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Combustion in Hydraulically Resisted Flows∗

Gregory I. Sivashinsky

Abstract. The effects of hydraulic resistance on premixed gas combustion in tubes and inert porous beds
are discussed on the basis of recent research. It is found that the hydraulic resistance causes a gradual
precompression and preheating of the unburned gas adjacent to the advancing deflagration which may
lead (after an extended induction period) to a localized thermal explosion triggering an abrupt transition
from deglagrative to detonative combustion.

The hydraulic resistance has a profound effect also on the structure and velocity of well-settled det-
onation. At a sufficiently high level of resistance the normal near Chapman-Jouguet detonation is found
to undergo a jumpwise hysteretic transition to a low-velocity detonation driven by the developing pres-
sure diffusivity. The lattter mode may even become subsonic, the phenomenon occasionally observed in
porous bed combustion.

Combustión en flujos con resistencias hidraúlicas

Resumen. Se discuten, basado en recientes investigaciones, los efectos de la resistencia hidraúlica
en la combustión de gases premezclados. Se ha encontrado que la resistencia hidraúlica provoca una
precompresión y un precalentamiento gradual de los gases no quemados adyacentes a la deflagración que
se propaga, lo que puede conducir (después de un extenso periodo de inducción) a una explosión térmica
localizada que desencadena una transición abrupta de la combustión deflagrativa a la detonativa.

La resistencia hidraúlica también tiene un fuerte efecto en la estructura y velocidad de la detonación
generada. A un nivel suficientemente alto de resistencia la detonación normal próxima a la de Chapman-
Jouguet sufre una caı́da transicional con histéresis, a una detonación de baja velocidad dominada por
la difusividad de presión generada. Este modo puede llegar a ser subsónico, fenómeno ocasionalmente
observado en la combustión en lechos porosos.

“The mark of a good theory is to predict correctly
beyond the range of its validity”.

— B. GEBHARD

1 Introduction
When modeling a combustion system one may try to include everything that is likely to be of quantitative
importance, or one may intentionally ignore certain aspects in order to elucidate the impact of those that are
retained.
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The first approach is necessary if the goal is to obtain numbers for comparison with experimental mea-
surements or for the design of practical devices. The second approach is of great value when the goal is to
gain physical insight by making the problem tractable.

Identification of the elementary mechanisms by the appropriate distillation is quite an art and often
requires overcoming certain psychological barriers of conventional perception and reasoning. For exam-
ple, no one would normally object to simplifications treating activation energy as a large parameter, since
this is nothing but a formal recognition of the reaction rate’s strong temperature dependence, a fact well
known experimentally. However, if say, for studying the galloping detonation, one decides to adopt the
small-heat-release approximation, this will, most likely be met with a great deal of skepticism by an expe-
rimentally oriented audience as a mathematical extravagance contradicting the very essence of detonative
combustion. Indeed, in real-life systems the heat release is never small. And yet, the small-heat-release
approximation often proves to be remarkably useful in interpreting even rather subtle and complex effects,
and far beyond its nominal range of validity. This success is not entirely surprising. Stemming from a ratio-
nal asymptotics, the small-heat-release based model relates to the original fully nonlinear formulation as,
descriptively speaking, a tadpole relates to the fully developed frog. For all their morphological distinctions
both entities share the same genetic code with all the intriguing consequences this entails. In the same vein,
deliberately inflated or compressed parameters may be useful in securing physical understanding through
numerical simulations when working with realistic numbers in prohibited by practical restrictions on the
accessible resolution.

Let me now say a few words on what is called premixed gas combustion.
Premixed gas combustion is the combustion of gaseous reactants (say hydrogen and oxygen) which are

perfectly mixed prior to ignition. Although premixed combustion may occur homogeneously throughout
the volume, this mode is not typical. The most distinctive feature of premixed combustion is the ability
to assume the form of a self-sustained reaction wave propagating subsonically or supersonically at a well-
defined speed. The subsonic combustion waves are generally called premixed gas flames or deflagrations,
while the supersonic combustion waves are called detonations. Typical flame velocities fall in the range
from a few centimeters per second to a few meters per second. So the flames are essentially subsonic
waves. Unlike flames, typical detonation velocities vary from a thousand to three thousand meters per
second. So detonation waves are normally supersonic.

Flames and detonations differ not only in their velocities but also in the driving mechanisms. Flames
are sustained by the heat flux from the hot burned gas to the cold unreacted mixture. Detonations are
sustained by adiabatic compression (and thereby preheating) of the reactive mixture passing through the
shock. Normally, flames are initiated by a mild energy discharge – for example by a spark, and detonations
are generally provoked by shock waves – for example by a localized explosion.

Mathematically speaking, flames and detonations may be perceived as stable attractors, each being
linked to its own base of initial data. Roughly speaking this is indeed the case, although in non-ideal real-
life conditions the picture may be more involved. In practical applications, for safety reasons, premixing is
generally avoided. Yet, there are several important applications of premixed gas combustion, the principal
being: spark-ignition engines, lean-burn gas turbines household burners, and of recently renewed interest,
pulsed detonation propulsion.

Apart from its technological relevance, premixed combustion constitutes a truly fascinating dynamical
system, and displays an amazingly rich variety of phenomena such as: non-uniqueness of possible propaga-
tion regimes, their birth (ignition) and destruction (extinction), chaotic self-motion and fractal-like growth,
and various hysteretic transitions.

In the last 30 years, the theory of combustion waves has developed to rather a high level of precision and
conceptual clarity. Many perplexing phenomena have been analyzed and described, and many controversial
questions have been resolved. Yet, for all these advances there are quite a few first-order effects, rooted in
the very fundamentals of the field, whose first-principle understanding is still far from adequate. Among
the challenges one may mention for example, understanding of the multiplicity of detonation regimes and
spontaneous transition from deflagrative to detonative combustion. These are precisely the topics of my
talk today.
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Figure 1. Detonation velocity vs. initial pressure in corrugated channels; C2H2 + 1.5O2, (a, b);
C3H8 + 5O2, (c, d). Note the hysteretic character of the jumps ([15]).

2 Multiplicity of Detonation Regimes in Hydraulically Resis-
ted Flows

Since the early works of Laffitte [8] and Shchelkin [13] it is known that the flow impediments may have
a profound effect on gaseous detonation markedly reducing is propagation velocity compared to the as-
sociated Chapman-Jouguet value. Moreover, as was discovered later, the obstacle-affected detonation can
exhibit fascinating jumpwise transitions from high-velocity sub-CJ quasi-detonation to a low-velocity de-
tonation in a choking regime [15, 9, 4, 11].

On Figure 1 one can see the typical response of the detonation velocity to the initial pressure in channels
filled with obstacles. Whereas both detonation modes are supersonic relative to the fresh mixture, the
choking regime is subsonic relative to the burnt gas.

It transpires that this curious peculiarity of the obstacle-affected detonation may be successfully descri-
bed within the framework of the quasi-one-dimensional ZND-Fanno model.

In ZND-Fanno formulation the presence of obstacles is accounted for through augmentation of the mo-
mentum equation by the appropriate drag-force term simulating momentum loss but leaving the equations
of mass and energy conservation unaltered.

In the frame of reference attached to the advancing detonation, the set of equations describing its aero-
thermo-chemical structure reads,

d[ρ(u−D)]/dx = 0, continuity (1)
d[ρ(u−D)u + P ]/dx = f, momentum (2)

d[ρ(u−D)(cvT + 1/2u2) + Pu]/dx = Qω, energy (3)
d[ρ(u−D)C]/dx = −ω, concentration (4)
P = (cp − cv)ρT, state. (5)

Here D, u are the detonation and gas flow velocities in the laboratory frame of reference; T , C, P , ρ
are the temperature, deficient reactance concentration, pressure and density. ω is the reaction rate defined
by a one-step first-order Arrhenius kinetics, ω = AρC exp (−E/RT ). The drag force f is specified as
f = −2cfρu|u|/d where d is the hydraulic diameter and cf is the drag factor assumed to be constant. For
porous beds cf = 0.58. For well-shaken spherical packings d = 0.44dp, where dp is the particle diameter.
To reduce the number of parameters involved the effects due to molecular transport and heat losses are
discarded. Indeed in porous media, or very rough tubes, the momentum loss is a dominating influence, so
the heat losses may often be ignored.
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The detonation is assumed to propagate through an initially quiescent homogeneous premixture whose
temperature, pressure, density, and deficient reactant concentration are regarded as prescribed. Hence the
boundary conditions read,

T (+∞) = Tu, C(+∞) = Cu, ρ(+∞) = ρu ,

P (+∞) = Pu = (cp − cv)ρuTu, u(+∞) = 0 . (6)

Far behind the combustion wave, due to the flow deceleration and the reactant’s consumption

u(−∞) = 0, C(−∞) = 0 . (7)

As may be easily shown, under these conditions,

T (−∞) = Tu + QCu/cv = Tb ,

P (−∞) = (cp − cv)ρuTb = Pb . (8)

Thus, the final temperature (Tb) and pressure (Pb) of the burned gas appear to be identical to those reached
in the constant volume adiabatic explosion. Due to the conservation of the mass and enthalpy, the original
set of equations is reduced to a single first-order o.d.e. for the density ρ as a function of the concentration C,

dρ/dC = F (ρ,C) , 0 < C < Cu . (9)

This equation should be solved subject to the following boundary conditions: For the supersonic propaga-
tion (D > au), ρ(Cu) = ρs(D), the density behind the shock, and ρ(0) = ρu, the density in the stagnant
combustion products, which because of the friction coincides with the density of the burned gas. For the
subsonic propagation (D < au), ρ(Cu) = ρu, ρ(0) = ρu. One therefore ends up with an overdetermined
boundary-value problem which should yield both the solution ρ = ρ(C), and the propagation velocity D.
The problem is solved numerically by a conventional shooting technique (Figure 2).

The multiplicity of detonation regimes arises as a product of the interplay between two mechanisms
controlling adiabatic compression: shock and drag-induced diffusion of pressure.

For quasi-detonation (low hydraulic resistance) the process is dominated by the first (shock) mechanism,
while for the choking regime (strong hydraulic resistance) by the second (diffusion of pressure).

In obstacle-laden systems (e.g. porous beds) the pressure diffusivity Dbar, may easily be as high as 106

times the thermal diffusivity Dth, which may well result in supersonic propagation.
In the choking regime the shock plays a totally subordinate role. In contrast to the CJ or quasi-

detonation, here the shock is not a driving agency but rather a by-product of supersonic propagation. If
the reaction wave is forced to move supersonically it has no choice but to be accompanied by a shock.

If the level of hydraulic resistance is high enough, the pressure diffusivity Dbar drops which may well
result in a fast but subsonic and therefore shockless propagation. Propagation velocity D falls below the
sonic velocity of the unburnt gas, au. Fast subsonic regimes are indeed occasionally observed in porous bed
combustion. In 1987 Lyamin and Pinaev published a paper, “Fast Subsonic Combustion in an Inert Porous
Media with a Smooth Pressure Rise in the Wave”, a title which speaks for itself.

The subsonic mode emerges as a smooth continuation of the supersonic one and hence may well be
referred to as subsonic detonation, two words that one would have thought could never be connected! The
inclusion of the word detonation in the new definition is intended to emphasize a crucial dynamical ingre-
dient unifying all regimes, namely adiabatic compression. The idea of extending the concept of detonation
over the subsonic domain is not new.

In the 1987 survey by Mitrofanov, when discussing the non-classical combustion waves the author
wrote,

“It would seem appropriate to extend the notion of detonation over a certain subsonic range
of wave velocities (D < au) where there is a continuous in D passage to this domain with the
preservation of pressure and density peaks with the front.”
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Figure 2. Detonation velocity D vs. reciprocal of the porous bed particle diameter dp as implied by
ZND-Fanno model; adiabatic limit. DCJ , au, ab correspond to the Chapman-Jouguet detonation
and sound velocities in the unburnt and burnt gas, respectively. The appropriately scaled inverse
diameter d−1

p may serve as a measure of hydraulic resistance. Note that for bimolecular reactions
the impact of the particle diameter dp is similar to that of the initial pressure Pu ([2]).

It is interesting that this issue was raised by the experimentalists 10 years ahead of the theoretical
substantiation of the phenomenon. Apart from being sustained by adiabatic compression, the subsonic de-
tonation shares several other features with the supersonic one. Similar to the latter, the subsonic detonation
is prone to galloping and spinning instabilities.

The instability onset is basically controlled by the product,

E(Tb − Tu)(1− γ−1)/RT 2
b ,

a structure similar to that arising in conventional detonation. This again reflects the common nature of
both processes. Note, that the temperature appearing in the Arrhenius exponent is the temperature at the
entrance to the reaction zone. At near-sonic propagation, D ∼ au, the problem may be tackled analytically.
For the Arrhenius kinetics, W = AρC exp(−(E/RT )), and the Forchheimer (quadratic) drag law, f =
2cfρu|u|/d, the propagation velocity D is given by the relation,

2cf (1− σ)(1− γ−1)
Aa2

bd
D3 = exp

(
− E

RT+

)
. (10)

Here σ = Tu/Tb and T+ = Tu + (1 − γ−1)(Tb − Tu). T+ is the temperature at the ‘entrance’ to the
reaction zone (Figure 3). With the appropriate choice of parameters the low-velocity propagation may be
either supersonic or subsonic.

For example, at A = 1010s−1, E/R = 10, 000◦K, au = 350 m/s, σ = Tu/Tb = 0.15, γ = 1.3, ϕ =
0.4,

D = 432 m/s at dp = 0.5 cm (supersonic)
D = 253 m/s at dp = 0.1 cm (subsonic)
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Figure 3. Temperature profiles in deflagration and low-velocity detonation waves. Note a strong
disparity between the preheat zone widths and propagation velocities.

In the low-velocity detonation the inertial effects ahead of the reaction zone are weak compared to the effects
due to hydraulic resistance. As a result one ends up with the following equation for the pressure P (x),

−D
d

dx

(
P

a2

)
=

d

dx

(
d

γcf |u|
dP

dx

)
(11)

Comparing its right and left sides, the combination a2d/γcf |u| may naturally be viewed as an effective
pressure diffusivity,

Dbar =
a2d

γcf |u|
(12)

At the entrance to the reaction zone the pressure diffusivity is given by the relation,

Dbar(T+) = a2(T+)d/γcfu(T+) (13)

where u(T+) = D(1 − a2(T+)/a2
b). In terms of Dbar(T+) the expression for the propagation velocity D

may be recast as

D2 =
ADbar(T+)

1− γ−1(σ + (1− σ)(1− γ−1))
exp

(
− E

RT+

)
(14)

which is quite similar structurally to the equation for deflagrative combustion driven by the thermal di-
ffusivity. Recall that for the deflagrative combustion there is a classical Zel’dovich-Frank-Kamenetsky
relation ([16]),

D2 =
2ADth

(1− σ)2

(
RTb

E

)2

exp
(
− E

RTb

)
(15)
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Figure 4. Profiles of the reduced pressure Π = (P−Pu)/(Pb−Pu) at several equidistant instants of
time adjacent to the point of transition from deflagrative to detonative, yet subsonic, propagation.
Here Pu and Pb are the pressures in the unburned and burned gas, respectively; ξ is the scaled
coordinate, in units ofDbar/D0

det;D
0
det is the velocity of steady detonation, andDbar is the pressure

diffusivity ([1])

Here,Dth is the thermal diffusivity; Tb = Tu +QCu/cp, adiabatic temperature of combustion products;
σ = Tu/Tb. On Figure 3 one can see the typical profiles of temperature in deflagrative and low-velocity
detonative combustion. For the sonic propagation D = au, and for example, at au = 350 m/s, σ = 0.15,
ϕ = 0.4, γ = 1.3, dp = 0.5 cm,

Dbar(T+) = 1.8 · 104 cm2/s .

The developing pressure diffusivity thus may be as high at 104 times the typical thermal diffusivity Dth at
the same pressure and temperature, which explains its ability to support supersonic propagation effectively
without input from the upstream shock. The presence or absence of the shock in the upstream flow does not
affect the picture in the reactive layer. Both subsonic and low-velocity supersonic modes are sustained by
the same mechanism: the drag-induced diffusion of pressure.

When the high-activation-energy limit E/RTb � 1 is combined with the small-heat-release approxi-
mation, so that the product β = E(Tb − Tu)/RT 2

b (Zel’dovich number) remains finite, the dynamics of the
subsonic detonation may be described by a free-interface problem for a single diffusion equation. In the
appropriately chosen units it reads,

Πτ = ∇2Π + Ω(Π)δF , VF = −Ω(Π) . (16)

Here γ = cp/cv , Π = (P − Pu)/(Pb − Pu) is the reduced pressure that vanishes far ahead of the front,
F = 0, and approaches unity far behind. δF is the surface δ - function, VF = Fτ/|∇F | is the normal
velocity of the interface, and Ω is the Arrhenius-type source intensity,

Ω(Π) = exp[α(Π− 1)/(Σ + (1− Σ)Π)] (17)

where α = 1/2β(1− γ−1)/(1− γ−1(1− σ))2, and Σ = γσ(γ − 1 + σ) < 1 , σ = Tu/Tb < 1.
At α > αcr = 4 the steady planar detonation becomes unstable, and one ends up with the oscillatory
propagation ([3]). At higher α the oscillations undergo period-doubling and become chaotic ([5]). In the
3D-geometry the oscillatory subsonic detonation may assume a spinning mode (Figure 4). However, the
most remarkable aspect of subsonic detonation is its ability to evolve spontaneously from deflagrative com-
bustion. Interesting in itself, this outcome brings one closer to understanding the deflagration-to-detonation
transition in the supersonic domain, still one of the major challenges in the field.

3 Deflagration-to-Detonation Transition
The transition from deflagrative to detonative combustion remains one of the major puzzles of combustion
theory.

179



G. I. Sivashinsky

Figure 5. Trajectory of point of maximum temperature in spinning detonation. Shaded cross-
section corresponds to instantaneous position of wave front. Horizontal arrow indicates direction
of wave propagation.

It has long been observed that the transition is reluctant to occur in unconfined obstacle-free systems.
Yet, the transition may be significantly facilitated in the presence of walls and flow impediments.

Apart form inducing hydrodynamic disturbances and thereby affecting the deflagration speed, the obs-
tacles also exert resistance to the gas flow causing reduction of its momentum. As discussed earlier, the
hydraulic resistance is the principal agency controlling the detonation velocity deficit and multiplicity of
detonation regimes. It transpires that the hydraulic resistance (friction) is also of relevance to the transition
problem. The friction appears to be capable of triggering the transition even if the multidimensional effects,
such as the flame acceleration due to folding, are completely suppressed and the system is regarded as
effectively one-dimensional with the confinement being accounted for through the velocity-dependent drag-
force term added to the momentum equation (ZND – Fanno model). To demonstrate the phenomenon in
its most ‘stripped down’ form, it is helpful to begin with the limit of strong hydraulic resistance where the
emerging detonation falls into the subsonic range. In this situation one may neglect the inertial effects and
take Darcy’s law as the momentum equation.

As an additional simplification is is helpful to adopt the small-heat-lease (SHR) approximation where
the variations of temperature, pressure, density and flow-velocity are regarded as small and, hence, the
nonlinear effects may be ignored everywhere but in this reaction-rate term, generally highly sensitive even
to minor temperature changes. In the SHR formulation the problem becomes much more tractable mathe-
matically without, however, compromising the crucial features of the original fully nonlinear system. In
suitably chosen units the resulting set of governing equations reads

γΘτ − (γ − 1)Πτ = γεΘξξ + Ω(Φ, Θ) (18)

Φτ = εLe−1Φξξ − Ω(Φ, Θ) (19)
Πτ −Θτ = Πξξ (20)

Equations (18) and (19) represent the partially linearized conservation equations for energy and the deficient
reactant. Equation (20) is a linearized continuity equation, incorporating the equation of state and momen-
tum (Darcy’s law). Θ = (T − Tu)/(Tb − Tu) is the scaled temperature, Π = (P − Pu)/(Pb − Pu) the
scaled pressure, Φ = C/Cu the scaled concentration, Ω(Φ, Θ) ∼ C exp(−E/RT ) the scaled reaction-rate.
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ξ, τ are the appropriately scaled spatio-temporal coordinates; γ = cp/cν , Le = Lewis number.

ε = Dth/Dbar

is the thermal diffusivity/pressure diffusivity ratio.
In the adopted formulation the pressure diffusivity is defined as

Dbar = Ka2
u/γν

where, K = porous bed permeability, ν = kinematic viscosity, au = sonic velocity in the unburnt gas.
Because of the a2

u - factor, the pressure diffusivity Dbar may be enormous compared with the thermal
diffusivityDth. For many realistic porous systems ε = Dth/Dbar varies within the range 10−4–10−7 which
makes it a natural small parameter of the problem. At small ε one may single out two distinct modes of
combustion,

(i) the fast wave sustained by the diffusive transfer of pressure (subsonic detonation), and

(ii) the slow wave sustained by the diffusive transfer of heat (deflagration).

In the subsonic detonation regime for the leading order asymptotics the original model (18)–(20) sim-
plifies to

γΘτ − (γ − 1)Πτ = Ω(Φ,Θ) , (21)
Φτ = −Ω(Φ,Θ) , (22)
Πτ −Θτ = Πξξ . (23)

This shortened system admits to the traveling wave solution

Θ = Θ(ξ − λτ ),Π = Π(ξ − λτ),Φ = Φ(ξ − λτ)

propagating at velocity λ ∼ 1. In the deflagration regime Π ∼
√

ε, ξ ∼
√

ε and for the leading order
asymptotics the original model, yields

γΘτ = γεΘξξ + Ω(Φ, Θ) , (24)

Φτ = εLe−1Φξξ − Ω(Φ, Θ) , (25)
Πξξ = 0 . (26)

The system is obviously nothing but a conventional constant-density model for the free-space deflagration.
The associated traveling-wave solution spreads at a velocity proportional to the square root of the ther-

mal diffusivity, λ ∼
√

ε. The higher-order approximation for subsonic detonation, i.e. incorporation of the
thermal diffusivity effects, does not produce any significant change in the overall dynamical picture. There
still exists a steady traveling wave solution with λ ∼ 1. For the deflagration the picture is different. Here,
the higher order approximation, i.e., accounting for the porous bed resistance, leads to the local elevation of
pressure. The pressure, however, does not stabilize at some low level but rather keeps growing as Π ∼

√
ετ .

(Figure 5). The gradual pile-up of the pressure results in the formation of an extended preheat zone ahead
of the advancing and slightly accelerating flame.

The fresh premixture adjacent to the flame undergoes a low-gradient precompression and preheating.
This slowly proceeding development ultimately ends up as an adiabatic explosion which abruptly converts
the burning process from deflagration to subsonic detonation (Figures 5 and 6). Subsequently it was reali-
zed that the frictional mechanism ‘works’ also at low hydraulic resistance where the detonation spreads at a
supersonic speed (Figures 7 and 8). Here the pertinent model, understandably, involves both chemical and
hydrodynamic nonlinearities (inertial effects). In both subsonic and supersonic cases the transition is trig-
gered by a localized thermal explosion, which in turn is conditioned by the spatial gradient of induction time
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Figure 6. Time-record of the reaction wave speed. Here λ and τ are the scaled velocity and time in
units of D0

det and Dbar/(D0
det)

2 respectively, (1) (2) mark deflagrative and detonative propagation,
respectively, ([1]).

in the friction-induced extended preheat-zone formed ahead of the advancing deflagration. The DDT pro-
blem therefore transpires to be physically related to the shockless initiation of detonation in non-uniformly
preconditioned gas, a topic that has been energetically explored in recent years.

Unlike the latter systems, however, in the DDT case the non-homogeneous environment, which pro-
vides the required spatial gradient of induction time, is not prescribed but arises as a product of the flame-
confinement interaction. Mathematically speaking, the friction simply destroys deflagration as an equili-
brium traveling-wave solution.

Yet, at low friction and appropriate initial conditions the deflagrative mode is feasible but only as a
transient slowly evolving wave with a long but limited life-span.

Understandably, various assumptions underlying the ZND–Fanno model make its implications more of
a qualitative guide than a quantitative prediction. Besides, there are some salient features of the transition
which are not covered by the model. One of them is the predetonational acceleration of the advancing flame,
which is virtually absent in the one-dimensional description ignoring the continuous growth of the flame
area. It is therefore desirable to invoke the spatial picture of the transition where the hydraulic resistance is
determined directly by the boundary conditions rather than through the effective drag-force.

Yet, since real-life DDT is hardly ever laminar, its direct numerical simulation not unexpectedly meets
with formidable difficulties. In the survey of Shepherd and Lee ([14]), when discussing the state of the art
in the numerical modeling of DDT, the authors wrote,

“No method has been developed yet that is capable of accurately predicting a complete
flame acceleration and transition to detonation event . . . This problem is due in large measure
to the practical limitations on spatial and temporal resolutions in multidimensional computa-
tions”.

The theoretical findings based on the ZND–Fanno model suggest that the complexities due to turbulence
are likely to be largely irrelevant to the transition which is presumably triggered by the flow deceleration in
the boundary layer, irrespective of whether the bulk flow is turbulent or not.

Hence, in order to reproduce the spatial picture of the transition it may be instructive to begin with a 2D
thermally-insulated channel, narrow enough to ensure the laminar character of the developing flow with all
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Figure 7. Friction affected dynamics. Profiles of scaled pressure (P̂ ) and temperature (T̂ ) at
several consecutive equidistant instants of time adjacent to the point of DDT ([2]).

the technical advantages this entails. Figure 9 shows the first results obtained along these lines. It transpires
that even extremely narrow (10 flame-width wide) adiabatic capillaries are perfectly capable of capturing
the transition.

The two-dimensional simulations reproduce the formation of the tulip-like flame and its predetonational
acceleration, well-know experimentally but clearly unobtainable within the one-dimensional approach em-
ployed in the ZND – Fanno formulation.

As expected, the detonation first develops in the boundary layer where the effect of hydraulic resistance
is stronger, and thereupon spreads over the channel interior.

The previous findings pertain to the adiabatic limit where the system is regarded as thermally insulated.
This is a major idealization. Realistic confined systems are invariably affected by heat losses. The hydraulic
resistance and heat losses exert opposite effects on the transition. The resistance raises the local temperature
(through adiabatic compression) and thereby promotes autoignition. The heat loss tends to reverse this
trend by reducing the temperature. In smooth channels, due to Reynolds analogy, both mechanisms are of
comparable influence. Therefore one cannot be certain about the final outcome of the competition between
resistance and heat losses. Experimentally however, an often successful transition is an undeniable fact.
As observed in our recent studies [7], with the channel walls maintained at the ambient temperature, and
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Figure 8. Time-record of the reaction wave speed D̂ (in units of ab) from the ignition (t̂ = 0) to the
point of thermal explosion (a), and formation of galloping detonation (b). âu, D̂CJ correspond to
the sonic velocity in the fresh mixture, and the Chapman-Jouguet detonation, respectively ([2]).

Figure 9. Numerical simulation of the transition in a narrow channel with thermally insulating and
non-slip boundary conditions. (a) Reaction zone configurations at several consecutive equidistant
instants of time, and (b) the corresponding velocity-time record. Note the disparity between the
transversal and longitudinal scales: 25-fold compression ([6]).

the reaction kinetics assumed monomolecular, the transition does not occur, at least within the parameter
range explored. However, for the bimolecular kinetics (other conditions as in the monomolecular case) the
transition proved readily feasible (Figures 10 and 11). Higher molecularity implies a higher sensitivity of
the explosive mixture to the pressure change which in these problems is quite significant. In contrast to the
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Figure 10. The reaction zone configuration at several consecutive equidistant instants of time
near the transition point ([7]).

Figure 11. A sequence of the Schlieren-like tonal images of the pressure gradient norm. Here
one readily identifies the evolving flame, leading shock, emergence of detonation and retonation
waves, as well as transverse shocks induced by the shock-wall interaction ([7]).

adiabatic case, the incipient detonation emerges at a certain distance from the channel’s wall. At the wall
itself (due to the temperature drop) the reaction is suppressed.

The above numerical solution pertains to a parameter range where certain features typical of the transi-
tion in wide tubes are suppressed (e.g. turbulence, remote initiation). This certainly doesn’t mean that the
found transition mode, and that occurring in wide tubes, are different animals. What one encounters here,
I believe, is precisely the relation between the frog and its tadpole. Moreover, as Ghengis Khan used to
say, “The world is too small a place to afford two rulers”, or in our language, “Confined combustion is too
simple a system to afford two mechanisms of the transition!”
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