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On the family of cyclic trigonal Riemann surfaces of genus 4
with several trigonal morphisms

Antonio F. Costa, Milagros Izquierdo and Daniel Ying

Abstract. A closed Riemann surface which is a 3-sheeted regular covering of the Riemann sphere is
called cyclic trigonal, and such a covering is called a cyclic trigonal morphism. Accola showed that if the
genus is greater or equal than 5 the trigonal morphism is unique. Costa-Izquierdo-Ying found a family
of cyclic trigonal Riemann surfaces of genus 4 with two trigonal morphisms. In this work we show that
this family is the Riemann sphere without three points. We also prove that the Hurwitz space of pairs
(X, f), with X a surface of the above family and f a trigonal morphism, is the Riemann sphere with four
punctures. Finally, we give the equations of the curves in the family.

Sobre la familia de superficies de Riemann de género 4 cı́clicas trigonales
con varios morfismos trigonales

Resumen. Una superficie de Riemann que es una cubierta regular de 3 hojas de la esfera se llama cı́clica
trigonal, y la cubierta un morfismo trigonal. Accola probó que el morfismo trigonal es único si el género
de la superficie es mayor o igual que 5. Costa-Izquierdo-Ying encontraron una familia de superficies de
Riemann de género 4 cı́clicas trigonales con varios morfismos trigonales. En este trabajo demostramos
que dicha familia es, en efecto, la esfera de Riemann con tres punzamientos. Además demostramos que
el espacio de Hurwitz de pares (X, f), con X una surperficie en la familia anterior y f un morfismo
trigonal, es la esfera de Riemann con cuatro punzamientos. Finalmente encontramos las ecuaciones de
las curvas en la familia.

1 Introduction

A closed Riemann surface X which can be realized as a 3-sheeted covering of the Riemann sphere is said to
be trigonal, and such a covering is called a trigonal morphism. If the trigonal morphism is a cyclic regular
covering, then the Riemann surface is called cyclic trigonal. This is equivalent to X being a curve given by
a polynomial equation of the form y3 + c(x) = 0.

Trigonal Riemann surfaces have been recently studied (see [2] and [12]). By Lemma 2.1 in [1], if the
surface X has genus g ≥ 5, then the trigonal morphism is unique. The Severi-Castelnouvo inequality is
used in order to prove such uniqueness, but this technique is not valid for small genera. Costa-Izquierdo-
Ying proved in [7] that this bound is sharp: Using the characterization of trigonality by means of Fuchsian
groups ([6]), the family 36M3

4 = {X4(λ)} of cyclic trigonal Riemann surfaces of genus four admitting
several cyclic trigonal morphisms was obtained.
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Our main result establishes that the space 36M3
4 of cyclic trigonal surfaces of genus 4 admitting two

trigonal morphisms is a Riemann sphere without three points. To prove this, we prove that there is a unique
class of actions of D3 ×D3 on the Riemann surfaces {X4(λ)}. See [4], [5] and [13].

A Hurwitz space is a space formed by pairs (Xg, f), where Xg is a Riemann surface of genus g and f :
X → Ĉ a meromorphic function. These spaces are widely studied in algebraic geometry and mathematical
physics. See, for instance, [3], [9] and [15]. We consider the Hurwitz space H of pairs (X, f), where
X ∈ 36M3

4 and f : X → Ĉ is a cyclic trigonal morphism. We obtain that H is a two fold connected
covering of 36M3

4 and then H is a Riemann sphere without four points. Finally we obtain the equations for
the algebaric curves in the family.

In general, given a prime number p, a closed Riemann surface X which is a p-sheeted covering of the
Riemann sphere is said to be p-gonal, and such a covering is called a p-gonal morphism. If the p-gonal
morphism is a regular covering, then the Riemann surface is called cyclic p-gonal.

Again by Lemma 2.1 in [1], if the surface X has genus g ≥ (p − 1)2 + 1, then the p-gonal morphism
is unique. Costa-Izquierdo-Ying [8] have obtained uniparametric families 4p2Mp

(p−1)2 of cyclic p-gonal
Riemann surfaces of genus (p − 1)2 admitting two cyclic p-gonal morphisms, proving that the bound is
sharp. We can prove [8] that the space 4p2Mp

(p−1)2 is a Riemann sphere without three points. Considering

the Hurwitz spaces Hp of pairs (X, f), where X ∈4p2 Mp
(p−1)2 and f : X → Ĉ is a cyclic p-gonal

morphism. We obtained ([8]) that Hp is a Riemann sphere without four points. Finally we obtain the
equations for the algebaric curves in the families 4p2Mp

(p−1)2 .

2 Trigonal Riemann surfaces and Fuchsian groups
Let Xg be a compact Riemann surface of genus g ≥ 2. The surface Xg can be represented as a quotient
Xg = D/Γ of the complex unit disc D under the action of a (cocompact) Fuchsian group Γ, that is, a
discrete subgroup of the group G = Aut(D) of conformal automorphisms of D. The algebraic structure of
a Fuchsian group and the geometric structure of its quotient orbifold are given by the signature of Γ:

s(Γ) = (g; m1, ...,mr).

A group Γ with the above signature has a canonical presentation:

〈x1, . . . , xr, a1, b1, . . . , ag, bg|xmi
i , i = 1, . . . , r, x1 . . . xra1b1a

−1
1 b−1

1 . . . agbga
−1
g b−1

g 〉

The orbit space D/Γ is a surface of genus g, having r cone points. The integers mi are the periods of
Γ, the orders of the cone points of D/Γ. The generators x1, . . . , xr, are called the elliptic generators. Any
elliptic element in Γ is conjugated to a power of some of the elliptic generators.

The hyperbolic area of the orbifold D/Γ equals:

µ(Γ) = 2π

(
2g − 2 +

r∑
i=1

(
1− 1

mi

))
.

Given a subgroup Γ′ of index N in a Fuchsian group Γ, we have the Riemann-Hurwitz formula

µ(Γ′)/µ(Γ) = N. (1)

A Fuchsian group Γ without elliptic elements is called a surface group and it has signature (h;−).
Given a Riemann surface represented as the orbit space X = D/Γ, with Γ a surface Fuchsian group, a
finite group G is a group of automorphisms of X if and only if there exists a Fuchsian group ∆ and an
epimorphism θ : ∆ → G with ker(θ) = Γ.

We have the following characterization of cyclic trigonal Riemann surfaces using Fuchsian groups:
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Theorem 1 ([6]) Let Xg be a Riemann surface, Xg admits a cyclic trigonal morphism f if and only if
there is a Fuchsian group ∆ with signature (0; 3, (g+2). . . , 3) and an index three normal surface subgroup Γ
of ∆, such that Γ uniformizes Xg .

Theorem 1 yields an algorithm to find cyclic trigonal Riemann surfaces:
Let G = Aut(X4) and let X4 = D/Γ be a Riemann surface of genus 4 uniformized by the surface Fuchsian
group Γ. The surface X4 admits a cyclic trigonal morphism f if and only if there is a maximal Fuchsian
group ∆ with signature (0;m1, . . . ,mr), an order three automorphism ϕ : X4 → X4, such that 〈ϕ〉 ≤ G
and an epimorphism θ : ∆ → G with ker(θ) = Γ in such a way that θ−1(〈ϕ〉) is a Fuchsian group with
signature (0; 3, 3, 3, 3, 3, 3). Furthermore the trigonal morphism f is unique if and only if 〈ϕ〉 is normal in
G (see [10]). We use Singerman’s method [16] to obtain a presentation of θ−1〈ϕ〉.

Since we assume that there are at least two trigonal automorphims, by [7], D3 × D3 ≤ G. Consider
Fuchsian groups ∆ with signature (0; 2, 2, 2, 3) and the group D3 ×D3 = 〈a, b, s, t/a3 = b3 = s2 = t2 =
[a, b] = [s, b] = [t, a] = (sa)2 = (tb)2 = (st)2 = 1〉. Consider the epimorphism θ : ∆ → D3 × D3

defined by θ(x1) = s, θ(x2) = tb, θ(x3) = sta and θ(x4) = a2b. The action of θ(x4) = a2b on the (〈ab〉)-
cosets has six fixed cosets. Then, by the Riemann-Hurwitz formula s(θ−1(〈ab〉)) = (0; 3, 3, 3, 3, 3, 3). In
the same way s(θ−1(〈a2b〉)) = (0; 3, 3, 3, 3, 3, 3). Thus the Riemann surfaces uniformized by Ker(θ) are
cyclic trigonal Riemann surfaces that admit two different trigonal morphisms f1 : D/ Ker(θ) → Ĉ and
f2 : D/ Ker(θ) → Ĉ induced by the subgroups 〈ab〉 and 〈a2b〉 of D3 ×D3. The dimension of the family
of surfaces D/ Ker(θ) is given by the dimension of the space of groups ∆ with s(∆) = (0; 2, 2, 2, 3). This
dimension is 3(0)− 3 + 4 = 1. We have obtained:

Theorem 2 ([7]) There is a uniparametric family 36M3
4 of Riemann surfaces X4(λ) of genus 4 admitting

several cyclic trigonal morphisms. The surfaces X4(λ) have G = Aut(X4(λ)) = D3 × D3 and the
quotient Riemann surfaces X4(λ)/G are uniformized by the Fuchsian groups ∆ with signature s(∆) =
(0; 2, 2, 2, 3).

3 Actions of finite groups on Riemann surfaces
Our aim is to show that the space 36M3

4 is connected and hence a Riemann surface. To do that we will prove,
by means of Fuchsian groups, that there is exactly one class of actions of D3 ×D3 on the surfaces X4(λ).

Each (effective and orientable) action of G = D3 × D3 on a surface X = X4(λ) is determined by
an epimorphism θ : ∆ → G from the Fuchsian group ∆ with signature s(∆) = (0; 2, 2, 2, 3) such that
Ker(θ) = Γ, where X4(λ) = D/Γ and Γ is a surface Fuchsian group.

Remark 1 The condition Γ being a surface Fuchsian group imposes: o(θ(x1)) = o(θ(x2)) = o(θ(x3)) =
2, o(θ(x4)) = 3, and θ(x1)θ(x2)θ(x3) = θ(x4)−1.

Two actions ε, ε′ of G on X are (weakly) topologically equivalent if there is an w ∈ Aut(G) and an
h ∈ Hom+(X) such that ε′(g) = hεw(g)h−1.

In terms of groups: two epimorphisms θ1, θ2 : ∆ → G define two topologically equivalent actions
of G on X if there exist automorphisms φ : ∆ → ∆, w : G → G such that θ2 = w · θ1 · φ−1. With
other words, let B be the subgroup of Aut(∆) induced by orientation preserving homeomorphisms. Then
two epimorphisms θ1, θ2 : ∆ → G define the same class of G-actions if and only if they lie in the same
B × Aut(G)-class. See [4, 11, 14]. We are interested in finding elements of B × Aut(G) that make our
epimorphisms θ1, θ2 : ∆ → G equivalent. We can produce the automorphism φ ∈ B ad hoc. In our case
the only elements B we need are compositions of xj → xj+1 and xj+1 → x−1

j+1xjxj+1, where we write
down only the action on the generators moved by the automorphism.

Lemma 1 There is an epimorphism θ : ∆ → G satisfying the Remark 1 if and only if θ(x4) = aεbδ , where
ε, δ ∈ {−1,+1}.
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PROOF. The elements of order three in G are aεbδ , a±1 and b±1. If θ(x4) = a±1 or θ(x4) = b±1 then the
action of θ(x4) on the 〈a〉- and 〈b〉-cosets leaves twelve fixed cosets which is geometrically imposible. �

Using Lemma 1 and Remark 1 we obtain all the epimorphisms θ : ∆ → G. We list them in 6 types:

1. θ(x1) = sai, θ(x2) = tbj , θ(x3) = stahbk

2. θ(x1) = tbj , θ(x2) = sai, θ(x3) = stahbk

3. θ(x1) = tbj , θ(x2) = staibk, θ(x3) = sah

4. θ(x1) = sai, θ(x2) = stahbj , θ(x3) = tbk

5. θ(x1) = staibj , θ(x2) = tbk, θ(x3) = sah

6. θ(x1) = staibj , θ(x2) = sah, θ(x3) = tbk

where 0 ≤ i ≤ 2, 0 ≤ j ≤ 2, i 6= h mod 3 and j 6= k mod 3.

Theorem 3 There is a unique class of actions of the finite group G = D3 × D3 on the surfaces X =
X4(λ).

PROOF. First of all, 1d×w ∈ B×Aut(G), where the automorphism w : G → G is defined by w(s) = t,
w(t) = s, w(a) = b and w(b) = a commutes epimorphisms of type 1 with epimorphisms of type 2; epi-
morphisms of type 3 with epimorphisms of type 4, and finally epimorphisms of type 5 with epimorphisms
of type 6.

Now, all the epimorphisms within the same type are conjugated to each other by a conjugation in
some of the following elements of D3 × D3: sta2(i′−i)b2(j′−j), a2(i′−i)b2(j′−j), sa2(i′−i)b2(j′−j) or
ta2(i′−i)b2(j′−j). So any epimorphism is equivalent to one of the following epimorphisms:

θ0(x1) = s, θ0(x2) = t, θ0(x3) = stab,

θ1(x1) = t, θ1(x2) = stab, θ1(x3) = sa2

θ2(x1) = stab, θ2(x2) = sa2, θ2(x3) = tb2

It is enough to show that there are elements of B commuting θ0 with θ1, and θ0 with θ2.
Consider φ1,2 : ∆ → ∆ defined by φ1,2(x1) = x2, φ1,2(x2) = x−1

2 x1x2, φ1,2(x3) = x3, φ1,2(x4) =
x4, and φ2,3 : ∆ → ∆ defined by φ2,3(x1) = x1, φ2,3(x2) = x3, φ2,3(x3) = x−1

3 x2x3, φ2,3(x4) = x4.
Firstly, φ2,3 · φ1,2 takes the epimorphism θ0(x1) = s, θ0(x2) = t, θ0(x3) = stab to the epimor-

phism θ1(x1) = t, θ1(x2) = stab, θ1(x3) = sa2. Secendly, φ1,2 · φ2,3 takes the epimorphism θ0 to the
epimorphism θ2(x1) = stab, θ2(x2) = sa2, θ2(x3) = tb2. �

As a consequence of the previous theorem we obtain:

Theorem 4 The space 36M3
4 is a Riemann surface. Furthermore it is the Riemann sphere with three

punctures.

PROOF. By Theorem 3, 36M3
4 is a connected space of complex dimension 1. The space 36M3

4 can be
identified with the moduli space of orbifolds with three cone points of order 2 and one of order 3. Each
cone point of order 2 corresponds to a conjugacy class of involutions in D3 ×D3 : [s], [t] and [st]. Using a
Möbius transformation we can assume that the three order two cone points are 0, 1 and ∞. Thus 36M3

4 is
parametrized by the position λ of the order three cone point Hence 36M3

4 is the Riemann sphere with three
punctures. �

We consider the pairs (X, f), where X ∈ 36M3
4 and f : X → Ĉ is a cyclic trigonal morphism. Two

pairs (X1, f1) and (X2, f2) are equivalent if there is an isomorphism h : X1 → X2 such that f1 = f2 ◦ h.
The space of classes of pairs (X, f) given by the above equivalence relation and with the topology induced
by the topology of 36M3

4 is a Hurwitz space H.
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Theorem 5 The space H is a two-fold connected covering of 36M3
4 and then H is a Riemann sphere

without four points.

PROOF. By Theorem 2 each surface of 36M3
4 admits two cyclic trigonal morphisms, then H is a two-fold

covering of 36M3
4.

We only need to prove that the covering space is connected. We need to show that the monodromy of the
coveringH →36M3

4 is not trivial. Each (X(λ), f) ∈ H is given by a point λ ∈ Ĉ−{0, 1,∞} and a trigonal
cyclic morphism f : X → Ĉ. The trigonal cyclic morphism is given by the projections fab : X → X/ 〈ab〉
or fa2b : X → X/

〈
a2b
〉
. There is an action of π1(36M3

4) = π1(Ĉ−{0, 1,∞}) on the set of representations
R = {r : π1(Ĉ − {0, 1,∞, λ}) → D3 × D3}. The group π1(36M3

4) is generated by three meridians and
each one acts on R as the action induced by a braid in Ĉ − {0, 1,∞, λ}. The braid Φ−1

34 Φ2
23Φ34 (given by

the action of one of the meridians of 36M3
4) sends r1 : π1(Ĉ − {0, 1,∞, λ}, ∗) → D3 × D3 defined by:

x1 → s, x2 → t, x3 → stab, x4 → a2b2 to r2 : π1(Ĉ − {0, 1,∞, λ}) → D3 ×D3 defined by: x1 → s,
x2 → tb, x3 → sta2b2, x4 → ab2

The representations r1 and r2 are conjugated by sb2, but such a conjugation sends 〈ab〉 to
〈
a2b
〉
. �

4 Equations of the algebraic curves in 36M3
4

Let X be a curve of 36M3
4 with automorphisms group Aut(X) = D3 ×D3.

The subgroup 〈a, b〉 of D3 ×D3 is a normal subgroup of D3 ×D3 and it isomorphic to C3 × C3. The
quotient group D3 ×D3/ 〈a, b〉 is isomorphic to the Klein group C2 × C2. We can factorize the covering

X → X/D3 ×D3 by two regular coverings: X → X/C3 × C3, X/C3 × C3
C2×C2−−−−→ X/D3 ×D3.

The quotient space X/C3 × C3 is a 2-orbifold with four conic points of order 3 and genus 0. The
orbifold X/D3 ×D3 = (X/C3 ×C3)/C2 ×C2 has three conic points of order 2, one conic point of order
3 and genus 0. Using a Möbius transformation we can consider that the action of C2×C2 on X/C3×C3 is
the given by the transformations {z → ±z, z → ± 1

z}. Since the set of the four conic points of order three
is an orbit of the action of C2 × C2 on X/C3 × C3, then the conic points of X/C3 × C3 are: {±λ,± 1

λ}
for λ ∈ C− {0,±1,±i}.

To obtain X from X/C3 × C3 we factorize X → X/C3 × C3 by the coverings: X
C3−−→ X/C3,

X/C3 × C3
C3−−→ X/C3 × C3.

The cyclic three-fold covering g : X/C3 → X/C3 × C3 branched on ±λ is: g(z) = (−λz+λ
z+1 )3. The

orbifold X/C3 has six conic points of order 6 that are the preimages by g of ± 1
λ . If ζ1 is a primitive cubic

root of λ − 1, ζ2 is a primitive cubic root of λ2+1
λ−1 and ξ is a primitive cubic root of the unity, then X has

equation as algebraic complex curve:

y3 =
3∏

i=1

(x− ζi
1)

3∏
i=1

(x− ζi
2)

2.
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