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On some alternative forms equivalent to Kruskal’s condition
for OLSE to be BLUE

Gabriela Beganu

Abstract. The necessary and sufficient condition for the ordinary least squares estimators (OLSE)
to be the best linear unbiased estimators (BLUE) of the expected mean in the general univariate linear
regression model was given by Kruskal (1968) using a coordinate-free approach. The purpose of this
article is to present in the same manner some alternative forms of this condition and to prove two of the
Haberman’s equivalent conditions in a different and simpler way. The results obtained in the general
univariate linear regression model are applied to a family of multivariate growth curve models for which
the problem of the equality between OLSE and BLUE is treated in a coordinate-free approach.

Sobre algunas formas alternativas equivalentes a la condición de Kruskal
para los OLSE y los BLUE

Resumen. La condición necesaria y suficiente para que los estimadores ordinarios de mı́nimos cuadra-
dos (OLSE) sean los mejores estimadores lineales insesgados (BLUE) de la media esperada en el modelo
general de regresión lineal univariante la dio Kruskal (1968) usando un enfoque que no dependı́a de las
coordenadas. El propósito de este artı́culo es presentar, del mismo modo, algunas formas alternativas de
esta condición y demostrar dos de las condiciones equivalentes de Haberman de un modo diferente pero
más sencillo. Los resultados que se obtienen para el modelo general de regresión lineal univariante se
aplican a una familia de modelos de crecimiento multivariante para los que el problema de la igualdad
entre los OLSE y los BLUE se trata usando un enfoque que no depende de las coordenadas.

1 Introduction

The problem of the equality between OLSE and BLUE (or Gauss-Markov estimators) of the expected mean
in linear regression models is treated in a coordinate-free approach.

Significant contributions in solving this problem were brought by Haberman [12], Arnold [1], Baksalary
and van Eijnsbergen [3], Puntanen and Styan [16], Puntanen, Styan and Tian [17] among many others, but
Zyskind [23] proved the first general theorem for OLSE to be BLUE when the covariance matrix is non-
negative definite and the design matrix of the model does not necessarily have full column rank. Zyskind
and Martin [24] and Seely [21, 22] obtained significant general results on unbiased estimation restricted to
finite dimensional linear spaces.

One of the initial papers in which geometric aspects of the Gauss-Markov estimation were used in the
general univariate linear model is Kruskal’s [14]. In the same manner Eaton [11], Drygas [9, 10], Baksalary
and Kala [2], Beganu [4, 5, 6] gave some alternative forms, as well as their extensions, of the necessary and
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sufficient conditions for BLUE to exist and to be identical to OLSE of the expected mean in multivariate
linear regression models.

The purpose of this article is to present some alternative forms of Kruskal’s condition using a coordinate-
free approach and to apply them to a family of multivariate linear regression models.

Classical results for the general univariate linear regression model are outlined in Section 2 and another
proof of some alternative forms given by Haberman [12] for OLSE to be BLUE are obtained. It is also
proved an equivalent condition to Haberman’s conditions.

In Section 3 the Kronecker matrix product and the Kronecker product of linear transformations are
applied to describe the covariance structure of a random matrix of observations in a family of multivariate
growth curve models and to construct the corresponding orthogonal projections. It is used the necessary and
sufficient condition for OLSE to be identical to BLUE obtained by Beganu (to appear [8]) for this model
and it will be proved that the equivalent conditions in Section 2 can be applied to this family of multivariate
linear regression models. It will be also shown that these necessary and sufficient conditions for the equality
of OLSE and BLUE do not depend on the between-individuals design matrix of the multivariate growth-
curve models.

2 Equivalent conditions for OLSE to be BLUE

The general univariate linear regression model assumes that the random vector Y of observations is valued
in an n-dimensional real vector space W endowed with the inner product (· , ·). The expected mean µ of
Y lies in a linear manifold Ω of W and the covariance operator of Y is Σ = σ2V , where V is a known
positive definite linear transformation on W to W and σ2 is a known or unknown positive number.

Using a coordinate-free approach, the OLSE and the BLUE of µ are defined by the orthogonal projec-
tions on Ω relative to the inner products denoted by (x, z) and ((x, z)) = (x, V −1z) for any x, z ∈ W .
The orthogonal projections P and Q on Ω relative to the two inner products, respectively, are the linear
transformations on W to Ω such that Px and Qx are the unique elements in Ω which satisfy the relations
(x− Px, z) = 0; and ((x−Qx, z)) = 0 for all x ∈ W, z ∈ Ω. Then the OLSE of µ is µ̂OLSE = PY and
the BLUE of µ is µ̂BLUE = QY .

It is known (Zyskind [23], Kruskal [14]) that

µ̂OLSE = µ̂BLUE (1)

if and only if V Ω ⊂ Ω with alternatives (Haberman [12])

V −1Ω ⊂ Ω (2)

and V Ω⊥ ⊂ Ω⊥, V −1Ω⊥ ⊂ Ω⊥ by non-singularity of V , where Ω⊥ is the orthogonal complement of Ω.
Haberman [12] also proved some other alternative forms of the necessary and sufficient conditions

for (1) in the univariate case of the general linear regression model.
One of these alternative forms can be proved in another manner using the definitions and the properties

of the orthogonal projections P and Q on Ω.

Proposition 1 The equality (1) holds if and only if

(x, PV −1Pz) = (x, PV −1z) (3)

for all x, z ∈ W .

PROOF. Q is the orthogonal projection on Ω, which means that ((Px, Qz)) = ((Px, z)) for all x, z ∈ W .
Then the relation

((Px, Qz)) = ((Px, Pz)) + ((Px, (I − P )z))
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can be obtained and it is equivalent to

((Px, Qz)) = ((Px, Pz)) (4)

for all x, z ∈ W if and only if ((Px, (I − P )z)) = 0, namely

((Px, Pz)) = ((Px, z)), x, z ∈ W (5)

which is identical to condition (3).
But, P being symmetric, the two terms in (4) are

((Px, Qz)) = (x, PV −1Qz) = (x, V −1Qz) = ((x,Qz))

and
((Px, Pz)) = (x, PV −1Pz) = (x, V −1Pz) = ((x, Pz))

for all x, z ∈ W if and anly if the relation (2) is accomplished.
Therefore the equality (4) becomes

((x, µ̂BLUE)) = ((x, µ̂OLSE))

for all x ∈ W and z = y ∈ W . �

Condition (3) represents the alternative form (5) obtained by Haberman [12] in Theorem 2.
An alternative form of condition (3) is the following:

Proposition 2 The estimators µ̂BLUE and µ̂OLSE are identical if and only if

(x, V −1Q∗z) = (x, PV −1Q∗z) (6)

for all x, z ∈ W .

PROOF. It is known that P and Q satisfy the relation PQ = Q. Then, using the definition of the adjoint
operator of Q, we have that

((Qx, Pz)) = ((x,Q∗Pz)) = ((x,Q∗z)) = ((Qx, z))

for all x, z ∈ W . But Q is the orthogonal projection on Ω which means that ((Qx, Pz)) = ((x, Pz)) for
all x, z ∈ Ω. It follows that the equality

((Qx, z)) = ((x, Pz))

can be obtained or, an equivalent equality,

((Qx, z)) = ((Px, Pz)) + (((I − P )x, Pz)) (7)

for all x, z ∈ W .
The second term of the right-hand side in (7) is null if and only if V −1Ω ⊂ Ω and can be written as

0 = (((I − P )x, Pz)) = (((I − P )x,Q∗Pz))

= ((I − P )x, V −1Q∗z) = (x, (I − P )V −1Q∗z)

which is equivalent to condition (6), or to another form of (6)

((Qx, Pz)) = ((Px, Pz)), x, z ∈ W. (8)
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Then the equality (7) becomes
((Qx, z)) = ((Px, Pz))

for all x, z ∈ W if and only if V −1Ω ⊂ Ω. But, according to Proposition 1, V −1Ω ⊂ Ω holds iff the
relation (5) is accomplished. It follows that

((µ̂BLUE, z)) = ((µ̂OLSE, z))

for all z ∈ W and x = y ∈ W . �

Proposition 3 The necessary and sufficient condition (6) for µ̂OLSE to be µ̂BLUE is equivalent to

(x, PV −1Pz) = (x, V −1Pz) (9)

for all x, z ∈ W .

PROOF. Using the definition of the inner product ((· , ·)) in W , the second term in the right-hand side
in (7) can be written as

0 = (((I − P )x, Pz)) = ((I − P )x, V −1Pz) = (x, (I − P )V −1Pz)

or
0 = ((x, Pz))− ((Px, Pz)) (10)

for all x, z ∈ W . �

Condition (9) was obtained by Haberman [12] (condition (6) in Theorem 2) using the symmetry of the
linear operator PV −1(I − P ).

3 Equivalent conditions in multivariate growth curve models
In the sequel the necessary and sufficient conditions for the equality between µ̂OLSE and µ̂BLUE expressed
in Propositions 1, 2 and 3 will be verified using an example of multivariate growth curve model and some
algebrical preliminaries (Eaton [11], Halmos [13], Rao [18]) are needed for this purpose.

Let Lp1,p2 be the vector space of p2 × p1 real matrices endowed with the inner product < A,B >=
tr(AB′) for all A,B ∈ Lp1,p2 . (The same trace inner product will be considered for all real vector spaces
Lp1,p2). The Kronecker matrix product is defined as usual: if A ∈ Lp1,p2 and B ∈ Lq1,q2 , then A ⊗ B =
(ai,jB) ∈ Lp1q1,p2,q2 .

If Vi is a pi-dimensional real vector space with the inner product (· , ·)i, i = 1, 2, then Lp1,p2 is also the
real vector space of the linear transformations on V1 to V2. The Kronecker product of the linear operators
A ∈ Lp2,p2 and B ∈ Lp1,p1 is the linear operator on Lp1,p2 to Lp1,p2 such that (A c©B)T = ATB∗ for
every T ∈ Lp1,p2 , where B∗ is the adjoint operator of B relative to the trace inner product in Lp1,p1 . The
composition of two Kronecker operators products is

(A1 c©B1) ◦ (A2 c©B2) = (A1A2) c©(B1B2)

and the adjoint operator is
(A c©B)∗ = A∗ c©B∗.

It has also to be reminded the property of any A ∈ Lp1,p2 which has rank one to be expressed A =
a2 ⊗ a1 with a1 ∈ V1, a2 ∈ V2. Then the trace inner product is the unique inner product in Lp1,p2 which
satisfies the relation

< A,B >=< a2 ⊗ a1, b2 ⊗ b1 >= (a2, b2)2(a1, b1)1

for all a1, b1 ∈ V1 and a2, b2 ∈ V2.
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As an example of multivariate linear regression model it will be considered a family of growth curve
models with random effects (Lange and Laird [15], Reinsel [19, 20], Beganu [7, 8]) which consists in
repeated measurements of m characteristics performed at p different moments of time on n individuals.
Then the random matrix of responses is

Y = AB(X ′ ⊗ Im) + Λ(X ′ ⊗ Im) + E (11)

where A ∈ Lr,n is the between-individuals design matrix and X ∈ Lq,p is the within-individual design
matrix, which are known matrices of full column ranks r < n, q ≤ p, respectively. Λ ∈ Lqm,n is a
matrix of random effects and E ∈ Lpm,n is the random matrix of disturbances. The lines of Λ and E are
random vectors independent of each other and between them and identically distributed with zero expected
means and the same covariance matrices Σλ and Σe, respectively. It is assumed that Σλ and Σe are known
symmetric positive definite matrices. The unknown parameters of this model are the regression coefficients
B ∈ Lqm,r.

The special form of the model (11) involves that the expected mean of the random matrix of observations
is

E(Y ) = AB(X ′ ⊗ Im) = µ

and the covariance matrix is
cov(vec Y ) = In ⊗ V = Σ (12)

where
V = (XX ′)⊗ Σλ + Ip ⊗ Σe (13)

lies in Θ, a set of pm × pn symmetric positive definite matrices such that Ipm ∈ Θ.
Let Ω = {AB(X ′ × Im) | B ∈ Lqm,r} be a linear manifold in Lpm,n and X ⊂ V1 ⊂ Rpm and

A ⊂ V2 ⊂ Rn be the ranges of the design matrices X × Im and A, respectively.
It is known that the OLSE of µ (see Lange and Laird [15], Reinsel [19, 20] given by

µ̂OLSE = A(A′A)−1A′Y ([X(X ′X)−1X ′]⊗ Im) (14)

is identical to the BLUE of µ

µ̂BLUE = A(A′A)−1A′Y V −1(X ⊗ Im)[(X ′ ⊗ Im)V −1(X ⊗ Im)]−1(X ′ ⊗ Im) (15)

which exists in model (11) if and only if the linear manifold Ω is invariant under Σ (Eaton [11]), or the
linear vector space X is invariant under V (Beganu [8]).

In order to prove that the equality between (14) and (15) holds using a coordinate-free approach, it is
easy to notice that

µ̂OLSE = (PA c©PX)Y (16)

is the unique element of Ω satisfying the relationship

< Y − (PA c©PX)Y, Z >=< Y − PAY PX , Z >= 0

for all Z ∈ Ω, where PA = A(A′A)−1A′ and PX = [X(X ′X)−1X ′]⊗ Im are the orthogonal projections
onto A and X relative to the usual inner product on V2 and V1, respectively.

If the covariance operator corresponding to (12) is considered, the new inner product (Kruskal [14],
Eaton [11]) denoted by

� U,Z �=< U, Σ−1Z >=< U, (In c©V −1)Z >=< U, ZV −1 >

is defined on Lpm,n and the BLUE of µ

µ̂BLUE = (PA c©QX)Y (17)
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is the unique element in Ω such that

� Y − (PA c©QX)Y, Z �=� Y − PAY Q∗
X , Z �= 0

for all Z ∈ Ω. The linear operator on V1 to X

QX = (X ⊗ Im)[(X ′ ⊗ Im)V −1(X ⊗ Im)]−1(X ′ ⊗ Im)V −1

is the orthogonal projection onto X with respect to ((u, z))1 = (u, V −1z)1 for all u, z ∈ V1.
The estimators (14) and (15) expressed by the relations (16) and (17), respectively, will be used in the

sequel to establish the equality (1) by means of Propositions 1, 2 and 3.
Replacing the orthogonal projections onto Ω relative to the two inner products defined on the real vector

space Lpm,n, we obtain that the first term in (5) is

� PU,PZ � =< (PA c©PX)U, (In c©V −1) ◦ (PA c©PX)Z >

=< U, (PA c©PXV −1PX)Z >

and the second term is

� PU,Z �=< (PA c©PX)U, (In c©V −1)Z >=< U, (PA c©PXV −1)Z >

for all U,Z ∈ Lpm,n.
Since U,Z ∈ Lpm,n has ranks one, the former equality can be written as

< u2 ⊗ u1, PAz2 ⊗ z1PXV −1PX >=< u2 ⊗ u1, PAz2 ⊗ z1V
−1PX >

for all u1, z1 ∈ V1 and u2, z2 ∈ V2, which is equivalent to

(u1, PXV −1PXz1)1 = (u1, PXV −1z1)1 (18)

for all u1, z1 ∈ V1.
In a similar way the conditions (6) and (9) equivalently expressed by the equalities (8) and (10), re-

spectively, lead to the corresponding necessary and sufficient conditions for the equality (1) involving the
othogonal projections PX and QX onto X as follows:

(u1, V
−1Q∗

Xz1)1 = (u1, PXV −1Q∗
Xz1)1 (19)

and
(u1, PXV −1PXz1)1 = (u1, V

−1PXz1)1 (20)

for all u1, z1 ∈ V1.
The results obtained in relations (18), (19) and (20) can be formulated in

Proposition 4 The necessary and sufficient conditions for µ̂OLSE to be µ̂BLUE in model (11) are assigned
to the real vector space X spanned by the columns of the within-individuals design matrix X ⊗ Im of the
model. The relations (18), (19) and (20) are alternative forms of the condition that X is invariant under V
(or under V −1).

The necessary and sufficient conditions in Theorems 1, 2 and 3 are verified by the model (1), hence
the BLUE (10) of µ exists and is the OLSE (9). These two questions are equivalent in the multivariate
growth-curve model (1) because of its special covariance structure.

Corollaries 1 and 2 assert that the necessary and sufficient conditions for the existence of µ̂BLUE and its
equality with µ̂OLSE in model (1) are independent on the between-individuals design matrix of the model.
The special form of the orthogonal projection onto Ω allows these conclusions.
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