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On the equality of the ordinary least squares estimators and

the best linear unbiased estimators in multivariate
growth-curve models

Gabriela Beganu

Abstract. It is well known that there were proved several necessary and sufficient conditions for the
ordinary least squares estimators (OLSE) to be the best linear unbiased estimators (BLUE) of the fixed
effects in general linear models. The purpose of this article is to verify one of these conditions given
by Zyskind [39, 40]: there exists a matrix () such that QX = X, where X and (2 are the design
matrix and the covariance matrix, respectively. It will be shown the accessibility of this condition in some
multivariate growth-curve models, establishing the known result regarding the equality between OLSE
and BLUE in this type of linear models.

Sobre la igualdad de los estimadores ordinarios de minimos cuadrados y de
los estimadores lineales no sesgados optimos en modelos multivariantes de
curvas de crecimiento.

Resumen. Es bien sabido que existen demostraciones de varias condiciones necesarias y suficientes
para que los estimadores ordinarios de minimos cuadrados (OLSE) sean los estimadores lineales insesga-
dos 6ptimos (BLUE) de modelos lineales generales con efectos fijos. El propésito de este articulo es com-
probar que una de esas condiciones dada por Zyskind [39, 40]: existe una matrix @ tal que QX = X@Q,
donde X y €2 son la matriz de disefio y la matriz de covarianza, respectivamente. Se demostrara la acce-
sibilidad de esta condicién en algunos modelos multivariantes de curvas de crecimiento, estableciendo el
resultado conocido teniendo en cuenta la igualdad entre OLSE y BLUE en este tipo de modelos lineales.

1 Introduction

The problem of the equality of the OLSE and the BLUE in linear models has a long tradition in statistics,
starting perhaps with work of Anderson [1]. But the most important contribution to solve this problem
belongs to Rao [31, 32, 33], and Zyskind [39, 40, 41]. Thus Zyskind [39] stated eight equivalent alternative
conditions in the case of a positive definite covariance matrix in linear regression models. These conditions
imply a relationship between the covariance matrix and the whole matrix of explanatory variables.

For the extended case when the covariance matrix is non-negative definite and the regressor matrix
does not necessarily have full column rank, Rao [31] appears to be the first who derived the necessary and
sufficient conditions and Zyskind [40] proved the first general theorem for OLSE to yield BLUE.

Seminal contributions in solving this problem were made by Watson [37, 38], Anderson [2], Searle [36],
Durbin and Watson [17], Bloomfield and Watson [13]. Alternative proofs of some of the earlier result as
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well as their extensions were derived, using algebrical methods, by: Baksalary and Kala [4], Baksalary[5],
Puntanen and Styan[29], McAleer [24], Qin and Lawless [30], Kurata and Kariya [22]. The results of
this problem expressed in geometrical form were obtained by: Kruskal [21], Eaton [18], Haberman [19],
Arnold [3]. Some alternative proofs using also a coordinate-free approach were given by Drygas [15, 16]
and Beganu [10, 11].

For all model matrices having a fixed common linear part the problem of the equality between OLSE
and BLUE was solved by McElroy [25], Zyskind [41], Balestra [7]. Milliken and Albohali [26] argued that
McElroy’s condition is sufficient but not necessary. A clarification of the issues involved in this debate was
made by Baksalary and Eijnsbergen [6].

When the covariance matrix is unknown De Gruttola et al. [14] used a three-stage estimation procedure
to obtain a generalized least squares estimator (GLSE) of the regression coefficients which is asymptotically
efficient; Baltagi [8] derived a necessary and sufficient condition for two-stage and three-stage least squares
estimators to be equivalent; Phillips and Park [27] studied an asymptotic equivalence of OLSE and GLSE;
Khan and Powell [20] introduced a two-stage estimator of the regressors in linear censored regression
models and proved that a small sample bias is in the opposite direction of the OLSE; Bates and DebRoy [9]
used an iterative algorithm to estimate the parameters in multivariate mixed linear models, some of the
intermediate calculations requiring GLSE; Biorn [12] provided that the GLSE can be interpreted as an
weighted average of a group of estimators, where the weights are the inverses of their covariance matrices,
and the results of the research work in this field can go on.

The purpose of this paper is to verify one of the necessary and sufficient conditions for OLSE to be
BLUE given by Zyskind [39, 40] and to show its accessibility for some multivariate growth-curve models.
This type of parametric models for repeated-measures data occupies a central role in the statistical literature
on longitudinal studies, being available in significant fields. Therefore it may be useful to prove easier the
equality between OLSE and BLUE of the fixed effects using this Zyskind’s condition.

The paper is structured as follows. In Section 2 Zyskind’s condition is presented in the general linear
model. In Sections 3 and 4 Zyskind’s condition will be verified using two multivariate growth-curve models
with a fixed structure on the mean and differing numbers of multivariate random effects for each sampling
unit. The previous results are applied in the particular case of the growth-curve model considered by Lange
and Laird [23].

2 Zyskind’s condition

Consider the general univariate linear model
y=XB+e ey

where y is an n X 1 vector of observations, X is an n x k matrix of rank r(X) = r < k of known real
constants, 3 is a k x 1 vector of unknown parameters and e is an n. X 1 vector of errors with zero mean and
the covariance matrix €.

It is well known that the OLSE of X 3 is any solution of the normal equations X' X3 = X'y. If r = k,
then the unique solution is .

Xforse = X (X'X)™' X"y 2

where P = X (X’X)~1X" is the orthogonal projection on C(X), the columns space of X.

When (2 is positive definite, the BLUE of X 3 in (1) is the solution of the generalized normal equations
X'Q71XB = X'~ 1y. Some authors refer to these estimators as the GLSE and others call them the
weighted least squares estimators of X /3. The BLUE of X 3 is

XfBpLue = X(X'Q X)Xy 3

If 7 < k, any generalized inverse (X'X)~ of X’X and (X'Q 71 X)~ of X’Q !X will be used instead
of (X’X)~1in (2) and (X’Q~1X) ! in (3). In this case (2 non-singular), Anderson [1] proved that

Borse = BpLuk “4)
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if C(X) = C(Q.), where Q, is a matrix whose r columns are the r eigenvectors corresponding to r non-null
eigenvalues of €.
Thus, the problem of the equality

X forse = X fsrus )

may be replaced by (4). This replacement is also possible when the Moore-Penrose inverses (X’ X )™ and
(X'Q~1X)"* are used in (2) and (3), respectively, instead of any generalised inverses.
When () is non-negative definite, then

XfBpLue = X(X'QX)'X'Q7y (6)

if » = k and the BLUE of X 3 will be expressed by (6) with (X’Q~ X)~ instead of (X'Q2~X)~tifr < k.
In order to show how the OLSE and the BLUE of X (3 differ in general, using the relations (2) and (6),
it can be written (see [4]) that

Xferue = XPorse — POM(MQM)*ty

where M =1 — P.
Zyskind and Martin [42] established that the solution of the general normal equations X’'Q+t X3 =
X'y do not lead to BLUE of X 3 and that the necessary and sufficient condition for

XfaLse = X (X't X)Xty

to equal X BBLUE is C(X) C C(92). Kruskal [21] and Eaton [18] obtained the same condition in a
coordinate-free aproach.

Baksalary and Kala [4], extending the former results, showed that if X BG Lse = X BOLSE, then they
are both BLUE of X 3.

But the first complete solution of (5) was derived by Rao [31] who gave an explicit representation of the
set of all non-negative definite matrices {2. Zyskind [40], extending the results stated in [39], proved eight
necessary and sufficient conditions under which the OLSE is BLUE of X 3. One of these conditions which
follows to be used is:

A necessary and sufficient condition for OLSE of (3 in model (1) to be BLUE is to exist a k X k matrix
Q satisfying the relation

QX = XQ @)

when the covariance matrix ) is non-negative definite.
The problem of the equalities (4) is treated in the same way for the multivariate linear regression models.

3 A multivariate growth curve model

Many longitudinal studies investigate changes over time in a characteristic (or more) which is measured
repeatedly for each unit. A general family of multiple response models which includes the repeated-
measurement and the growth curve models was considered by many authors (Potthoff and Roy [28]) and
was generalized by Reinsel [34, 35]. Thus it is assumed that each of the m variables follows a response
curve of the same linear type over the p occasions for each of the n individuals. Let y; be an mp x 1
observable random vector of the form

Y = (X @ Iy) vec O + (1, @ Iy) Ak + ek (8)

where X is a p x ¢ known within-individual model matrix, 6, is an m X ¢ matrix of unknown parameters,

A is an m x 1 vector of random effects associated with the kth individual and ex = (g7, ...€,;)" is an

mp X 1 vector of errors, k = 1, ..., n. I, is the identity matrix of order m, 1, is a p X 1 vector of ones and
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“®” is the Kronecher matrix product (M @ N = (m;;N)). It is used the vec operator such that the columns
of a matrix are rearranged one below another. Then vec 6, is an mg x 1 vector of unknown parameters.
It is assumed that A, and ¢, are independent and identical distributed random vectors with

E(Ak) =0,  E(gx) =0
cov(Ag) = Xy, cov(ejg) = X, i=1....p; k=1,...n.
Then the expected mean and the covariance matrix of y, are
E(yr) = (X ® Ip,) vec 0 )
cov(yp) = Jp N+ [, 03, =V, k=1,....n (10)

where J,, is the p x p matrix of ones.

The repeated-measurement models alow for (vec 6y, ...vec8,) = BA’, where B is an mgq X r matrix
of unknown parameters and A is an n X r known between-individual model matrix.

SettingY' = (y1...9yn), A" = (A1...\,) and E' = (e; ... e,), the model (8) can be written as

Y =(X®I,)BA + (1, @ I,)\' + E (1)
or, using the relation vec(ABC) = (C' ® A) vec B, as
Yy=AX L)+ I, @1, @)\ +e (12)
where y = vecY’, B = vec B, A = vec A’ and e = vec E’. The relations (9) and (10) become
E(y) = (A0 X @ In)p
cov(y) =L, 0V =01, J, 5\ + I, ® I, ® 5, (13)

Since the regression model (8) includes a constant term for each of m variables, it is assumed ([34]) that
X = (1, Z),whereZisap x (¢— 1) matrix. It is also assumed without loss of generality that r(X) = ¢
and r(A) = r and that ¥ and X, are non-negative definite matrices.

The OLSE of 3 in model (12) is given by Reinsel [34] as

Bovse = [(A'4) 1A' @ (X'X) 71X @ L]y (14)
or, equivalently, the OLSE of B in model (11) as
Borse = [(X'X) ' X' ® I,]Y' A(A’A) ! (15)
The BLUE of 3 in (12) and the BLUE of B in (11) will be
BeLue = [(A'A)7A @ (X' @ L)V (X @ Ln)] 7 X' © Ln)V )y (16)
BpLug = [(X' @ L)V (X @ L,)] " YX' @ I, )V Y A(A'A)~? (17)
where V' is the covariance matrix (10).

Theorem 1 The equation

has the solution
Q=L®RTr+1,®X,) (19)
with )
b -1
R= 4 20
( Oq—l Oq—l,q—l ) ( )

if and only if Z is orthogonal to 1, in model (12).
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PrROOF. Using the expression (13) and the properties of the Kronecker product ([33]), it can be written
that
LoV ARX®I)=AQ (LX) X\ + AR X ® X,

It follows that
JpX =1,(p 0{171) =X'R 21)

if and only if 17,Z = 0 with R given by (20). 0,1 and 01 41 are the null vector and the null matrix of
corresponding orders.

Corollary 1 The gqm x gm matrix
M:R®Z)\+Iq®ze (22)

with R given by (20) verifies the relation
VIX®IL,)NA = (X®1I,,)MNA’ (23)
for every gqm x r matrix N if and only ifl;Z = 0 in model (11).
PROOF. It follows from the relations (10) and (21) that
VX ®I)NA' = [(J,X) @8N+ X @B JNA = (X @ L,)(ROE\+ 1, @ B )NA

Corollary 2 In the multivariate growth-curve models given by the matriceal form (11) or the vectorial
form (12), having the model matrix X = (1, Z) such that 1,,Z = 0, the OLSE of B or 3 are BLUE.

PROOF. The relations (18) and (23) represent the necessary and sufficient condition (7) of Zyskind for
verifying the equality (4) corresponding to models (12) and (11) (11), respectively. The OLSE and the
BLUE of 3 and B are expressed in (14)—(17). H

4 A generalized growth-curve model
A slightly more general growth-curve model of the matriceal form
Y'=(X®1,)BA + (X @ I,) N + (W ® I,,)T' + E' (24)
or the vectorial form
Yy=AX QI+ (UNnX Q)N+ (UNnQW I,,)T +e (25)

was considered by Reinsel [34, 35]. It is considered that W is a p X s matrix of known constants of full
column rank, 7" is an n X ms matrix of random effects obtained by a similar procedure as A in model (11)
and 7 = vecT". Tt is assumed that the matrices A’, T and E’ are mutually independent and have random
column vectors independently and identically distributed with zero means and the same covariance matrices
I,®%y, I, ®3; and I, ® ., respectively. Under these assumptions y has the expected value given by (13)
and the covariance matrix

cov(y) =L @ [(XX) @+ (WW) @2, + L eX] =10V, (26)
Theorem 2 The necessary and sufficient condition for the existence of an rqm X rqgm matrix
Q=1 3[(X'X)®S) +1,® ] 27

verifying the relation (18) is that W and X be orthogonal in model (25).
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PROOF. Replacing the covariance matrix given by (26) in the relation (18) it obtains that () is given by (27)
if and only if W' X = 0.

Corollary 3 There exists a gm X qm matrix
M=XX"Y®Z\+1,®Z, (28)
verifying the relation (23) for every gm x r matrix N if and only if W is orthogonal to X in model (24).

Corollary 4 In the multivariate growth-curve models (24) and (25) the OLSE of B and (3, respectively,
are BLUE if and only if W and X are orthogonal.

Example 1 For m = 1 and the random components N’ and E’, the model (24) becomes the balanced
growth curve model saturated in the design matrix of the random effects considered by Lange and Laird [23]
having the matriceal form

Y' = XBA + XN + F (29)

The expected mean for this model will be E(Y') = XBA' or E(y) = (A ® X)f and the covariance
matrix will be
cov(y) =1, @ (XX +0°1,) =1,V

Without loss of generality it is assumed that the columns of the within-individual model matrix X constitute
an orthonormal set, that is X' X = I,.
Under these assumptions, the condition (18) written for (29) becomes

[, @V)(A®X)=A® (XE\X'X +0°X) = (A® X)[I, ® (S + 0°1,)).

Thus, there exists an rq X rq matrix Q = I, ® (X + szq), which is a particular form of (27) (27).
The similar condition (23) will be satisfied by a q x q matrix M = %5 + 021, which is the equivalent

form of (28).
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