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Recent developments on wall-bounded turbulence

Javier Jim énez

Abstract.  The study of turbulence near walls has experienced a remmiesn the last decade, in
part because of the availability of high-quality numerisahulations. The viscous and buffer layers
over smooth walls are now fairly well understood. They arseatially independent of the outer flow,
and there is a family of numerically-exact nonlinear stuoes that predict well many of the best-known
characteristics of the wall layer, such as the intensity #uedspectra of the velocity fluctuations, and
the dimensions of the dominant structures. Much of this meg was made possible by the increase
in computer power that made the kinematic simulations oflaéite 1980s cheap enough to undertake
conceptual dynamical experiments. We are today at the stafyes of simulating the logarithmic layer.
A kinematic picture of the various processes present inghgtof the flow is beginning to emerge, and it
is leading to a rough dynamical understanding. Some ofiprigingly, in terms of linear models. Many
processes mimic those in the buffer layer, but in an avera@Sisense, rather than applied to individual
structures. The paper discusses the present status of derstanding of this region, and possible future
developments.

Desarrollos recientes sobre la turbulencia de pared

Resumen. El estudio de la turbulencia parietal ha renacido en lan@tdécada, debido en parte a la
aparicion de simulaciones numeéricas de alta calidadchpas viscosas y tampo6n cercanas a la pared se
entienden hoy dia bastante bien. Esencialmente son indigmees del flujo exterior, y existe una familia
de soluciones no lineales a la ecuaciones del flujo, nuar@eate exactas, que predicen adecuadamente
muchas de las caracteristicas mas conocidas de estaarégtalptales como la intensidad y los espectros
de las fluctuaciones de velocidad, o las dimensiones detlasesas dominantes. Una gran parte de estos
avances fue posible gracias al aumento de la potencia dedesarores, que hizo que las simulaciones
cinematicas de los afos 1980 se abarataran hasta pezrgigrimentos dinamicos conceptuales unos
afios mas tarde. Hoy dia estamos iniciando las primenagationes de la capa logaritmica. Esto nos
ha proporcionado un eshozo cinematico de los distintosgsias de esa region del flujo, y una primera
aproximacion a su dinamica; sorprendentemente, usamdtganos casos modelos lineales. Muchos de
los procesos recuerdan a los de la capa tampon, pero en tislosgromediado, en vez de aplicados a
estructuras individuales. Este articulo discute el estadual de nuestra comprension de esta parte del
flujo, y los probables desarrollos futuros.

1 Introduction

Any paper on turbulence in a mathematical journal has td st#ih a disclaimer, because it deals with
chaotic solutions to the Navier—Stokes equations, for Wwieixistence and uniqueness results are mostly
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unavailable. We will restrict ourselves here to the incoasgible case, for which the equations of motion
are,
Ou+uvVu + p~ ! Vp = vV2u, 1)

V.u=0, )

whereu is the vector velocityp is the pressureg is the fluid density, assumed constant, artle kinematic
viscosity.

Even in the absence of proof, there is overwhelming experiaieand theoretical evidence that the
behaviour of fluids is well described by (1)—(2) for scalagéa than the mean free path between molecular
collisions,),. The smallest active scale of a turbulent flow is, at leadténnhean, the Kolmogorov viscous
scalen [53], which is at least of ordeD(Re'/*),) for a gas. The Reynolds numbBe = /L. /v is given
in terms of the root-mean-square intensity of the velocifgtfiationsu’, and of the integral scale of the
largest eddied... It measures the scale ratio between the largest and théesiakbulent scales, and it
is typically of the order of thousands, or millions. It is thalways true tha > A4, and that turbulent
flows are described almost everywhere by (1)—(2). Therehmerétical reasons to suspect that scales of
the order ofA; may appear locally and intermittently [28], but the sameuargnts show that they should
not influence any low-order integral quantities such as tiexgy or the enstrophy. This is confirmed by
experiments.

We will therefore not worry here about existence problemgven about the question of turbulence
in general. The paper deals with the features that distétngsineared turbulence in the neighbourhood of
walls from free shear flows, and we will see that those difiees are mostly restricted to relatively large
structures, for which intermittency has little influence.

Wall-bounded turbulence includes pipes, channels anddayrayers. We will restrict ourselves to
cases with little or no longitudinal pressure gradientscsiotherwise the flow tends to separate, and to
resemble the free shear case. It was in attached wall-bduitmles where turbulence was first studied
scientifically [16, 12], but they remain to this day worse erstood than homogeneous or free-shear flows.
Thatis in part because what is sought in both cases is diffefeirrbulence is a multiscale phenomenon. En-
ergy resides in the largest eddies, but it cannot be digzipattil it is transferred to the smaller scales where
viscosity can act. The classical conceptual frameworkHat process is the self-similar cascade proposed
in [46], which basically assumes that the transfer is lonaddale space, with no significant interactions
between eddies of very different sizes. From that model,feord energy conservation arguments, Kol-
mogorov [35] derived how energy is distributed among thésitid eddies in the ‘inertial’ range of scales
of statistically homogeneous flows. He also computed theous scale that we have mentioned above,
where the energy is finally dissipated, and where the ineiscade ends. The resulting energy spectrum,
although now recognized as only an approximation, desexilz the experimental observations, not only
for isotropic turbulence, but also for small-scale turimgkein general. A sketch can be found in figure 1(a).

Isotropic theory gives no indication of how energy is feaitite turbulent cascade. In shear flows, the
energy source is the gradient of the mean velocity. The nresimais the interaction between that gradient
and the average momentum fluxes carried by the velocity #tictas [53]. In free shear flows, such as jets
or mixing layers, this leads to a large-scale instabilityhef mean velocity profile [9], and to large-scale
eddies with sizes of the order of the flow thickness. Thodegral’ scales contain most of the energy. The
subsequent transfer to the smaller eddies is thought todemtslly similar to the isotropic case.

The mean velocity profiles of wall-bounded flows, such aspgreboundary layers, are not unstable in
the same way as the free shear cases, although we will se¢hlat¢he energy of linear perturbations can
still grow. Wall-bounded turbulence is consequently a vezgghenomenon. While the velocity fluctuations
in a jet can easily reach 15-20% of the mean velocity diffeesnthey rarely exceed 5% in a boundary layer.
Wall-bounded flows are however of huge technological imgare. Probably half of the energy being spent
worldwide to move fluids through pipes and canals, or to makates through air or through water, is
dissipated by turbulence in the immediate vicinity of thdlwa

Wall-bounded flows are also interesting because they farteface squarely the role of inhomogeneity.
This can be seen in figure 1(b) which is the equivalent of fidi(e§ for a wall-bounded turbulent flow.
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Figure 1. Spectral energy density, kE(k). (a) In isotropic turbulence, as a function of the isotropic
wavelength A\ = 27/|k|. (b) In a numerical turbulent channel [18] with half-width A = 2000, plotted
as a function of the streamwise wavelength )., and of the wall distance y. The shaded contours
are the density of the kinetic energy of the velocity fluctuations, k, Euu(k.). The lines are the
spectral density of the surrogate dissipation, vk, E,..(k.), where w are the vorticity fluctuations.
At each y the lowest contour is 0.86 times the local maximum. The horizontal lines are y*+ = 80
and y/h = 0.2, and represent conventional limits for the logarithmic layer. The diagonal is A, = 5y.

The arrows indicate the implied cascades.

Each horizontal section of this figure is equivalent to thecsm in figure 1(a). The energy is again at large
scales, while the dissipative eddies are smaller. In thie,chowever, the size of the energy-containing
eddies changes with the distance to the wall, and so doesatige 0f scales over which the energy has to
cascade. The eddy sizes containing most of the energy at alhdigtance are in the midst of the inertial
cascade when they are observed farther away from the wa#. REynolds number, defined as the scale
disparity between energy and dissipation at some givetitatalso changes with wall distance. The main
emphasis in wall turbulence is not on the inertial energyads, but on the interplay between different
scales at different distances from the wall.

Models for wall-bounded turbulence also have to deal witktigpfluxes that are not present in the ho-
mogeneous case. The most important ones are those of mameddunsider a turbulent channel, driven by
a pressure gradient between infinite parallel planes, acahdpose the flow quantities into mean values and
fluctuations with respect to those means. Denot& by andiW the mean velocities along the streamwise,
wall-normal and spanwise directions,y andz, and the corresponding fluctuations by lower-case letters.
Using streamwise and spanwise homogeneity, and assund@hththaveraged velocities are stationary, the

mean streamwise momentum equation is

Dy{uv) + p~t 0, P = vd,,U, (3)

where the averagg) is conceptually defined over many equivalent independgreréxents. Streamwise
momentum is fed into the channel by the mean pressure gtadigR, which acts over its whole cross
section. It is removed only at the wall, by viscous frictiomlomentum has to flow from the centre to
the wall, carried that way by the averaged momentum flux ofitrguations,— (uv), which is called the
kinematic Reynolds stress. Reynolds stresses reside irsedfiroughly the same scales as the energy,
and it is clear from figure 1(b) that the sizes of the stressyo®y eddies change as a function of the wall
distance by as much as the scale of the energy across thialicagcade. This implies that momentum is
transferred in wall-bounded turbulence by an extra spatiatade. Momentum transport is present in all
shear flows, but the multiscale spatial cascade is chaistatesf very inhomogeneous situations, such as
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wall turbulence, and complicates the problem considerably

This paper is both a review and a prospective. In the nexiseete outline the classical theory of
wall-bounded flows, and define the different flow regions. dot®n 3 we review the current structural
understanding of the near-wall viscous layers, includegent work on equilibrium exact solutions to the
equations of motions, and how they are related to turbuléRus is the review part of the paper, and it can
be considered as relatively well established. The remgiséttions deal with the outer layers, about which
less is known, and it is mostly a road map of what, in the opirtbthe author, would need to be done in
the next few years to complete our knowledge of those regions

2 The classical theory of wall-bounded turbulence

The wall-normal variation of the length of the energy cascdidides the flow into several distinct regions.
Wall-bounded turbulence over smooth walls can be deschgddio sets of scaling parameters [53]. Vis-
cosity is important near the wall, and the units for lengtd &alocity in that region are constructed with
the kinematic viscosity and with the friction velocity., = (7,,/p)'/?, which is based on the shear stress
at the wallr,,, and on the fluid density. Magnitudes expressed in those ‘wall units’ are denoted by
superscripts. There is no scale disparity in this regiosgas in figure 1(b), because most large eddies are
excluded by the presence of the impermeable wall. The ersrdythe dissipation are at similar sizes. If
y is the distance to the wall;™ is a Reynolds number for the size of the structures, and it¥@nlarge
within the viscous layer, which is typically defined at mosya < 150 [41]. It is conventionally divided
into a viscous sublayey,™ < 5, where viscosity is dominant, and a ‘buffer’ layer in whicbth viscosity
and inertial effects should be taken into account.

Away from the wall the velocity also scales with, because the momentum equation requires that
the Reynolds stress; (uv), can only change slowly with to compensate for the pressure gradient. This
uniform velocity scale is the extra constraint introduaeevall-bounded flows by the momentum transfer.
The length scale in the region far from the wall is the flow kiniessh. In most of the examples in this
paperh will be the semi-channel height, from the wall to the cenptahe. Between the inner and the outer
regions there is an intermediate layer where the only availength scale is the wall distange

Both the constant velocity scale across the intermedigiemeand the absence of a length scale other
thany, are only approximations. It will be seen below that largals eddies of siz€&(h) penetrate to
the wall, and that the velocity does not scale strictly with even in the viscous sublayer. However,
if those approximation are accepted, it follows from synmparguments that the mean velocity in this
‘logarithmic’ layer is

Ut =k tlogyt + A. 4)

This forms agrees well with experimental evidence, with ppraximately universal Karman constant,
k =~ 0.4, but the theoretical argument has been repeatedly challtagd a short critical discussion will be
included in section 4.1.

Equation (4) does not extend to the wall, and the intercepstamtA depends on the details of the
viscous near-wall region. For smooth walls~ 5.

The viscous, buffer, and logarithmic layers are the mostattaristic features of wall-bounded flows,
and they constitute the main difference between those flodother types of turbulence.

The viscous and buffer layers are extremely important ferflbw as a whole. The ratio between the
inner and the outer length scales is the friction Reynoldsalmer, ™, which ranges from 200 for barely
turbulent flows, ta5 x 10° for large water pipes. In the latter, the near-wall layerrg/@bout3 x 104
times the pipe radius, but it follows from (4) that, even iattbase, 40% of the velocity drop takes place
belowy™ = 50. Because there is relatively little energy transfer amaggis, except in the viscous region,
those percentages also apply to where the energy is disdipatrbulence is characterized by the expulsion
towards the small scales of the energy dissipation, awan fte large energy-containing eddies. In the
limit of infinite Reynolds number, this is believed to leadamon-differentiable velocity field. In wall-
bounded flows that separation occurs not only in the scakedjpathe velocity fluctuations, but also in the
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shape of the mean velocity profile for the momentum tran3fiee singularities are expelled both from the
large scales, and from the centre of the flow towards the itigaic layers near the walls.

Because of this ‘singular’ nature, the near-wall layer isordy important for the rest of the flow, but itis
also largely independent from it. That was for example shbwnumerical experiments in [26], where the
outer flow was artificially removed above a certain wall dis&). The near-wall dynamics was essentially
unaffected as long as" 2> 60.

The near-wall layer is relatively easy to simulate numdigchecause the local Reynolds numbers are
low, but it is difficult to study experimentally, becausesitisually very thin in laboratory flows. Its modern
study began experimentally in the 1970’s [31, 38], but itig®strongest impulse with the advent of high-
quality direct numerical simulations in the late 1980’s amthe 1990’s [32]. We will see below that it is
one of the turbulent systems about which most is known.

The logarithmic law is located just above the near-wall taged it is also unique to wall turbulence.
Most of the velocity difference that does not reside in tharngall region is concentrated in the logarithmic
layer, which extends experimentally up go~ 0.2h (figure 1b). It follows from (4) that the velocity
difference above the logarithmic layer is only 20% of theakathenh™ = 200, and that it decreases
logarithmically as the Reynolds number increases. In thé bf infinite Reynolds number, all the velocity
drop is in the logarithmic layer.

The logarithmic layer is an intrinsically high-Reynoldsmiper phenomenon. Its existence requires
at least that its upper limit should be above the lower onghab0.2h™ > 150, andh™ > 750. The
local Reynolds numberg" of the eddies are also never too low. The logarithmic layeriieen studied
experimentally for a long time, but numerical simulationgweven an incipient logarithmic region have
only recently become available [4, 18, 14]. It is much worsderstood than the viscous layers.

3 Models for the buffer layer

The region belowy™ ~ 100 is dominated by coherent streaks of the streamwise velacityby quasi-
streamwise vortices. The former are an irregular arraymg (@t ~ 1000) sinuous alternating streamwise
jets superimposed on the mean shear, with an average sjgasagiaration of the order of ~ 100 [51].
The quasi-streamwise vortices are slightly tilted awayrfthe wall, and stay in the near-wall region only
for zT =~ 200. Several vortices are associated with each streak [24),alitngitudinal spacing of the order
of 2™ =~ 400. Most of them merge into disorganized vorticity outsideithenediate neighbourhood of the
wall [47].

It was proposed soon after they were discovered that steeakeortices were involved in a regeneration
cycle in which the vortices were the results of an instabitif the streaks [52], while the streaks were
caused by the advection of the mean velocity gradient by tinéces [7, 31]. Both processes have been
documented and sharpened by numerical experiments. Farpdgadisturbing the streaks inhibits the
formation of the vortices, but only if it is done betwegh ~ 10 andy™ ~ 60 [26], suggesting that it
is predominantly between those two levels that the reg¢inaraycle works. There is a substantial body
of numerical [17, 57, 49] and analytic [42, 29] work on theelm instability of model streaks. It shows
that streaks are unstable to sinuous perturbations agseiéth inflection points of the distorted velocity
profile, whose eigenfunctions correspond well with the shapd location of the observed vortices. The
model implied by these instabilities is a time-dependemwteyn which streaks and vortices are created,
grow, generate each other, and eventually decay. Refef2fifdiscusses unsteady models of this type,
and gives additional references.

Although the flow in the buffer layer is clearly chaotic, tHeos is not required to explain the turbulence
statistics. Simulations in which the flow is substituted hyoadered ‘crystal’ of identical ‘minimal’ sets of
structures [24] reproduce the correct statistics (figuréa further simplification, that occurred at roughly
the same time as the previous one, nonlinear equilibriuntisols of the three-dimensional Navier—Stokes
equations were obtained numerically, with charactesdstiat suggested that they could be useful in a
dynamical description of the near-wall region [39]. Otheels solutions were soon found for plane Couette
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Figure 2. Profiles of the root-mean-square velocity fluctuations. Simple lines are a full channel
with ™ = 180 [32]; —A — , a minimal channel with h™ = 180 [24]; —o— , a permanent-wave
autonomous solution [27]. —— , streamwise velocity; ---- , wall-normal velocity.

flow [39, 60], plane Poiseuille flow [54, 59, 60], and for an@aamous wall flow [27]. All those solutions
look qualitatively similar [58, 29], and take the form of awyaow-velocity streak flanked by a pair of
staggered quasi-streamwise vortices of alternating sigasely resembling the spatially-coherent objects
educed from the near-wall region of true turbulence.

In those cases in which the stability of the equilibrium $iolus has been investigated, they have been
found to be saddles in phase space, with few unstable directiThe flow could therefore spend a substan-
tial fraction of its lifetime in their neighbourhood, beaauits orbit would move slowly in the neighbourhood
of the fixed point. Exact limit cycles, and heteroclinic asibased on these fixed points, have been found
numerically [30, 55], and several reduced dynamical moditke near-wall region have been formulated
in terms of low-dimensional projections of such solutio®sq0, 57].

The fixed-point and limit-cycle solutions found by diffeteauthors were recently reviewed and ex-
tended in [23]. It turns out that they can be classified infgp'er’ and ‘lower’ branches in terms of their
mean wall shear, and that both branches have very differefitgs of their fluctuation intensities. The
‘upper’ solutions have relatively weak sinuous streaksdahby strong vortices. They consequently have
relatively weak root-mean-square streamwise-velocitytfiations, and strong wall-normal ones, at least
when compared to those in the lower branch. Their mean antiéition intensity profiles are reminiscent
of experimental turbulence [27, 60], as shown in figure 2, smdre several other properties. For example,
the range of spanwise wavelengths in which the nonlineartisols exist is always in the neighbourhood
of the observed spacing of the streaks of the sublayer [2Blvér’ solutions have stronger and essentially
straight streaks, and much weaker vortices. Their stegistie very different from turbulence.

The near-wall statistics of full turbulent flows, when cotediover scales corresponding to a single
streak and to a single vortex pair, are independent of the&tdg number, and agree reasonably well with
those of the fixed points, although there is a noticeableritmriton from unsteady bursting [23]. When
they are compiled over much larger boxes, however, the sitieaf the fluctuations does not scale well in
wall units, even very near the wall [13]. That effect is dudatge outer-flow velocity fluctuations reaching
the wall, and it is unrelated to the structures being comsiie this section.

This is shown in figure 3, which contains two-dimensionalksge energy densities of the streamwise
velocity, k. k. Ev.. (ks, k) in the buffer layer, displayed as functions of the strearavaisd spanwise wave-
lengths. The three spectra in the figure correspond to tembehannels at different Reynolds numbers.
They differ from each other almost exclusively in the longlaride structures represented in the upper-
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Figure 3. Two-dimensional spectral energy density of the streamwise velocity in the near-wall
region (y* = 15), in terms of the streamwise and spanwise wavelengths. Numerical channels
[2, 4,18]. —— , h™ = 547; -—-—- , 934; —— , 2003. Spectra are normalized in wall units,
and the two contours for each spectrum are 0.125 and 0.625 times the maximum of the spectrum
for the highest Reynolds number. The heavy straight line is A, = 0.15),, and the heavy dots are
Az = 10h for the three cases.

right corner of the spectrum, whose sizes are of the ordar, of A\, = 10h x h. Those spectra are fairly
well understood [2, 22, 18]. The lower-left corner contaims structures discussed in this section, which
are very approximately universal and local to the near-lag#r. The larger structures in the upper edge of
the spectra, and specially those in the top-right cornéerekinto the logarithmic layer, scale in outer units,
and correspond approximately to the ‘attached eddies\iat proposed long ago by Townsend [56].

4 The logarithmic layer

We noted in section 2 that the logarithmic layer is expengiveompute. The first simulations with an
appreciable logarithmic region have only recently appiabet even in them the relevant range of wall
distances is short. In figure 1(b), for exampie, = 2000, and the upper and lower logarithmic limits are
approximatelyy™ = 400 andy™ = 150. Even so, those simulations, as well as simultaneous adsanc
experimental methods, have greatly improved our undedsigrof the kinematics of the structures in this
region, and are beginning to hint at their dynamics.

Before considering those results, it is important to rentadt the meaning of the word ‘model’ is
probably always going to be different in the logarithmic andhe buffer layer. Near the wall, the local
Reynolds numbers are low, and the structures are smoothsamedtelly analytic. It is then possible to
speak of ‘objects’, and to write differential equations fbeir behaviour. Above the buffer layer, both
things are harder to do. In the logarithmic layer, the irdégcale is... = y, the r.m.s. velocity fluctuations
areO(u, ), and the turbulent Reynolds numberis = O(y ™). The definition of the outer layey,” > 1,
implies that most of its structures have large internal R&smnumbers, and that they are most probably
turbulent themselves. There is presumably a cascade dimypéice energy-containing structures with
the dissipative scales, and their velocity fields can be &xepeto have nontrivial algebraic spectra and
non-smooth geometries. Such objects ‘have no shape’, andrdg be described statistically. They are
‘eddies’, rather than ‘vortices’, because turbulent \aityi is always at the viscous Kolmogorov length
scaler, separated from the energy-containing eddies by a scatelratn ~ Re?/*. An example of such
an object is given below in figure 5.
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While the models discussed above for the buffer layer areaénéalm of direct numerical simulations
(DNS), and of classically identifiable structures, in theepdayers we are in the domain of large-eddy
simulations (LES), and of statistical modelling, in the sethat we cannot probably find simple structures
including all the scales of the flow. The most that we can egea simple description of the statistics
of the larger scales, coupled to a stochastic model for tririkent cascade ‘underneath’. This of course
does not mean that the logarithmic layer can not be DNSedttasmduthor firmly believes that such direct
simulations will be required before this part of the flow iglerstood, but the tools of choice are different.
We have seen above that DNS has been the driving force bdienevival of turbulence research in the
past few decades and that, for the buffer layer, it has alsa thee predominant technique. Experiments are
difficult very near the wall, while simulations are relativsimple. Experimental results in that region are
few, and, whenever a disagreement is found between nunagribsxperiments, it can probably be assumed
that the simulations are right. The same is not true in tharitfgmic layer. It is still true that DNS provides
an unprecedented level of detail on the flow, and that it @loanceptual experiments that are difficult
to carry out in a wind tunnel, but outer-layer experiments glentiful and reliable. Any model of those
regions has to reconcile the results of both techniques.

Perhaps the first new information provided by the numeric¢henogarithmic layer was spectral. It
had been found experimentally that there are very largesdalthe outer regions of turbulent boundary
layers [20, 33], and DNS provided information about theiotdimensional spectra, and about their wall-
normal correlations [2, 4]. The longest scales are assatiaith the streamwise velocity componentts
spectral density in the logarithmic layer has an elongabegs along the line? = y\,, while the two
other velocity components are more isotropic (see figure 4).

When three-dimensional flow fields eventually became dvigldt was found that there is a self-similar
hierarchy of compact ejections extending from the buffgetanto the outer flow, within which the coarse-
grained dissipation is more intense than elsewhere [5].y Toerespond to the isotropic spectrawfn
figure 4(a). When the flow is conditionally averaged aroumdrththese ejections are seen to be associated
with extremely long, conical, low-velocity regions in thegharithmic layer [5]. The intersection of those
cones with the plane defined by a given wall distance is pédialand explains the quadratic behaviour
of the spectrum ofi. These structures are not only statistical constructsvithehal cones are observed as
low-momentum ‘ramps’ in streamwise sections of instantaiseflow fields [36], and one of them can be
seen in the streamwise velocity isosurface in figure 5.

When the cones reach heights of the order of the flow thickrieeg stop growing, and become long
cylindrical ‘streaks’, similar to those of the sublayert mith spanwise scales @f — 3h. They are fully
turbulent objects. Neither in simulations nor in experitsdms it been possible to determine a maximum
length for those ‘global modes’. They cross numerical baxdength25h (see figures 4 and 5), and, in
experiments, they are of the same order as the wind-tunmedrdiions [19]. The overall arrangement of
the ejections and cones is reminiscent of the associatioortites and streaks in the buffer layer, but at a
much larger scale.

The wall-normal dimension of these streaks is of the ordehefflow thickness, and they span the
distance from the central plane to the wall [2, 4]. Their r@al footprints are seen in the spectra of the
buffer layer as the ‘tails’ in figure 3, and account [18] foetbxperimentally-observed Reynolds number
dependence of the intensity of the near-wall velocity flatians [13]. Less easily explained is the more
controversial Reynolds-number dependence’ofin the logarithmic layer, initially also observed in [13],
but there is also evidence of its association with the lagge streaks. The dependence disappears when
the spectral energy associated with the global streaksrieved (see figure 6). That would imply that the
velocity fluctuations in the large streaks do not scale withwhich is indeed suggested by the analysis of
both experimental and numerical data [4]. That issue carelienbe considered as open.

Since we saw above that the sublayer streaks originate fieradvection of the mean shear by cross-
stream perturbations, which is a linear process, thereniedwpe that a linear model could also capture the
formation of the outer-layer streaks. The mean velocityifgrof turbulent channels is linearly stable [45],
but it has been known for some time that even stable flows eahttelarge transient energy amplifications,
because the evolution operator of the linearized Navieket equations is not self-adjoint [15, 10, 43].
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Figure 4. Two-dimensional spectral densities of the streamwise and transverse velocities in the
logarithmic region, y/h = 0.15, in terms of the streamwise and spanwise wavelengths. Numerical
channel with ™ = 2000 [18]. s kok By, ———= , kpk,Eyy, — — , ki k. E.,.. The contour
for each spectra is 0.25 times its maximum. The dashed straight line is A, = (y\.)'/?. The dotted
oneis A\, = \,. The heavy dotis A\, =\, = v.

Figure 5. Isosurface of the streamwise fluctuation velocity, u™ = —2, in a computational channel
with b+ = 550 [2]. The flow is from left to right, and the box shows the full semi-channel height,
and the full periodic streamwise length of the computational box, 25h. Only a narrow strip of width
3.15h is shown. Figure courtesy of O. Flores.
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Figure 6. Root-mean-square intensity of the fluctuations of the streamwise velocity in channels
at different Reynolds numbers. Data and symbols as in figure 3. (a) Full velocity fluctuations. (b)
With the energy removed for structures longer than A\, = 6h, and wider than A\, = h.

Simple linearized analysis of a uniform shear shows thatdhg-time asymptotic state of any localized
perturbation is as-streak, but it provides no wavelength-selection mechmaniéiscosity provides a length
scale, and the mean profile of real shear flows determined-aaathal modal structure. The key modelling
assumption appears to be to use the sgrdependent eddy viscosity required to maintain the expamiai
mean profile [44]. Note that this implies that the resultingdel applies to averaged eddies, rather than to
individual structures. The analysis can be found in [3]ulns out that there are two sets of wavelengths
for which the total energy is most amplified, with eigenfios that are localized at the two locations
where the viscosity does not dependpnNear the wall, where the viscosity is mostly molecularythe
have spanwise wavelengths and eigenfunctions similara@tiserved sublayer streaks. Near the central
plane, where/r = w.h is also roughly uniform, they are large-scale streaks wpdnsvise wavelengths
of the order of the observesh, and wall-normal eigenfunctions that agree well with thend@ant proper
orthogonal decomposition eigenmodes of the streamwiseiglat those wavelengths.

We know less about how the ejections are created, but linegysis also gives some information on
them. Although the linear transient growth of the strearewislocity is by now well established, it is less
often realized that, in the same way that transverse petioris create-streaks, any. perturbation that is
not infinitely long can transfer energy into the transvemieeity components. In fact, the same transient-
growth analysis giving the large-scale streaks contaimérivial amplifications forv andw. This would in
principle provide the possibility of a linear cycle in whichejections create streaks by extracting energy
from the mean shear, while the streaks in turn create ejectidnfortunately the wavelengths that are most
amplified foru are not the same ones that are most amplifiea farhe former are streaks elongated along
x, while the most amplified andw are roughly isotropic in the wall-parallel plane. This aggavith the
spectral evidence in figure 4, but means that nonlinearitylevbe required to match the wavelengths, and
to close the cycle. It is however easy to visualize a procgssHhich an ejection creates a strong streak,
whose enveloping shear layer becomes unstable and createshorter ejections. In fact, we have seen
that compact ejections can be identified at all scales indbarlthmic and outer layers, both numerically
and experimentally, and that they are associated withkstrégis known, from the analysis of their relative
lengths and lifetimes, that the observed ejections canadhé origin of the full length of the streak to
which they are associated, and that some causal link fraalstrto ejections is also required [3].

The scenario just described is mostly derived from simofeti and from the linear analysis of the
averaged equations of motion. A different scenario has begposed from the observation of streamwise
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sections of experimental flow fields. In it, the basic objsa hairpin vortex growing from the wall, whose
induced velocity creates the low momentum ramps mentiobede|1]. In the model, which was motivated
by the behaviour of hairpin vortices in the numerical sintiolaof a particular laminar velocity profile [63],
the hairpins regenerate each other, creating vortex pathat are responsible for the very long observed
streaks [11]. While the two models look very different attfgight, they can probably be reconciled to a
large extent. Vortex packets would correspond to the iiifiatvaves on the shear layer around the streak,
and the strengthening of the streak by the vortices wouldespond to the vortex regeneration process. In
fact, preliminary analysis of the averaged flow field in theghbourhood of ejections suggests that, while
the primary streak instability near the wall is sinuous, dogninant modes away from the wall may be
varicose, leading in the mean to symmetric hairpins. Vaécperturbations to model streaks have been
studied less often than sinuous ones, because the obsesvafi the sublayer streaks clearly suggest a
sinuous instability, but, whenever both symmetries hawntstudied in the same setting, their instability
eigenvalues have usually turned out to be of the same orégr [2

The main difference between the two models is their respeetinphasis on vortices and eddies, al-
though that might be largely a matter of notation, perhaflsenced by the coarser resolution of most
experiments when compared with simulations. An apparentye serious difference is the treatment of
the effect of the wall. The ‘numerical’ model emphasizesdfiect of the local velocity shear, rather than
the presence of the wall, while the ‘experimental’ one apptarequire the formation of the hairpins in the
buffer region. That could again be a matter of notation, big imore likely due to the reliance of the ex-
perimental model on laminar numerical simulations, usimdarular viscosity [63]. There is little question
that large structures in turbulence feel the effect of senahes [44]. While the modelling of this random-
izing effect as a simple eddy viscosity can be criticizedt thodel should be much closer to reality than
the much weaker molecular dissipation of a laminar enviremtm\When the linear evolution of an initially
compact ejection is analysed using the eddy viscosity meeatl above, the structures created near the wall
do not grow very much, and most ejections observed at a giaihdistance have to be created ‘locally’
[5]. Indeed, numerical experiments in which the viscoud wdle is artificially removed have outer-flow
ejections and streaks that are essentially identical teetladnove smooth walls [14]. Experimentally, this is
equivalent to the classical observation that the outertaiyeturbulent boundary layers are independent of
wall roughness [21].

At wall distances between the inner and the outer layergsatiranalysis does not provide a single
dominant most-amplified wavelength, because the eddy sitycloas no single absolute length scale. The
analysis of the initial value problem in that region residtself-similar structures that grow linearly with
time. This, however, is probably the most interesting pathe flow, because self-similarity is the most
characteristic feature of turbulence, and because theitbgac layer is the only part of wall-bounded
turbulence with the potential of supporting an indefinitalge scale ratio. Whether the linearized equations
can say something about this region, or whether nonlingiariequired at all levels, can only be speculated
at the moment.

4.1 The logarithmic velocity profile

Before leaving completely the subject of the logarithmigela it might be of interest to spend a few para-
graphs on the question of the logarithmic velocity profilé4ih That equation was one of the first quanti-
tative theoretical results obtained in turbulence, anda & genuine prediction. It is difficult to distinguish
empirically a power law with a small exponent from a logarithand the early engineering correlations
for the experimental mean velocities in boundary layersgipds used power laws, with exponents in the
range0.15 — 0.2. On the other hand, power laws are theoretically difficufusstify, because dimensional
analysis shows that an equation of the type

U = Consty®, (5)
either requires a characteristic scale for both the velarid the length, or alternatively none at all. We

have seen that. acts as a uniform velocity scale in wall-bounded flows, bigtuinclear whether (5) should
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be written, in the intermediate region, in terms of the visctength scale, or of the flow thickness. The
logarithmic law was formulated as a velocity profile that Icblbe expressed in terms of any length scale.
While there have been many derivations, most of them arevelgumit to the observation that, if there is no
available length scale, the only dimensionally possibienféor the mean velocity gradient is

oL ©
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from where (4) follows by integration. The argument is uguadedited to Millikan [37], who actually used
the requirement that an inner solution, scaled on the viséength, should match over a finite rangeyof
another solution scaling on the flow thickness. Since thie fat between the two length scales is arbitrary,
this implies that the expression for the velocity profilewsldovork for any length scale, and leads to (6). In
fact, the argument has to be slightly more involved, as iflyessen by repeating (6) with the gradient of
U? substituted for the gradient &f.

Reference [40] recasts the previous argument in terms oLihenalysis of the invariances of the
equations of motion, and notes that the solutions have toMagiant to all the possible transformations. The
argument above uses the invariance of the inviscid equatmgeometric stretching, which is why it can
say nothing about the choice of the dependent variablef gibnly after adding the Galilean invariance,
which applies only tdJ, that (6) is selected. When that is taken into account, thannvelocity can be
written as N

Ut =U(y/L)+a(L), )

which should be independent of the arbitrary length séal®ifferentiating with respect td. now gives
(6). This argument is much closer to Millikan’s [37], who rola¢d an inner solution of the fordi’ (y*),

to an outer one expressed in ‘defect’ fortfjt, ... — U.t . (y/h). The extra additive constant in the defect
form is required for the argument.

Note that Galilean invariance makes the logarithmic prg¢filancompatible with the no-slip boundary
condition at the wall, but that the logarithm is singulartetttpoint, and that the inviscid equations used to
derive it do not, in any case, support tangential boundanglitions.

The question of the detailed derivation of the logarithmiifibe is of more than academic interest, and it
is striking that even today, almost eighty years after it waginally proposed by Prandtl and Von Karman,
the validity of (4) keeps being regularly challenged, bothexrimentally and theoretically. A summary of
its early history can be found in the book by Schlichting [48]flavour of the current controversies, that
centre on questions such as whether a scale-independ@nt reglly exist, or on which origin should be
used fory in (4), can be found in [62, 8, 61].

The main interest of the subject is however that there anabas other than the mean velocity that
also show an apparent logarithmic behaviour. Two examgiedjuctuations of the spanwise velocity and
of the pressure, are given in figure 7. The figure also inclasesxample that does not behave logarith-
mically, for comparison. Logarithmic variables are inttheg because they are potentially singular. The
increment of such a variable across the logarithmic layéX(isg ™), and, in the limit of high Reynolds
numbers, it should grow without bound. For none of the twotflatons plotted in figure 7 can we use
Galilean invariance to justify a logarithmic law, and it Wwadlbe very interesting to understand why these
particular variables, and not others, behave in that wagr& s also the question of what is actually the
law being represented in the figure. It is unclear, for examphethep’, p’2, or some other power behave
logarithmically. The exponent can be varied within fairlyde limits without changing the quality of the
fit.

5 Conclusions

We have briefly reviewed the present state of the undersigrafithe different regions of wall-bounded
turbulent flows. The dynamics of the viscous layers near smwaalls is a subject that, like most others

198



Wall-bounded Turbulence

2
171,
O,
_l -
_2 _
10 10"
y/h
Figure 7. Profiles in a turbulent channel with h*™ = 2000 [18] of.: —— , mean velocity; ---- ,
r.m.s. spanwise velocity; —-— , r.m.s. pressure; -------- , r.m.s. wall-normal velocity. The two

vertical lines are y™ = 100 and y/h = 0.2, and all curves have been scaled so as to be one and
zero at those two limits.

in turbulence, is not completely closed, but which has extlin the last two decades from empirical
observations to relatively coherent theoretical modeis.dlso one of the first cases in turbulence, perhaps
together with the structure of small-scale vorticity intrepic turbulence, in which the key technique for
cracking the problem has been the numerical simulation effiitw. The reason is that the Reynolds
numbers of the important structures are low, and therefotessible to computation, while experiments
are difficult. For example the spanwise Reynolds numbereftreaks is only of the order of” = 100,
which is less than a millimetre in most experiments, but weetseen that it is well predicted by the range
of parameters in which the associated equilibrium solstiexist. We have seen that the larger structures
coming from the outside flow interfere only weakly with theanavall region, because the local dynamics
are intense enough to be always dominant. The spacing ofréaks just mentioned has been observed up
to the highest Reynolds numbers of the atmospheric bouralgey [34].

The structures in the viscous layers have a well-definedtieagale, determined by viscosity, that
allows them to be described as individual objects. In theolatyer, where the relevant length scale is the
flow thickness, we have seen that at least some of the staligiroperties can be described by the linear
analysis of the most amplified transient modes of the meastitglprofile. In this case there is however a
full turbulent cascade, instead of a single scale, and tHeesatan only be described in a statistical sense.
The next few years will probably be dominated by modellinfgr$ for the logarithmic layer, where there
is no unique dominant length scale, and where self-sirgilgrbwing statistical objects should probably
substitute individual structures or modes.

In the opinion of the present author, a key contributor téfer progress in this area should be numerical
simulation, in the same way as it was for the viscous layard,far motivating the analysis of the outer
ones. The main obstacle at present is one of cost, and wasdshwrthe original low-Reynolds number
simulations that eventually led to the understanding oftihifer layer. The simulation in [18] took six
months on 2000 supercomputer processors. It took a sirimiar twenty years before, to run the simulation
in [32] ath*™ = 180. As long as each numerical experiment takes such long tiinisspnly possible to
observe the results, and the simulations are little mone iedter-instrumented laboratory experiments.

As computers improve, however, other things become pa&ssitithen the low-Reynolds number simu-
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lations of the 1980s became roughly 100 times cheaper indB@sl it became possible to experiment with
them in ways that were not possible in the laboratory. Thiesef ‘conceptual’ simulations that led to the
results in section 3 were of this kind.

The cost of simulating the logarithmic layer is beginnind®within the reach of modern computers.
The next decade will bring it down to the level at which cortocepdynamical experiments become com-
monplace. The motivation will be both theoretical and testbgical. The momentum cascade across the
range of scales in the logarithmic layer will probably be fingt three-dimensional self-similar cascade to
become accessible to computational experiments. Its Byimg feature is the alignment of most of the net
transfer along the direction normal to the wall. The maircpcal drive is probably large-eddy simulation,
in which the momentum transfer across scales in the ineaige has to be modelled for the method to be
practical [25].
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