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Abstract

This paper presents an analytical study of a perturbed ion trap. Various tech-

niques are combined in order to extract information about the evolution of the sys-

tem. The problem is modelled by an axially–symmetric–three–degree–of–freedom

Hamiltonian. Normalization plus reduction lead to an integrable system whose flow

is analyzed. Finally a qualitative relationship between the flow associated to the

integrable system and the one attached to the original Hamiltonian is established.

For this purpose we use estimations of the error in the normalization, Poincaré sur-

faces of section and KAM theory.

Key words and expressions: Hamiltonian, perturbation, trap, normalization,

reduction, bifurcation.
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1 Introduction

Since the beginning of last century, the effect of the application of external fields to

atoms has played a crucial role in the development of atomic physics. In particular,

the application of static electric and magnetic fields to create trapping phenomena is

a remarkable feature. When the trapped particle is an ion, lab experiments are used to

perform very precise spectroscopic measurements and to construct accurate atomic clocks.

In this paper we focus on one of these experiments: the Penning trap [7, 5].

Briefly described, the Penning trap represents a three–dimensional trapping of a charge

or ion due to an axially–symmetric (“perfect”) quadrupole electric field plus a static

magnetic field. The perfect quadrupole electric potential is achieved by means of a set of
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three electrodes. One of the electrodes, called the ring, is shaped like the inner surface

of a toroid. The other two are like hemispheres placed above and below the ring. In

this arrangement, the quadrupole potential acts as a trap only in the direction of the

axis between the hemispheres (we call this axis z), while the motion in the radial plane

(Oxy plane) is unstable. The presence of the magnetic field along the z axis provides the

complete trapping and the motion of the ion remains harmonic.

In the above ideal configuration, the Penning trap is modelled by means of an unper-

turbed three–dimensional harmonic oscillator with two equal frequencies [7]. However,

electrostatic field perturbations may arise from imperfections in the physical design of

the electrodes, as well as from misalignments in the experimental setup, see for instance

Ref. [5]. We can separate these perturbations into harmonic and anharmonic perturba-

tions. In particular, it is the second group the most interesting one because it leads to

nonlinear motion. In this paper we only consider axially–symmetric perturbations of the

three–dimensional Penning trap. In particular, we will treat the sextupolar perturbation.

In this way the third component of the angular momentum vector is an exact integral of

the whole perturbed system.

Hence, the model is ideal to be considered from an analytical point of view within the

framework of perturbation theory. Our goal is to perform a qualitative analysis of the

effect caused by the imperfections on the Penning trap.

2 Formulation of the Problem

In this paper we present the model under study skipping the procedure to obtain the

formulation from the physical system. For that, the reader is referred to [6]. We consider

the Hamiltonian H in Cartesian coordinates x, y, z and conjugate momenta px, py, pz:

H =
1

2m
(p2
x + p2

y + p2
z) +

m

2
w2 (x2 + y2) +

m

2
w2
z z

2 + a3 z (2 z2 − 3x2 − 3 y2). (1)

Quadratic terms in H stand for the Hamiltonian corresponding to a single ion of mass m

trapped in a perfect Penning trap, where wz is the frequency induced by the quadrupole

electric field and w > 0 represents the trapping condition. Cubic terms in H stand for

the sextupolar perturbation. Thus, a3 is considered as the sextupole parameter.

By assuming a3 to be small, we can consider the system defined by Hamiltonian (1)

as a weakly perturbed w:w:wz harmonic oscillator. In the particular case wz = w (the

isotropic case), Hamiltonian (1) corresponds to the Hénon and Heiles system in three

dimensions [3]. When wz �= w, in order to still consider (1) as a weakly perturbed

isotropic oscillator, we will assume wz ≈ w. This allows us to define a small detuning

parameter |δ| 	 1 in such a way that it is possible to split w2
z = w2 + δ w2. Therefore,

38



Hamiltonian (1) becomes

H = H0 +H1,

H0 =
1

2m
(p2
x + p2

y + p2
z) +

m

2
w2 (x2 + y2 + z2),

H1 =
m

2
δ w2 z2 + a3 z (2 z2 − 3x2 − 3 y2),

(2)

where H1 is the perturbation to H0.

3 Normalization and Reduction

Our aim in this section is to simplify Hamiltonian H. Here we sketch the ideas for the

procedure and present the results. For details, see [6]. First we perform an asymptotic

transformation up to second order of approximation. After fixing the value of the energy

we will reach a two–degree–of–freedom system. The transformation is constructed in

such a way that we average the original system over one of the angles. Indeed, the

high–order averaging procedure can be interpreted as a normalization technique since

the “elimination” of an angle variable is completely equivalent to the construction of a

formal integral, see for instance [8]. At this point we want to emphasize that this type of

transformations are, in general, divergent. However, one can still build approximations

to the original problem (e.g. normalized or averaged Hamilton functions) good enough to

be useful for analytical purposes. This must be accompanied by an estimate of the error

made after truncation of the high–order terms.

The normalization procedure is carried out by means of Lie transformations following

the Lie–Deprit method, see Ref. [2]. We use nodal–Lissajous variables (
, g, ν, L,G,N),

a set of action–angle variables which describe particularly well axially–symmetric pertur-

bations of oscillators in 1–1–1 resonance, see Refs. [3].

In this case, we compute the averaged Hamiltonian up to second order because at this

order we have a finite number of equilibria in the reduced phase space, as we will see in

next section. Thence, higher orders in the normalized system do not alter the qualitative

behaviour of the reduced system.

As we have pointed out before, the presence of the axial symmetry, not only in the

perturbation, but also in the unperturbed part of H, allows the system to be reduced

again. In contrast with the first reduction, this second one is singular, the twice–reduced

space (from now on we call it T ) is not a smooth surface. Depending on the value of

the z–component of the angular momentum N the shape of this phase space is either a

double–pinched sphere (lemon), when N = 0, or a single–pinched one (balloon), if N �= 0,

Ref. [1].
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Fixing values for N and L, the double–reduced space is two–dimensional and is de-

scribed by three linearly independent invariants (τ ′1, τ
′
2, τ
′
3) constrained by: |N ′| ≤ τ ′2 ≤ 1

with N ′ = N/L and

τ ′21 + τ ′23 = (1− τ ′2)2 (τ ′22 −N ′2). (3)

Each point in the double–reduced phase space defined by (3) corresponds to a family of

perturbed ellipses in the original phase space.

Once we have applied the two reductions described above to Hamiltonian (2) we obtain:

Kd = α
(
γ τ ′2 + 16 τ ′1 + 41 τ ′22 − 56 τ ′2

)
, (4)

where α = 3 a2
3 L/w

5, which indicates the ratio between the frequency of the unperturbed

oscillator and the frequency induced by the sextupolar term and γ = δ (4 − δ)/(2α),

which in fact accounts for the relative influence between the detuning and the sextupolar

perturbation. Hence, Hamiltonian (4) contains the relevant dynamical information of

system H, depending on the two parameters γ and N ′ (which appears in Eq. (3)).

4 Phase Flow in the Reduced System

Taking into account the Poisson brackets between the variables [6] we derive the equations

of the motion

τ̇1 = { τ1 , Kd } = −2α

L
(82τ2 − 56 + γ) τ3,

τ̇2 = { τ2 , Kd } =
32α

L
τ3,

τ̇3 = { τ3 , Kd } =
2α

L
[16N2(1− τ2) + (82τ2 − 56 + γ)τ1 + 16(1− 3τ2 + 2τ 2

2 )τ2] .

(5)

Note that we have dropped the primes for the sake of simplicity.

The equilibria of the system are the local extrema of Kd on the semialgebraic va-

riety (3). They are the roots of the system formed by the right hand members of (5)

equated to 0 together with the constraint (3).

We give here some general information about this system. For details on its discussion,

see [6]. From the second equation of (5), it follows that the equilibrium points are located

on the plane τ3 = 0. There always exists one equilibrium point, namely (0, 1, 0). The

maximum number of equilibria is four, whereas the minimum is two. The change in the

number of equilibria owes to two different reasons. The first one is that one of the roots

enters or leaves the interval taking the extreme values |N | or 1, whereas the second is

that two or more roots explode from a multiple root. According to these changes, the

parameter plane (γ,N) is divided into regions R1, R2, R3, R4 by the bifurcation lines A,

B and the segment C (see Fig. 1). The analytic expressions for the bifurcations can be

seen in [6].
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Figure 1: Bifurcation diagram and meridian sections τ3 = 0 of balloons and lemons.

Stable points (index=1) are characterized by a black circle while unstable points with

index -1 are by a white one and the ones with index 0 are represented by a black–white

circle.

In order to study the stability of the equilibria appearing in all regions of the parametric

plane, we combine two techniques. On the one hand, for the equilibria appearing in

the regular points of the balloons and lemons we use the standard method of Lagrange

multipliers; on the other hand, the stability of the singular points can be deduced from the

Index Theorem once the stability behaviour of the regular equilibria has been established.

See the results in Fig. 1 and details in [6].

With respect to the type of bifurcations that occur we detect the following four:

Line B corresponds to a saddle-centre bifurcation. Whereas line A1 is a Hamiltonian

flip bifurcation of subtle type, A2 is a Hamiltonian flip bifurcation of murder type. A

Hamiltonian Hopf bifurcation occurs when the value γ = 72 is reached while moving

along N = 0. Finally, the segment C corresponds also to a bifurcation. For a detailed

description of these bifurcations see [6] and references therein.

A complementary information about the dynamics of the system is obtained from the

phase flow evolution. For details on how to perform the calculations involved to determine

the phase flow and some visualizations, see [6].

5 Connection to the Original System

5.1 Estimate of the error of the Lie transformation

The (formal and symplectic) change of variables applied in Section 3 can be used to cal-

culate an upper bound of the error committed in the truncation of the Lie transformation

approach.

Given x = (x, y, z, px, py, pz) and x′ = (x′, y′, z′, p′x, p
′
y, p
′
z) we calculate the change

x′ = X′(x; ε). Note that X′ gives explicit expressions of the new (transformed) variables

x′ in terms of the old (original) variables x. Furthermore, we compute x = X(x′; ε)
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obtaining expressions of the old variables x as functions of the new variables x′. At this

step we have to mention that both X and X′ are constructed by means of the generating

function using the formulae given in [2]. Moreover both changes X and X′ are built up

to second order in the small parameter ε.

We can compose X with X′ and compute explicitly the vector field X(X′(x; ε); ε),

which must be indeed a second–order approximation to x. Hence we arrive at

‖x−X(X′(x; ε); ε)‖ = ε3

E(x)+O(ε4), (6)where ‖ · ‖ denotes the Euclidean norm in R6 and E(x) is the global

error term, which is obtained explicitly and depends on the three coordinates, their three

conjugate moments and the two significant parameters of the problem, say γ and α or,

going back to the original Hamiltonian, the parameters a3 and δ. Note that for this

particular problem the parameter ε can be set equal to 1 as the real small parameters are

inside the function E.

Now we have to bound the function E. Assuming that a3 and δ satisfy |a3| ≤ 5×10−2

and |δ| ≤ 3 × 10−1, we have checked numerically that |E(x)| ≤ 5 × 10−3 provided that

‖x‖ ≤ 1.25. This calculation shows the efficiency of the analytical approach, valid in a

neighbourhood of the origin of R6. Note that this result is in agreement with the values

obtained after truncation of the Lie transformation at second order since |E(x)| is of the

order of O(ε3).

5.2 Poincaré surfaces of section

We can validate the estimation of the latter subsection by the analysis of the original

Hamiltonian by means of the technique of Poincaré surfaces of section (PSS). In fact, we

have established a correspondence between the fixed points in the PSS and the relative

equilibria. For pictures and details see [6].

In this way, we find out a direct connection between periodic orbits in the original

system and critical points in the reduced phase space. Besides this remarkable connection

we also observe the same qualitative evolution as γ varies. In fact, both the original and

the twice–reduced system T undergo the same sequence of bifurcations. Concretely, the

Hamiltonian flip bifurcation in balloons and lemons turns to be a pitchfork bifurcation in

the surfaces of section. This is due to the 2:1 covering of the twice–reduced phase space

(see Ref. [4]). Moreover, the Hamiltonian Hopf bifurcation remains the same in both the

surfaces of section and the lemons and balloons.

5.3 Dynamics of the full system: KAM theory

Since the normalized Hamiltonian Kd has been obtained after two reduction procedures

(the second–order normalization followed by the exact axial–symmetry reduction), we
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have to attach a 2D torus to any point of the reduced phase space T . More concretely,

if |N | < G < L, i.e. when the nodal–Lissajous variables are well defined, the 2D tori are

parameterized by the angles 
 and ν. (However, in case of equatorial or circular trajectories

it is still possible to define other action–angle variables and perform the reconstruction of

the invariant manifolds similarly.)

In particular one should speak of families of 2D tori depending on the parameters L

and N . This means that equilibrium points on the balloons and on the lemons must be

understood as invariant 2D tori in R6. Moreover they enjoy the same type of stability

whenever all the eigenvalues of the linearization of each equilibrium have non–null real

part. One can even compute explicit formulae of the (truncated) invariant 2D tori using

the direct change of the Lie transformation.

In those equilibria of T where the linearization gives eigenvalues with null real part,

a specific analysis should be performed. Nevertheless, in this problem such situations

occur only on the bifurcation curves A, B and the point (γ,N) = (72, 0), which corre-

spond, respectively, to Hamiltonian flip, saddle–centre and Hamiltonian Hopf bifurcations

(note that this has been numerically verified in the latter subsection using the surfaces

of section). For the analysis of these cases we refer to the papers [4] and [1] where these

bifurcations also occurs. Hence, all the details about the reconstruction process can be

followed in those papers. The bifurcations of relative equilibria are translated into bi-

furcations of 2D invariant tori or quasiperiodic orbits. Moreover the persistence of these

bifurcations is guaranteed by the estimate derived in Subsection 5.1.

5.4 Physical interpretation

In this paper we have shown that, for a fixed value of N , the dynamics is governed

by the parameter which indicates the relative influence between the detunig δ and the

sextupolar imperfection a3. If we focus on the polar case N = 0, which is the easiest to

be achieved experimentally, when γ goes from 0 (δ = 0) to γ > 72 or to γ < −42, in both

cases the phase space evolve to rotations around two stable equilibria through several

bifurcations. It is worth noting that this situation is equivalent to the one where the

sextupolar perturbation is not present (a3 = 0). As for a3 = 0 the system is integrable

the nonlinear character of the problem is provided by the sextupolar term. Thus, we

can conclude that the presence of the detuning attenuates the nonlinear effects caused

by the sextupolar perturbation. Taking into account that the value of the detuning can

be controlled, this perturbative study can serve to decide which detuning added to the

sextupolar perturbations would suppress the chaotic behaviour induced by the sextupolar

term when one treats the complete problem.
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