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Abstract

We consider the non-canonical Hamiltonian dynamics of a gyrostat in the three

body problem. By means of geometric-mechanics methods we study the approxi-

mate Poisson dynamics that arises when we develop the potential in series of Leg-

endre and truncate this in an arbitrary order k. Working in the reduced problem,

the existence and number of equilibria, that we denominate planar rotation type

in analogy with classic results on the topic, is considered. Necessary and sufficient

conditions for their existence in a approximate dynamics of order k is obtained and

we give explicit expressions of this equilibria, useful for the later study of the sta-

bility of the same ones. A complete study of the planar rotation type equilibria is

made in approximate dynamics or order zero and one.
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1 Introduction

In the study of configurations of relative equilibria by differential geometry methods or

by more classical ones; we will mention here the papers of Wang et al. [8], about the

problem of a rigid body in a central Newtonian field; Maciejewski [3], about the problem

of two rigid bodies in mutual Newtonian attraction. These papers have been generalized

to the case of a gyrostat by Mondéjar and Vigueras [4] to the case of two gyrostats in

mutual Newtonian attraction.

For the problem of three rigid bodies we would like to mention that Vidiakin [7] and

Duboshin [1] proved the existence of Euler and Lagrange configurations of equilibria when

the bodies possess symmetries; Zhuravlev [9] made a review of the results up to 1990.

∗juanantonio.vera@upct.es, antonio.vigueras@upct.es

67



In Vera [5] and a recent paper of Vera and Vigueras [6] we study the non-canonical

Hamiltonian dynamics of n+1 bodies in Newtonian attraction, where n of them are rigid

bodies with spherical distribution of mass or material points and the other one is a triaxial

gyrostat.

Let us remember that a gyrostat is a mechanical system S , composed of a rigid body

S ′, and other bodies S ′′ (deformable or rigid) connected to it, in such a way that their

relative motion with respect to its rigid part do not change the distribution of mass of

the total system S , (see Leimanis [2] for details).

In this paper, we take n = 2 and as a first approach to the qualitative study of this

system, we describe the approximate dynamics that arises in a natural way when we take

the Legendre development of the potential function and truncate this until an arbitrary

order. We give global conditions on the existence of relative equilibria and in analogy

with classic results on the topic, we study the existence of relative equilibria that we will

denominate of planar rotation type in the case in which S1, S2 are spherical or punctual

bodies and S0 is a gyrostat. Necessary and sufficient conditions for their existence in a

approximate dynamics of order k are obtained and we give explicit expressions of these

equilibria, useful for the later study of the stability of the same ones. A complete study of

the planar rotation type equilibria is made in approximate dynamics of order zero and one.

One should notice that the studied system, has potential interest both in astrodynamics

(dealing with spacecrafts) as well as in the understanding of the evolution of planetary

systems recently found (and more to appear), where some of the planets may be modeled

like a gyrostat rather than a rigid body. In fact, the equilibria reported might well be

compared with the ones taken for the ‘parking areas’ of the space missions (GENESIS,

SOHO, DARWIN, etc) around the Eulerian points of the Sun-Earth and the Earth-Moon

systems.

To finish this introduction, we describe the structure of the article. The paper is

organized in four sections and the bibliography. In these sections we study the equations

of motion, Casimir function and integrals of the system, the relative equilibria and the

existence of planar rotation type equilibria in an approximate dynamics of order k, in

particular in an approximate dynamics of order zero and one.

2 Equations of motion

Following the line of Vera and Vigueras [6] let S0 be a gyrostat of mass m0 and S1, S2

two spherical rigid bodies of masses m1 and m2. We use the following notation.

For u, v ∈ R3, u · v is the dot product, | u | is the Euclidean norm of the vector u

and u×v is the cross product. IR3 is the identity matrix and 0 is the zero matrix of order

three. Let z =(Π, λ, pλ, µ, pµ) ∈ R15 be a generic element of the twice reduced problem
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obtained using the symmetries of the system, where Π = IΩ + lr is the total rotational

angular momentum vector of the gyrostat, I = diag(A, B, C) are the diagonal tensor of

inertia of the gyrostat and Ω the angular velocity of S0 in the body frame, J, which is

attached to its rigid part and whose axes have the direction of the principal axes of inertia

of S0. The vector lr is the gyrostatic momentum that we suppose constant and given by

lr = (0, 0, l). The elements λ, µ, pλ and pµ are respectively the barycentric coordinates

and the linear momenta expressed in the body frame J.

The twice reduced Hamiltonian of the system, obtained by the action of the group

SE(3), has the following expression

H(z) =
| pλ |2

2g1
+

| pµ |2

2g2
+

1

2
ΠI−1Π − lr · I−1Π + V (2.1)

with

M2 = m1 + m2, M1 = m1 + m2 + m0, g1 =
m1m2

M2
, g2 =

m0M2

M1

being V the potential function of the system given by the formula

V(λ, µ) = −



Gm1m2

| λ |
+

∫

S0

Gm1dm(Q)

| Q + µ+m2

M2

λ |
+

∫

S0

Gm2dm(Q)

| Q + µ−m1

M2

λ |



 . (2.2)

Let M = R15, and we consider the manifold (M, { , },H), with Poisson brackets { , }

defined by means of the Poisson tensor

B(z) =




Π̂ λ̂ p̂λ µ̂ p̂µ

λ̂ 0 IR3 0 0

p̂λ −IR3 0 0 0

µ̂ 0 0 0 IR3

p̂µ 0 0 −IR3 0




. (2.3)

In B(z), v̂ is considered to be the image of the vector v ∈ R3 by the standard

isomorphism between the Lie Algebras R3 and so(3), i.e.

v̂ =




0 −v3 v2

v3 0 −v1

−v2 v1 0


 .

The equations of the motion is given by the following expression

dz

dt
= {z,H(z)}(z) = B(z)∇

z
H(z) (2.4)

where ∇
z
f is the gradient of f ∈ C∞(M) with respect to an arbitrary vector z.
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Developing {z,H(z)}, we obtain the following group of vectorial equations of the

motion
dΠ

dt
= Π×Ω + λ×∇λV + µ×∇µV,

dλ

dt
=

pλ

g1
+ λ×Ω,

dpλ

dt
= pλ×Ω − ∇λV,

dµ

dt
=

pµ

g2
+ µ×Ω,

dpµ

dt
= pµ×Ω − ∇µV.

(2.5)

Important elements of B(z) are the associate Casimir functions. We consider the total

angular momentum L given by

L = Π + λ×pλ + µ×pµ. (2.6)

Then the following result is verified (see Vera and Vigueras [6] for details).

Proposition 1. If ϕ is a real smooth function no constant, then ϕ(
| L |2

2
) is a

Casimir function of the Poisson tensor B(z). Moreover KerB(z) =< ∇
z
ϕ >. Also, we

have
dL

dt
= 0, that is to say the total angular momentum vector remains constant.

Figure 2.1: Gyrostat in the three body problem

2.1 Approximate Poisson dynamics

To simplify the problem we assume that the gyrostat S0 is symmetrical around the third

axis of inertia OZ and with respect to the plane OXY being OX, OY, OZ the coordinated

axes of the body frame J. If the mutual distances are bigger than the individual dimensions

of the bodies, then we can develop the potential in fast convergent series. Under these

hypotheses, we will be able to carry out a study of equilibria in different approximate

dynamics.

Applying the Legendre development of the potential, we have

V(λ, µ) = −

(
Gm1m2

| λ |
+

∞∑

i=0

Gm1A2i

| µ+m2

M2

λ |2i+1
+

∞∑

i=0

Gm2A2i

| µ−m1

M2

λ |2i+1

)

where A0 = m0, A2 = (C−A)/2 and A2i are certain coefficients related with the geometry

of the gyrostat, see Vera and Vigueras [6] for details.
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Definition 2. We call approximate potential of order k, to the following expression

Vk(λ, µ) = −

(
Gm1m2

| λ |
+

k∑

i=0

Gm1A2i

| µ+m2

M2

λ |2i+1
+

k∑

i=0

Gm2A2i

| µ−m1

M2

λ |2i+1

)
.

It is easy to demonstrate the following lemmas.

Lemma 3. Given the approximate potential of order k, we have

∇λVk =
Gm1m2λ

| λ |3
+

Gm1m2

M2

k∑

i=0

(µ+m2

M2

λ)(2i + 1)A2i

| µ+m2

M2

λ |2i+3
−

Gm1m2

M2

k∑

i=0

(µ−m1

M2

λ)(2i + 1)A2i

| µ−m1

M2

λ |2i+3
,

∇µVk = Gm1

k∑

i=0

(µ+m2

M2

λ)(2i + 1)A2i

| µ+m2

M2

λ |2i+3
+ Gm2

k∑

i=0

(µ−m1

M2

λ)(2i + 1)A2i

| µ−m1

M2

λ |2i+3
.

(2.7)

The following identities are verified

∇λVk = Ã11λ + Ã12µ, ∇µVk = Ã21λ+ Ã22µ (2.8)

being

Ã11(λ, µ) =
Gm1m2

| λ |3
+

Gm1m
2
2

M2
2

(
k∑

i=0

βi

| µ+m2

M2

λ |2i+3

)
+

Gm2
1m2

M2
2

(
k∑

i=0

βi

| µ−m1

M2

λ |2i+3

)
,

Ã12(λ, µ) =
Gm1m2

M2

(
k∑

i=0

βi

| µ+m2

M2

λ |2i+3
−

k∑

i=0

βi

| µ−m1

M2

λ |2i+3

)
,

Ã22(λ, µ) = Gm1

(
k∑

i=0

βi

| µ+m2

M2

λ |2i+3

)
+ Gm2

(
k∑

i=0

βi

| µ−m1

M2

λ |2i+3

)
,

Ã21(λ, µ) = Ã12(λ, µ)

(2.9)

with coefficients β0 = m0, β1 = 3/2(C − A), βi = (2i + 1)A2i for i > 1.

Definition 4. Let be M = R15 and the manifold (M, { , },Hk), with Poisson brackets

{ , } defined by means of the Poisson tensor (2.3). We call approximate dynamics of order

k to the differential equations of motion given by the following expression

dz

dt
= {z,Hk(z)}(z) = B(z)∇

z
Hk(z)

being

Hk(z) =
| pλ |2

2g1

+
| pµ |2

2g2

+
1

2
ΠI−1Π − lr · I−1Π + Vk(λ, µ).
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2.1.1 Integrals of the system

On the other hand, it is easy to verify that

∇
z
(| Π |2))B(z)∇

z
H0(z) = 0

and similarly when the gyrostat is of revolution

∇
z
(π3)B(z)∇

z
Hk(z) = 0

where π3 is the third component of the rotational angular momentum of the gyrostat. It

is verified the following result.

Theorem 5. In the approximate dynamics of order 0, | Π |2 is an integral of motion

and also when the gyrostat is of revolution π3 is another integral of motion.

2.2 Relative Equilibria

The relative equilibria are the equilibria of the twice reduced problem whose Hamiltonian

function is obtained in Vera and Vigueras [6] for the case n = 2. If we denote by ze =

(Πe, λ
e,pe

λ, µe,pe
µ) a generic relative equilibrium of an approximate dynamics of order k,

then this verifies the equations

Πe×Ωe + λe×(∇λVk)e + µe×(∇µVk)e = 0,

pe
λ

g1
+ λe×Ωe = 0, pe

λ×Ωe = (∇λVk)e,

pe
µ

g2
+ µe×Ωe = 0, pe

µ×Ωe = (∇µVk)e.

(2.10)

Also by virtue of the relationships obtained in Vera and Vigueras [6], we have the

following result.

Lemma 6. If ze = (Πe, λ
e,pe

λ, µe,pe
µ) is a relative equilibrium of an approximate

dynamics of order k the following relationships are verified

| Ωe |
2 | λe |2 − (λe · Ωe)

2 =
1

g1
(λe · (∇λVk)e)

| Ωe |
2 | µe |2 − (µe · Ωe)

2 =
1

g2

(µe · (∇µVk)e)

The last two previous identities will be used to obtain necessary conditions for the

existence of relative equilibria in this approximate dynamics.

We will study certain relative equilibria in the approximate dynamics supposing that

the vectors Ωe, λe, µe satisfy special geometric properties.
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Definition 7. We say that ze is a relative equilibrium of planar rotation type, in an

approximate dynamics of order k, when Ωe is in the plane generated by λe and µe.

Next we obtain necessary and sufficient conditions for the existence of planar rotation

type equilibria.

3 Relative equilibria of planar rotation type

In this section we study relative equilibria of planar rotation type. We obtain necessary

and sufficient conditions for the existence of this type of solutions in different approximate

dynamics.

3.1 Necessary condition of existence

Let us suppose that Ωe = aλe +bµe being a, b ∈ R real constants to be determined. Then

the equilibria ze verify the following equations

|Ωe|
2 λe − (λe · Ωe)Ωe =

1

g1

(∇λV
(k))e

|Ωe|
2 |µe|2 − (µe · Ωe)Ωe =

1

g2
(∇µV

(k))e

(3.1)

If we denote by

(λe · Ωe) = X̃ = a | λe |2 +b(λe · µe)

(µe · Ωe) = Ỹ = b | µe |2 +a(λe · µe)
(3.2)

then from the equations (3.1) we deduce

g1b(Ỹ λe − X̃µe) = (∇λV
(k))e

g2a(X̃µe − Ỹ λe) = (∇µV
(k))e.

(3.3)

On the other hand we have

(∇λV
(k))e = (Ã11)eλ

e + (Ã12)eµ
e

(∇µV
(k))e = (Ã12)eλ

e + (Ã22)eµ
e

(3.4)

then
−g1bX̃ = (Ã12)e, g1bỸ = (Ã11)e

g2aX̃ = (Ã22)e, −g2aỸ = (Ã12)e.
(3.5)

And if we eliminate the variables X̃ and Ỹ in the previous equations we obtain

bg1(Ã22)e + ag2(Ã12)e = 0

bg1(Ã12)e + ag2(Ã11)e = 0
(3.6)
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which are equivalent to the following ones

(Ã11)e(Ã22)e − (Ã12)
2
e = 0

a = −
g1

g2

(Ã22)e

(Ã12)e

b.
(3.7)

In this case the angular velocity comes given by the expression

Ωe = a(λe −
g2(Ã12)e

g1(Ã22)e

µe)

| Ωe |
2=

(Ã22)e

g2
+

(Ã11)e

g1
.

(3.8)

We summarize all these results in the following proposition.

Proposition 1. Let ze = (Πe, λ
e,pe

λ, µ
e,pe

µ) be a relative equilibrium verifying

Ωe = aλe + bµe being a, b ∈ R, then the following relations are verified

(Ã11)e(Ã22)e − (Ã12)
2
e = 0, a = −

g1

g2

(Ã22)e

(Ã12)e

b

Ωe = a(λe −
g2(Ã12)e

g1(Ã22)e

µe), | Ωe |
2=

(Ã22)e

g2
+

(Ã11)e

g1

(3.9)

where Ãij come given by the expressions (2.9) and (Ãij)e denotes the evaluation of this

function in the relative equilibrium.

3.2 Necessary condition of existence for order zero and one

To this respect we have obtained the following result.

In an approximate dynamics of order zero such equilibria don’t exist since Ã11Ã22 −

Ã12
2 6= 0. In an approximate dynamics of order one, calling | λe |= Z, | µe+

m2

M2
λe |= Y,

| µe−
m1

M2
λe |= X, Y1 =

1∑
i=0

βi

Y 2i+3
, X1 =

1∑
i=0

βi

X2i+3
, so that (Ã11)e(Ã22)e − (Ã12)

2
e = 0 it

should necessarily happen

Z3 = −(
m1

X1
+

m2

Y1
). (3.10)

Therefore for β1 ≥ 0 such relative equilibrium solutions don’t exist.

Let us see that it happens for β1 < 0. Carrying out the appropriate calculations we

obtain

Z3 = −
m1X

5(Y 2 + β1) + m2Y
5(X2 + β1)

(Y 2 + β1)(X
2 + β1)

. (3.11)

| Ωe |
2=

a2β
2
1 + 2a1β1 + a0

X5Y 5[m1X5(Y 2 + β1) + m2Y 5(X2 + β1)]
(3.12)
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where the coefficients ai come given by the following expressions

a2 = (m1X
5 + m2Y

5)2 + m0(m1X
10 + m2Y

10)

a1 = X2Y 2[m1(m1 + m0)X
8 + m2(m2 + m0)Y

8 + m1m2(X
3Y 5 + X5Y 3)

a0 = (m1X
3 + m2Y

3)2 + m0(m1X
6 + m2Y

6).

(3.13)

The discriminant of the polynomial a2β
2
1 + 2a1β1 + a0 has the following expression

∆ = −m1m2m0(m1 + m2 + m0)(X
2 − Y 2)2 (3.14)

and it is negative for any value of X, Y, mi therefore equilibria cannot exist with β1 < 0

and (Y 2 + β1)(X
2 + β1) 6= 0.

Let us suppose now that (Y 2 + β1) = 0, then we can deduce that

(X2 + β1) = 0,
a

b
= −

g1

g2

(Ã22)e

(Ã12)e

=
m0

M1
. (3.15)

One also has

| Ωe |
2= G

m1 + m2

Z3

Ωe = b(
m0

M1
λe + µe) = a(λe +

M1

m0
µe)

(3.16)

with a, b ∈ R calculated applying that | Ωe |
2= G

m1 + m2

Z3
.

An interesting particular case is presented when the vector Ωe is perpendicular to λe

and proportional to µe. If we impose these conditions, then m1 = m2 = m.

A simple calculation shows that

Ωe = a
M1

m0
µe, | µe |=

√
r2 −

Z2

4
, a2 =

2Gmm2
0

M1Z3(r2 −
Z2

4
)

(3.17)

We summarize in the following proposition.

Proposition 2. For the approximate dynamics of order zero relative equilibria of

planar rotation type don’t exist. For the approximate dynamics of order one, if β1 > 0

(oblate gyrostat) equally relative equilibria of planar rotation type don’t exist. If β1 < 0

(prolate gyrostat) and we denote by | λe |= Z, | µe+
m2

M2

λe |= Y, | µe−
m1

M2

λe |= X, when

(Y 2 + β1)(X
2 + β1) 6= 0 such relative equilibria don’t exist . If β1 < 0 and (Y 2 + β1) = 0,

then (X2 + β1) = 0 and one has that

| Ωe |
2= G

m1 + m2

Z3

Ωe = b(
m0

M1

λe + µe) = a(λe +
M1

m0

µe)

(3.18)
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with a, b ∈ R calculated applying that | Ωe |2= G
m1 + m2

Z3
. In particular, if the masses

m1 = m2 = m, the vector Ωe is perpendicular to λe and proportional to µe, the following

relations are verified

Ωe = a
M1

m0
µe, | µe |=

√
r2 −

Z2

4
, a2 =

2Gmm2
0

M1Z3(r2 −
Z2

4
)

(3.19)

with r =
√

−β1.

3.3 Sufficient condition of existence

On the other hand, it is possible build explicitly relative equilibria of planar rotation type

verifying the previously mentioned properties.

We suppose that the centers of mass of the gyrostat S0 and the bodies Si form an

isosceles triangle whose same sides measure Y =
√

−β1, with base given by the magnitude

Z, that indicates us the separation distance among S1 and S2.

Denoting by θ = Ŝ1S0S2, we have

cos θ =
−2β1 − Z2

2β2
1

, sin θ =
Z
√
−4β1 − Z2

2β2
1

(3.20)

and
λe = (

√
−β1(1 − cos θ),−

√
−β1 sin θ, 0)

µe = (

√
−β1(m1 + m2 cos θ)

M2
,
m2

√
−β1 sin θ

M2
, 0).

(3.21)

On the other hand

Ωe = a(λe +
M1

m0
µe), | Ωe |

2= G
m1 + m2

Z3
(3.22)

being

a2 =
GM2

Z3 | λe +
M1

m0

µe |2
(3.23)

And the vectors pe
λ and pe

µ come given by the well-known relations

pe
λ = g1(Ωe ∧ λe), pe

µ = g2(Ωe ∧ µe) (3.24)
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If m1 = m2 = m and Ωe perpendicular to λe and proportional to µe. Then we have

λe = (
√
−β1(1 − cos θ),−

√
−β1 sin θ, 0)

µe = (

√
−β1(1 + cos θ)

2
,

√
−β1 sin θ

2
, 0)

a2 =
2Gmm2

0

M1Z3(r2 −
Z2

4
)

, Ωe = a
M1

m0
µe

pe
λ = g1(Ωe ∧ λe), pe

µ = g2(Ωe ∧ µe)

(3.25)

We summarize all these results in the following proposition.

Proposition 3. Some results for different approximate dynamics:

• Order zero: relative equilibria of planar rotation type don’t exist.

• Order one:

– If β1 > 0 (oblate gyrostat) equally relative equilibria of planar rotation type

don’t exist.

– If β1 < 0 (prolate gyrostat), with additional hypotheses, it is possible to find

this type of equilibria.

4 Conclusions

• The approximate dynamics of a gyrostat (or rigid body) in Newtonian interaction

with two spherical or punctual rigid bodies is considered.

• For the approximate dynamics of order zero and one, we obtain necessary and

sufficient conditions for the existence of planar rotations.

• We give explicit expressions of some of these relative equilibria, useful for the later

study of their stability.

• Numerous problems are open, and among them it is necessary to consider the study

of stability of the planar rotations for order one.

They also deserve to be considered as object of a later study the ”inclined” relative

equilibria, that is to say study of relative equilibria in approximate dynamics when Ωe

form an angle α 6= 0 and π/2 with the vector λe × µe.
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