k(Y

∗
k − X̃kφφφk)

∂�

∂σ2
k

= − m
2σ2

k

+
1

2σ4
k

(Y∗k − μ̃μμk)
′(Y∗k − μ̃μμk)

Thus, the maximum likelihood estimators of φφφk and σ2
k (k = 2, . . . , n) are given by

φ̂φφk = (X̃
′
kX̃k)

−1(X̃
′
kY
∗
k)

σ̂2
k =

1
m

(Y∗k − μ̃μμk)
′(Y∗k − μ̃μμk) (6)

The steps of the algorithm used to obtain the maximum likelihood estimators of both
the mean and variance parameters follow:
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1. Set some arbitrary initial values for φφφk and positive initial values for σ2
k , k =

1, . . . , n.

2. Compute Σ and update βββ by using
∂�(βββ,Φ,D|Y)

∂βββ
= 0.

3. Update φφφk and σ2
k , by solving the equations

∂�(βββ,Φ,D|Y)
∂φφφk

= 0 and
∂�(βββ,Φ,D|Y)

∂σ2
k

= 0, k = 1, . . . , n.
4. Repeat steps 2 and 3 until convergence.

4 Bayesian Methodology

As in the classic approach, we also assume that Yi = (Yi1, . . . ,Yin)′ i.i.d. ∼ N(μμμ,Σ),
i = 1, . . . ,m, where μμμ is assumed to depend linearly on βββ, and Σ−1 = T′ D−1 T. Therefore,
the likelihood function is given by

L(βββ,Φ,D|Y) ∝ |D|−m/2 exp

{
−1

2
(Y − μμμ∗)′Σ−1

Y (Y − μμμ∗)
}
,

where Y = (Y1, . . . ,Ym)′, |Σ| = |T′| |D| |T| = |D| and Φ = (In − T).
If we now let θθθ = (βββ,Φ,D)′, under the Bayesian approach and in order to obtain

the posterior distribution for the parameters, we need to assume a prior distribution
P(θθθ) for θθθ. Without loss of generality and for simplicity, we assume independent prior
distributions such that βββ ∼ N(b0,B), φφφk ∼ N(l0k,Σφφφk

), ψ1 = 1/σ2
1 ∼ G(α1, λ1) and

ψk = 1/σ2
k ∼ G(αk, λk) (k = 2, . . . , n), where ααα = (α1, . . . , αn)′, λλλ = (λ1, . . . , λn)′,

Ψ = (ψ1, . . . , ψn)′, and G(r, s), represents the gamma distribution with parameters r > 0
and s > 0. As usual, another possibility for the prior distribution for θθθ could be to
assume a noninformative prior distribution such as, for example, assume Jeffreys prior
distributions.

From Bayes’ theorem, the posterior conditional distribution for βββ, πβββ = π(βββ|Φ,Ψ,Y),
is given by

π(βββ|Φ,Ψ,Y) ∝ exp

{
−1

2
(Y − X∗βββ)′Σ−1

Y (Y − X∗βββ) − 1
2

(βββ − b0)
′B−1(βββ − b0)

}

∝ exp

{
−1

2
(βββ − b∗)′B∗−1(βββ − b∗)

}
, (7)

where b∗ = B∗(B−1b0 + X∗′Σ−1
Y Y) and B∗ = (B−1 + X∗′Σ−1

Y X∗)−1. Therefore, we have that
πβββ = π(βββ|Φ,Ψ,Y) ∼ N(b∗,B∗) and, thus, it would be possible to sample βββ directly from
πβββ. That is, values of βββ can be proposed directly from πβββ and accepted with probability
one. This is the basic description and motivation for the Gibbs sampler (Geman and
Geman, 1984).
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Now, given that Σ−1 = T
′
D−1T, we have that, for i = 1, . . . ,m,

Ỹ
′
iT
′D−1TỸi = [(In − Φ)Ỹi]

′D−1[(In − Φ)Ỹi]

Therefore, by taking into account the independence between individuals and using the
equation above, the quadratic form appearing in the log-likelihood function, Q(Y) =
(Y − μμμ∗)′Σ−1

Y (Y − μμμ∗), can be rewritten as

Q(Y) =
1
σ2

1

Y∗′1 Y∗1 + · · · +
1
σ2

n

(Y∗n − μ̃μμn)
′(Y∗n − μ̃μμn),

where μ̃μμk, k = 2, . . . , n is the m-dimensional vector with i-th component given by
φk1(Yi1 − μ1) + · · · + φk,k−1(Yi,k−1 − μk−1), Y∗1 = (Y11 − μ1,Y21 − μ1, . . . ,Ym1 − μ1)′ is
the vector of centered observations for all m individuals at the first time point; Y∗2 =
(Y12−μ2,Y22−μ2, . . . ,Ym2−μ2)′, is the vector of centered observations for all m individuals
at the second time point; and Y∗n = (Y1n − μn,Y2n − μn, . . . ,Ymn − μn)′ is the vector of
centered observations for all m individuals at the n-th time point.

In this way, the maximum likelihood function can be written as:

L(βββ,Φ,D) ∝ |D|−m/2 exp

{
− 1

2σ2
1

Y∗′1 Y∗1 − · · · −
1

2σ2
n

(Y∗n − μ̃μμn)
′(Y∗n − μ̃μμn)

}
(8)

Thus, if we assume independent normal prior for theφφφk’s, we can obtain, from the applica-
tion of Bayes’ theorem, that the posterior full conditional distribution for φφφk is given by

π(φφφk|βββ,D,Φ−k) ∝ σ−1
k exp

{
− 1

2σ2
k

(Y∗k − μ̃μμk)
′(Y∗k − μ̃μμk) −

1
2

(φφφk − l0k)
′Σ−1

φφφk
(φφφk − l0k)

}
, (9)

where Φ−k represent the parameters in Φ excluding the corresponding ones for φφφk.
Therefore, the conditional posterior distribution is given by

π̃(φφφk|ααα,λλλ) ∝ exp

{
−1

2
(φφφk − l∗k)

′Σ∗−1
k (φφφk − l∗k)

}
,

where l∗k = Σ
∗
k

(
Σφφφk

l0k +
1
σ2

k
X̃
′
kỸk

)
and Σ∗k =

(
Σ−1
φφφk
+ 1

σ2
k
X̃
′
kX̃k

)−1
. From the above, we have that

πφφφk
= π(φφφk|βββ,D,Φ−k,Y) ∼ N(l∗k,Σ

∗
k) (10)

So it is possible to sample φφφk directly from πφφφk
. Values of φφφk can be proposed directly

from πφφφk
and accepted with probability 1. This is the basic description and motivation

for the Gibbs sampler (Geman and Geman, 1984).
Finally, to be able to sample σ2

k , k = 1, 2, 3, . . . , n, as we have already seen before,
we propose the use of gamma priors for the ψk’s and, thus, from the straight application
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of Bayes’ theorem, we obtain gamma posterior distributions for the ψk’s, so that the
sampling procedure can be easily handled by using the Gibbs sampler.

More concretely, let Ỹ
∗
k = (Y∗k − μ̃μμk) be a random sample of size m from a N(0, σ2

k)
distribution (k = 1, . . . , n), with ψk = 1/σ2

k . That is, Ỹ
∗
k represents a sample of m

individuals at time tk, k = 1, . . . , n. Now, given that the gamma family is closed under
sampling, we can assume a gamma prior distribution so that ψk ∼ G(αk = n0k/2, n0σ

2
0k),

where n0k is a natural number and σ2
0k > 0. Therefore, the posterior distribution of ψk

can be directly obtained by using Bayes’ theorem, so that

π(ψk|βββ,D, Ỹ∗k) ∝ ψ[(n0k+m)/2]−1
k exp{−(n0kσ

2
0k + ms2

0k)ψk/2} (11)

This expression corresponds to the kernel of the gamma distribution. Thus, we have that

π(ψk|βββ(c), φφφ(c)) = G
(n0k + m

2
,

n0kσ
2
0k + ms2

0k

2

)
,

where s2
0k =

1
m
Σm

i=1Ỹ
∗′
k Ỹ

∗
k, k = 1, . . . , n.

If we decide to assume constant or noninformative priors, the sampling procedure
for each of the parameters involved in the estimation process is described below.

Given D, Φ and a constant prior distribution for βββ, we can sample βββ from

π(βββ|Φ,Ψ,Y) ∝
{
−1

2
(βββ − b∗)′B∗−1(βββ − b∗)

}
, (12)

where b∗ = B∗(X∗′Σ−1
Y Y) and B∗ = (X∗′Σ−1

Y X∗)−1.
Given βββ, D and a constant prior distribution for the φφφk’s, and letting Φ−k represent

the parameters in Φ excluding the corresponding ones for φφφk, we can sample the φφφk’s
(k = 1, 2, . . . , n) from (9) by following the procedure below:

1. Sample φφφ1 from π(φφφ1|βββ,D,Φ−1) ∝ σ−1
1 exp

{
− 1

2σ2
1

Y∗′1 Y∗1)
}

.

2. Sample φφφ2 from π(φφφ2|βββ,D,Φ−2) ∝ σ−1
2 exp

{
− 1

2σ2
2

(Y∗2 − μ̃μμ2)
′(Y∗2 − μ̃μμ2)

}
.

3. And so on, up to sample φφφn from

π(φφφn|βββ,D,Φ−n) ∝ σ−1
n exp

{
− 1

2σ2
n

(Y∗n − μ̃μμn)
′(Y∗n − μ̃μμn)

}
.

Finally, given D, βββ and a constant prior for the ψk’s, we can sample the ψk’s from

π(ψk|βββ(c), φφφ(c)) = G
(m

2
,

ms2
0k

2

)
,

where s2
0k is defined as before.
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5 Examples

In order to illustrate and motivate the methods proposed in this paper, we present the
analysis of two data sets, referred to here as the race data and the cattle data. Previous
approaches for analyzing these data sets have been reported elsewhere (Zimmerman
and Núñez-Antón, 1997; Zimmerman et al., 1998; Pourahmadi, 1999, 2000 and 2002;
Zimmerman, 2000; Núñez-Antón and Zimmerman, 2000; Wu and Pourahmadi, 2003;
Pan and MacKenzie, 2003, 2006 and 2007).

The race data consist of the “split” times for each of m = 80 competitors in each
10-km section of a 100-km race held in 1984 in the United Kingdom. The data include,
in addition to the split times, the ages of all but four of the competitors. Measurement
times are evenly spaced and common to all subjects in the study and no observations
were missing. A previous analysis (Zimmerman et al., 1998) showed the age variable
to be non-significant, so we will ignore it here. Our analysis centres on the study of
how competitor performance on each 10-km section is related to the section number
(t = 1, 2, . . . , 10) (i.e., n = 10), as well as on the adequate modelling of the variances
and the correlations between successive measurements being made on any given subject.

The cattle data (Kenward, 1987) come from a designed experiment in which cattle
receiving two treatments, say A and B, for intestinal parasites were weighed n = 11
times over a 133-day period. Thirty animals received treatment A and thirty received
treatment B (i.e., m = 60). The first 10 measurements on each animal were made
at two-week intervals and the final measurement was made after a one-week interval.
Measurement times were common across animals and rescaled to t = 1, . . . , 9, 10, 10.5,
and no observations were missing. We wish to study how cattle growth is affected by
the different treatments and, in addition, we concentrate on how the mean changes with
time, as well as on the adequate modelling of the variances and the correlations between
successive measurements being made on any given experimental unit.

5.1 Analysis of the Race Data

Figure 1 shows the profile plot for the race data. The profile plot indicates that the mean
split time tends to increase over the first 80 km of the race but then levels off (perhaps
reflecting the “kick” that well-conditioned runners generally show near the end of a
race). Figure 1 also shows that variances tend to increase over the course of the race,
and that the behaviour of many runners in the later sections of the race is more erratic,
in the sense that consecutive same-runner split times fluctuate more. The increase of the
mean does not seem to be linear with time and, thus, a quadratic or cubic model in time
may be more appropriate to model the overall mean growth in this data set. Based on
this and, as in Zimmerman et al. (1998), we use a cubic in time model for the overall
mean weight. That is, the overall mean weight, as a function of the section number t,
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Figure 1: Profile plot for the race data. The thicker line indicates the mean profile for all individuals in
the study.

will be given by:

μ j = β0 + β1t j + β2t
2
j + β3t

3
j , j = 1, . . . , 10,

where

μμμ = (μ1, μ2, . . . , μ10)
′ =

(
μ{t1=1}, . . . , μ{t10=10}

)′
and βββ = (β0, β1, β2, β3)′.

We also need to estimate the variance-covariance matriz Σ. In order to do so, and
as a direct result from equations (3) and (4), both the elements of the diagonal matrix
D and the φi j’s in the lower triangular matrix T need to be estimated. In order to have
a not too restrictive and a more general procedure, we consider noninformative prior
distributions in all mean and covariance parameters. As it is well known and as we
will see later on in this section, with the use of noninformative prior information, the
parameter estimates (both for the mean and variance-covariance matrix) obtained with
the proposed Bayesian methodology are very similar to the ones obtained with the
proposed classic methodology.

The estimates for the mean parameters obtained with the proposed Bayesian
methodology, together with their standard deviations in parenthesis, are

βββ = (46.320(0.711), 1.267(0.483), 0.556(0.167),−0.047(0.014))′,
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Table 1: Estimated means, variances and correlations for the race data set with
the Bayesian methodology. In the table, Section refers to the section number.

Section 1 2 3 4 5 6 7 8 9 10

Correlations

1.0

.94 1.0

.75 .72 1.0

.72 .70 .92 1.0

.49 .44 .76 .87 1.0

.57 .54 .72 .84 .91 1.0

.47 .43 .60 .69 .75 .84 1.0

.49 .53 .54 .64 .66 .80 .72 1.0

.53 .50 .55 .65 .69 .76 .68 .75 1.0

.37 .35 .47 .51 .54 .65 .72 .62 .77 1.0

Means 48.1 50.7 53.9 57.3 60.7 63.8 66.3 68.0 68.5 67.6

Variances 27.0 39.7 48.5 56.2 94.9 142.1 105.6 154.7 144.2 165.6

and the ones obtained with the proposed classic approach are

βββ = (46.247, 1.258, 0.564,−0.048)′.

Given that, as expected, the estimates obtained with the proposed classic methodology
are very similar to the ones obtained with the Bayesian methodology, we do not include
their estimated standard deviations. Note that all coefficients in the linear model are
different from zero at a 95% credibility level and that the signs of the coefficients are
consistent with the behaviour seen in Figure 1. In addition, our estimates are also similar
to the ones obtained by Zimmerman et al. (1998) with the difference that our variance-
covariance structure is more general than theirs because they have assumed a structured
antedependent model of order one and we have a general unstructured antedependent
model. As a way of comparing the estimated mean time as a function of the section
number, as in Figure 1, Table 1 shows these estimated values using the estimates
obtained from the Bayesian approach. As can be seen, this behaviour is consistent with
the one observed in Figure 1.

The estimated innovation variances obtained with the proposed Bayesian
methodology under noninformative priors with their corresponding estimated standard
deviations in parenthesis, as well as those obtained with the proposed classic
methodology are
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Table 2: Estimated autoregressive parameters obtained with the proposed
Bayesian methodology for the race data set. Estimated standard deviations, in
parenthesis, are also included. As in the T matrix (see Section 2), there are ones
on the main diagonal.

1

1.137 1

(0.028)

0.773 0.215 1

(0.216) (0.158)

−0.010 0.105 0.924 1

(0.076) (0.091) (0.043)

0.293 −0.701 −0.179 1.554 1

(0.079) (0.067) (0.043) (0.038)

−0.053 0.517 −0.370 0.100 1.117 1

(0.103) (0.100) (0.084) (0.063) (0.028)

0.200 −0.308 0,221 −0.078 −0.199 0.858 1

(0.102) (0.144) (0.086) (0.060) (0.055) (0.033)

−0.897 1.028 −0.150 −0.093 −0.197 0.849 0.240 1

(0.159) (0.138) (0.117) (0.073) (0.067) (0.055) (0.031)

0.749 −0.261 −0.211 −0.058 0.298 0.156 0.092 0.397 1

(0.091) (0.155) (0.110) (0.066) (0.061) (0.039) (0.028) (0.029)

−0.610 0.073 0.612 −0.283 −0.608 0.308 0.576 −0.118 0.726 1

(0.143) (0.193) (0.145) (0.082) (0.072) (0.050) (0.031) (0.037) (0.022)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ̂2
1

σ̂2
2

σ̂2
3

σ̂2
4

σ̂2
5

σ̂2
6

σ̂2
7

σ̂2
8

σ̂2
9

σ̂2
10

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Bayes

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

27.653(4.489)
4.811(1.162)
21.818(4.736)
9.085(1.493)
16.496(2.812)
19.616(3.319)
31.837(5.182)
47.552(7.980)
50.997(8.399)
49.414(8.123)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ̂2
1

σ̂2
2

σ̂2
3

σ̂2
4

σ̂2
5

σ̂2
6

σ̂2
7

σ̂2
8

σ̂2
9

σ̂2
10

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Classic

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

27.980
4.544
21.167
8.803
16.463
19.009
30.946
46.477
49.537
47.683

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The estimated values of all innovation variances are somehow consistent with the
increasing behaviour of variances seen in Table 1 and Figure 1. However, we must be
cautious about this issue because these are not the response variances. We will come
back to this matter when reporting the estimated variances and correlations for the race
data (see Table 1). Table 2 shows the estimated autoregressive parameters obtained with
the Bayesian approach. Moreover, the standard deviations obtained with the proposed
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Bayesian approach show that some of the autoregressive parameters are not different
from zero at a 95% credibility level. For brevity and because estimates obtained for
the autoregressive parameters with the classic approach are similar to those obtained
with the Bayesian approach, we do not include them. However, as estimates obtained
with the use of the two proposed approaches are quite similar, we can see that some of
the autoregressive parameters are not statistically significant at the same level. Finally,
Table 1 shows the estimated variances and correlations for the race data obtained with
the Bayesian approach. The behaviour of these estimated values is consistent with the
one observed in the corresponding sample variances and correlations (not included here
for brevity).

5.2 Analysis of the Cattle Data

For brevity, and as in Zimmerman and Núñez-Antón (1997), we report here the results
for group A only. Figure 2 shows the profile plot for cattle in group A of the cattle data.
The profile plot indicates that the means and variances of the responses are increasing
over the course of the experiment, with the more rapid growth occurring in the first few
weeks of the study. The increase of the mean does not seem to be linear with time and,
thus, a quadratic or cubic model in time may be more appropriate to model the overall
mean growth in this cattle group. Based on the analysis above and, as in Pourahmadi
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Figure 2: Profile plot for the cattle data, treatment A. The thicker line indicates the mean profile for all
individuals in this group.
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(1999) or Cepeda (2001), we use a cubic in time model for the overall mean weight.
That is, the overall mean weight, as a function of the section number t, will be given by:

μ j = β0 + β1t j + β2t
2
j + β3t

3
j , j = 1, . . . , 11,

where

μμμ = (μ1, μ2, . . . , μ11)
′ =

(
μ{t1=1}, . . . , μ{t10=10}, μ{t11=10.5}

)′
and βββ = (β0, β1, β2, β3)′. As in the analysis of the race data, we estimate the variance-
covariance matriz Σ from equations (3) and (4), by estimating the elements of the
diagonal matrix D and the φi j’s in the lower triangular matrix T. In this case, we
also consider noninformative prior distributions in all mean and covariance parameters.
Given the similarity of the estimates obtained from the Bayesian and classic approaches
when considering this type of priors, we only report the ones from the Bayesian
methodology. The estimates for the mean parameters obtained with the proposed
Bayesian methodology, together with their standard deviations in parenthesis, are

βββ = (227.575(3.041), 10.003(2.565), 1.154(0.541),−0.117(0.034))′.

Note that all coefficients in the linear model are different from zero at a 95%
credibility level, and that the signs of the coefficients are consistent with the behaviour
seen in Figure 2. In addition, our estimates are also similar to the ones obtained by
previous authors that have analyzed this data, with the difference that our variance-

Table 3: Estimated means, variances and correlations for the group A cattle
data set with the Bayesian methodology.

Time 1 2 3 4 5 6 7 8 9 10 10.5

Correlations

1.0

.74 1.0

.74 .89 1.0

.62 .68 .87 1.0

.58 .59 .79 .94 1.0

.53 .53 .75 .91 .95 1.0

.49 .50 .70 .83 .87 .93 1.0

.51 .58 .75 .83 .88 .92 .93 1.0

.51 .62 .73 .73 .76 .82 .89 .83 1.0

.46 .52 .68 .73 .78 .85 .88 .94 .94 1.0

.44 .44 .63 .70 .75 .81 .86 .92 .92 .98 1.0

Means 238.62 251.3 264.8 278.6 291.8 303.9 314.0 321.6 325.8 326.0 324.4

Variances 109.5 228.4 194.6 202.5 269.7 317.5 335.1 372.2 452.3 510.5 454.8
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covariance structure is more general than theirs. As a way of comparing the estimated
cattle weight as a function of time, as in Figure 2, Table 3 shows these estimated values
using the estimates obtained from the Bayesian approach. As can be seen, this behaviour
is consistent with the behaviour observed in Figure 2.

The estimated innovation variances obtained with the proposed Bayesian
methodology under noninformative priors with their corresponding estimated standard
deviations in parenthesis are

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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σ̂2
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σ̂2
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σ̂2
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σ̂2
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σ̂2
6

σ̂2
7

σ̂2
8

σ̂2
9

σ̂2
10

σ̂2
11

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Bayes

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

109.524(30.490)
102.496(42.180)
38.595(15.072)
42.015(13.012)
29.769(8.330)
29.811(8.357)

45.612(12.784)
32.955(9.345)
23.515(6.791)

37.974(11.438)
10.805(3.024)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The estimated values of all innovation variances are somehow consistent with the
increasing behaviour of variances seen in Table 3 and Figure 2. However, we must be
cautious about this issue because these are not the response variances. We will come
back to this matter when reporting the estimated variances and correlations for the group
A cattle data (see Table 3). If we wish to compare these results with those reported in
Pourahmadi (1999) or Cepeda (2001), we could estimate the log-innovation variances.
We have done so and estimates are very similar to theirs. Thus, this can be used as a way
to indicate that log-innovation variances could be modelled as cubic polynomials (see
Pourahmadi, 1999 or Cepeda, 2001). We do not consider it necessary to include these
estimated values here.

Table 4 shows the estimated autoregressive parameters with the Bayesian approach.
The standard deviations obtained with the proposed Bayesian approach show that the
autoregressive parameters are different from zero at a 95% credibility level and they are
all consistent with the results presented in Pourahmadi (1999). Finally, Table 3 shows
the estimated variances and correlations for the group A cattle data obtained with the
Bayesian approach. The behaviour of these estimated values is consistent with the one
observed in the corresponding sample variances and correlations (not included here for
brevity).
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Table 4: Estimated autoregressive parameters obtained with the proposed
Bayesian methodology for the group A cattle data set. Estimated standard
deviations, in parenthesis, are also included. As in the T matrix (see Section
2), there are ones on the main diagonal.

1

1.072 1

(0.172)

0.236 0.698 1

(0.110) (0.097)

0.062 −0.416 1.251 1

(0.118) (0.150) (0.181)

0.104 −0.133 −0.015 1.146 1

(0.050) (0.071) (0.059) (0.068)

−0.014 −0.200 0.166 0.295 0.789 1

(0.059) (0.087) (0.060) (0.075) (0.039)

−0.027 0.017 0.116 −0.278 0.050 1.044 1

(0.085) (0.092) (0.069) (0.099) (0.056) (0.069)

−0.182 0.261 0.100 −0.386 0.150 0.538 0.516 1

(0.069) (0.110) (0.059) (0.087) (0.060) (0.053) (0.063)

−0.011 0.208 0.166 −0.362 −0.216 −0.204 0.416 1.053 1

(0.077) (0.058) (0.072) (0.062) (0.055) (0.067) (0.037) (0.067)

0.052 −0.306 0.226 −0.147 0.007 0.112 −0.122 0.562 0.617 1

(0.099) (0.103) (0.077) (0.072) (0.058) (0.065) (0.042) (0.083) (0.072)

0.192 −0.330 −0.011 0.269 0.047 −0.292 −0.050 −0.015 0.213 0.907 1

(0.042) (0.051) (0.077) (0.058) (0.048) (0.052) (0.037) (0.057) (0.073) (0.048)

6 Conclusions

We have proposed a joint modelling approach for the mean and covariance structures
in the context of normal longitudinal data. In the proposals presented here, the mean
is modelled in a linear form and the covariance structure is left unrestricted in the
sense that no specific parametric model is imposed on it, except for the fact that its
modelling makes use of the general antedependence model specification, which has
shown to be most useful in practice for nonstationary situations such as the ones
present in the data sets analyzed here (see, e.g., Kenward, 1987, Pourahmadi, 1999
and 2000, Núñez-Antón and Zimmerman, 2000 or Zimmerman and Núñez-Antón,
2001). The proposals include both a classic and a Bayesian approach, allowing for
the possibility of having noninformative priors for the latter. The behaviour of the
proposed methodology is evaluated by analyzing two data sets and it has proved to
be consistent and reasonable when compared to previous and less general proposals.
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Extensions allowing for nonlinear mean structures are being considered at the moment
but are beyond the scope of this paper.
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Zimmerman, D.L. and Núñez-Antón, V. (1997). Structured antedependence models for longitudinal data.

In Modelling Longitudinal and Spatially Correlated Data. Methods, Applications, and Future
Directions, T.G. Gregoire, D.R. Brillinger, P.J. Diggle, E. Russek-Cohen, W.G. Warren, and R.
Wolfinger (eds.), 63-76. Lecture Notes in Statistics No. 122. New York: Springer-Verlag.
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