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Some properties of the tensor product of Schwartz εb-space

Belmesnaoui Aqzzouz, M. Hassan el Alj and Redouane Nouira

Abstract. We define the ε-product of an εb-space by quotient bornological spaces and we show that
if G is a Schwartz εb-space and E|F is a quotient bornological space, then their εc-product Gεc(E|F )
defined in [2] is isomorphic to the quotient bornological space (GεE)|(GεF ).

Algunas propiedades del producto tensorial de εb-espacios de Schwartz

Resumen. Definimos el ε-producto de un εb-espacio por un cociente de espacio bornológico y demos-
tramos que si G es un εb-espacio de Schwartz y E|F es un cociente de espacio bornológico, entonces su
εc-producto Gεc(E|F ) definido en [2], es isomorfo al cociente de espacio bornológico (GεE)|(GεF ).

1 Introduction and notations

It is well known that the ε-product by a Banach space is always a left exact functor on the category of
Banach spaces, but it is not right exact in general. To solve this problem, Kaballo [9] introduced the class
of ε-spaces, they are locally convex spaces G such that the ε-product of the identity map of G with any
surjective continuous linear mapping between Banach spaces is surjective. He proved that a Banach space
is an ε-space if and only if it is an L∞-space. As a consequence, if G is an L∞-space, the left exact functor
Gε. : Ban → Ban, E → GεE is exact, where Ban is the category of Banach spaces and bounded
linear mappings. Since each b-space is an inductive limit of Banach spaces [15] and the inductive limit
functor is exact on the category of b-spaces [7], it follows that the functor Gε. : b → b, E → GεE
is exact whenever G is a b-space which is an inductive limit of L∞-spaces, where b is the category of
b-spaces [15]. Now, by [17, Theorem 4.1], the last functor admits an exact extension Gε. : q → q,
E|F → Gε(E|F ) = (GεE)|(GεF ), where q is the category of quotient bornological spaces [17].

In [4], we have introduced the class of εb-spaces that we have used to establish some isomorphisms in
the category of b-spaces. The objective of this paper is to define the ε-product of the class of εb-spaces
in the category of quotient bornological spaces. It is the same as the ε-product defined in [2] for the class
of L∞-spaces. But also, we will prove that if a Schwartz b-space G is a bornological inductive limit of
L∞-spaces and E|F is a quotient bornological space, then (GεE)|(GεF ) = Gεc(E|F ). Conversely, we
will show that if G is a Schwartz b-space such that for each quotient bornological space E|F , we have
(GεE)|(GεF ) = Gεc(E|F ), then G is a Schwartz εb-space.

To prove our results, we need to recall some definitions and notations. Let EV (resp. Ban) be the
category of vector spaces and linear mappings (resp. Banach spaces and bounded linear mappings).
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1. Let (E, ‖·‖E) be a Banach space. A Banach subspace F of E is a vector subspace endowing with a
Banach norm ‖·‖F such that the inclusion map (F, ‖·‖F ) → (E, ‖·‖E) is bounded. Observe that the
norm ‖·‖F of F is not necessarily the same as the norm induced by ‖·‖E on F , and then the Banach
subspace F is not necessarily closed in E. A quotient Banach space E|F is a vector space E/F ,
where E is a Banach space and F a Banach subspace. It is clear that E|F is not necessarily an object
of the category of Banach spaces Ban, but is one if F is closed in E. If E|F and E1|F1 are two
quotient Banach spaces, a strict morphism u : E|F → E1|F1 is a linear mapping u : x + F 7−→
u1(x) + F1, where u1 : E → E1 is a bounded linear mapping such that u1(F ) ⊆ F1. We shall say
that u1 induces u. Two bounded linear mappings u1, u2 : E → E1 both inducing a strict morphism,
induce the same strict morphism if and only if the linear mapping u1−u2 : E → F1 is bounded. Let
E|F be a quotient Banach space and E0 a Banach subspace of E such that F is a Banach subspace
of E0. Then the natural injection E0 → E induces a strict morphism E0|F → E|F , and the identity
mapping IdE : E → E induces a strict morphism E|F → E|E0.

We call q̃Ban the category of quotient Banach spaces and strict morphisms, it is a subcategory of
vector spaces EV and contains the category of Banach spaces Ban (any Banach space E will be
identified with the quotient Banach space E|{0}, moreover if u1 : E → E1 is a bounded linear
mapping, then u1 induces a strict morphism E|{0} → E1|{0} and every strict morphism E|{0} →
E1|{0} is inducing by a unique bounded linear mapping u1 : E → E1). The category q̃Ban is not
abelian, in fact, if E is a Banach space and F a closed subspace of E, it would be very nice if the
quotient Banach space E|F where isomorphic to the quotient (E/F )|{0}. This is not the case in
q̃Ban unless F is complemented in E.

In [16] L. Waelbroeck introduced an abelian category qBan generated by q̃Ban and inverses of
pseudo-isomorphims, i.e. has the same objects as q̃Ban and every morphism u of qBan can be
expressed as u = v ◦ s−1, where s is a pseudo-isomorphism and v is a strict morphism. For more
information about quotient Banach spaces we refer the reader to [16].

2. Let E be a real or complex vector space, and let B be an absolutely convex set of E. Let EB be the
vector space generated by B i.e. EB = ∪λ>0λB. The Minkowski functional of B is a semi-norm
on EB . It is a norm, if and only if B does not contain any nonzero subspace of E. The set B is
completant if its Minkowski functional is a Banach norm.

A bounded structure β on a vector space E is defined by a set of “bounded” subsets of E with the
following properties:

(1) Every finite subset of E is bounded.
(2) Every union of two bounded subsets is bounded.
(3) Every subset of a bounded subset is bounded.
(4) A set homothetic to a bounded subset is bounded.
(5) Each bounded subset is contained in a completant bounded subset.

A b-space (E, β) is a vector space E with a boundedness β. A subspace F of a b-space E is bornolog-
ically closed if the subspace F ∩ EB is closed in EB for every completant bounded subset B of E.

Given two b-spaces (E, βE) and (F, βF ), a linear mapping u : E → F is bounded, if it maps
boundeds of E into boundeds of F . The mapping u is bornologically surjective if for every B′ ∈ βF ,
there exists B ∈ βE such that u(B) = B′. A Schwartz b-space G is a b-space satistying the following
condition: for each completant bounded disk A of G is there exists a completant bounded disk B of
G such that the inclusion mapping iB′B : GA → GB is compact. We denote by b the category of
b-spaces and bounded linear mappings. For more information about b-spaces we refer the reader to
[6], [7], and [15].

Let (E, βE) be a b-space. A b-subspace of E is a subspace F with a boundedness βF such that
(F, βF ) is a b-space and βF ⊆ βE . We note that the boundedness βF of F is not necessarily the same
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as the boundedness induced by βE on F , and then the b-subspace F is not necessarily bornologically
closed in E. A quotient bornological space E|F is a vector space E/F , where E is a b-space and F
a b-subspace of E. Observe that E|F is not necessarily an object of the category of b-spaces b, but it
is one if F is bornologically closed in E. If E|F and E1|F1 are quotient bornological spaces, a strict
morphism u : E|F → E1|F1 is induced by a bounded linear mapping u1 : E → E1 whose restriction
to F is a bounded linear mapping F → F1. Two bounded linear mappings u1, v1 : E → E1, both
inducing a strict morphism, induce the same strict morphism E|F → E1|F1 if and only if the linear
mapping u1 − v1 : E → F1 is bounded.

We call q̃ the category of quotient bornological spaces and strict morphisms. A pseudo-isomorphism
u : E|F → E1|F1 is a strict morphism induced by a bounded linear mapping u1 : E → E1 which is
bornologically surjective and such that u−1

1 (F1) = F i.e. B ∈ βF if B ∈ βE and u1(B) ∈ βF1 .

The category q̃ is not abelian because it contains the category q̃Ban. In [17], Waelbroeck introduced
an abelian category q generated by q̃ and inverses of pseudo-isomorphims i.e. has the same objects
as q̃ and every morphism u of q can be expressed as u = v ◦ s−1, where s is a pseudo-isomorphism
and v is a strict morphism.

3. The ε-product of two Banach spaces E and F is the Banach space EεF of linear mappings E′ → F
whose restrictions to the unit ball of E′ are σ(E′, E)-continuous, where E′ is the topological dual of
E. It follows from Proposition 2 of [14], that the ε-product is symmetric. If Ei and Fi are Banach
spaces and ui : Ei → Fi is a bounded linear mapping, i = 1, 2, the ε-product of u1 and u2 is the
bounded linear mapping.

u1εu2 : E1εE2 −→ F1εF2, f 7−→ u2 ◦ f ◦ u′1

where u′1 is the dual mapping of u1. It is clear that if G is a Banach space and F is a Banach subspace
of a Banach space E, then GεF is a Banach subspace of GεE. For more detail about the ε-product
we refer the reader to [8] and [14].

4. A Banach space E is an L∞,λ-space, λ ≥ 1, if and only if every finite-dimensional subspace F of E
is contained in a finite-dimensional subspace F1 of E such that d(F1, l

∞
n ) ≤ λ, where n = dim F1,

l∞n is Kn (K = R or C) with the norm sup1≤i≤n |xi|, and

d (X, Y ) = inf
{∥∥T

∥∥ ∥∥T−1
∥∥ : T : X → Y is isomorphism

}
is the Banach-Mazur distance of the Banach spaces X and Y . A Banach space E is an L∞-space if
it is an L∞,λ-space for some λ ≥ 1. For more information about L∞-spaces we can see [12].

2 The ε-product of εb-spaces
Kaballo [9] defined the class of ε-spaces in the category of locally convex spaces and proved that it coincides
with the class of L∞-spaces in the category of Banach spaces. In [2], we defined the εc-product of an L∞-
space by a quotient Banach space.

Recall from [4] that the ε-product of the b-space G and the Banach space E is the space GεE =
∪B (GBεE), where B ranges over the bounded completant subsets of the b-space G. On GεE we define
the following bornology of b-space: a subset C of GεE is bounded if there exists a completant bounded
disk A of G such that C is bounded in the Banach space GAεE. It is clear that if F is a bornologically
closed subspace in G, the subspace FεE is a bornologically closed subspace in GεE.

Finally, if G and E are two b-spaces, the ε-product of G and E is the space GεE = ∪A,B (GAεEB),
where A (resp. B) ranges over the bounded completant subsets of the b-space G (resp. E). We endow
GεE with the following bornology of b-space: a subset C of GεE is bounded if there exists a completant
bounded disk A of G (resp. B of E) such that C is bounded in the Banach space GAεEB .
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Now, we define the class of εb-spaces.

Definition 1 A b-space G is an εb-space if the bounded linear mapping IdGεu : GεE → GεF is
bornologically surjective whenever u : E → F is a surjective bounded linear mapping between Banach
spaces.

Example 1 All the b-spaces=(X, E) studied in [1] are the ε-product of the corresponding space of scalar
functions =(X) and the range space E. It follows from the results of the paper [1], that each one of those
b-spaces =(X) is an εb-space. But there exist b-spaces which are not εb-spaces. In fact, if U is an
open subset of Rn and r ∈ N∗, we design by Cr(U) the space of r-continuously differentiable functions
i.e. Cr(U) = {f ∈ Cr−1(U) : Df exists and Df ∈ C(U)} where Df denote the derivative of f and
C0(U) = C(U) is the Banach space of continuous functions on U . Khenkin proved in [10] that if n ≥ 2,
Cr(U) is not an εb-space.

On the other hand, let U be a compact manifold. For each r ∈ R+\N, we consider the Banach space
Cr (U) of functions of class C [r] on U such that for all k ∈ Nn, |k| ≤ [r], the function Dkf is continu-
ously o-Hölderian of exponent r − [r]. By [5], it is an L∞-space. If r′ ≥ r, we have a natural mapping
Cr′

(U) → Cr(U). Then we define the b-space C∞ (U) as the projective limit of the system (Cr (U))r in
the category b. Recall that for each r ∈ R+\N, the functor Cr (U) ε. : b → b is exact. But the left exact
functor C∞ (U) ε. : b → b is not necessarily right exact, and it follows that the b-space C∞ (U) is not
necessarily an εb-space.

Recall that a complex F
u→ E

v→ G of the category b is exact if v ◦ u = 0 and if for all bounded B in
E such that v (B) = {0}, there exists a bounded A of F such that u (A) = B.

It is clear that if
0 → F → E → G → 0

is a short exact complex of the category b, then the b-space F is bornologically isomorphic to a bornologi-
cally closed subspace of E and G ' E/F .

We start by recalling some basic results on εb-spaces that are proved in [3].

Proposition 1 ([3]) 1. If G is an εb-space, then the functor

Gε. : b → b : E → GεE

is exact.

2. If the b-space G is an inductive limit of L∞-spaces in the category b, then G is an ε b-space. In
particular, every nuclear b-space is an εb-space.

The next Theorem gives a characterization of εb-spaces in the category q.

Theorem 1 A b-space G is an εb-space if and only if the functor Gε̃. : q̃ → q : E|F → (GεE)|(GεF )
can be extended to an exact functor Gε. : q → q.

PROOF. Let E1|F1 and E2|F2 be two quotient bornological spaces and u : E1|F1 → E2|F2 a pseudo-
isomorphism induced by a bounded linear mapping u1 : E1 → E2 which is bornologically surjective.
Then

IdGεu : Gε(E1|F1) −→ Gε(E2|F2)

is a strict morphism induced by the bounded linear mapping

IdGεu1 : GεE1 → GεE2.

Since G is an εb-space the mapping IdGεu1 is bornologically surjective. We have to show that

(IdGεu1)
−1 (GεF2) = GεF1.

36



Some properties of the tensor product of Schwartz εb-spaces

Let A be a bounded subset of GεF1 such that (IdGεu1) (A) is a bounded of GεF2. There exists a comple-
tant bounded subset B in F2 such that (IdGεu1) (A) is bounded in GεF2B

. Also there exists a completant
bounded subset C of E1 such that u1 (C) = B and A is bounded in GεE1C

. Then necessarily A is
bounded in GεF1C

. This shows that the strict morphism IdGεu is an isomorphism of q, and it follows from
Theorem 4.1 of [17], that the functor Gε̃. can be extended to an exact functor Gε. : q → q.

Conversely, let u1 : X → Y be a surjective bounded linear mapping between Banach spaces. It induces
a pseudo-isomorphism

u : X|u−1
1 (0) → Y | {0} .

If the strict morphism
IdGεu : (GεX) |

(
Gε(u−1

1 (0))
)
→ (GεY ) | {0}

is an isomorphism, then it is epic (Theorem 7.4 of [17]) and is induced by the bounded linear mapping
IdGεu1 : GεX → GεY . Then necessarily IdGεu1 is bornologically surjective. This proves that G is an
εb-space.

Finally, we give the following definition

Definition 2 The ε-product of an εb-space G and a quotient bornological space E|F is the quotient
bornological space Gε(E|F ) = (GεE)|(GεF ).

3 On the εc-product of a Schwartz εb-space
Recall from [2], that a C(K)-resolution of a Banach space G is a sequence

0 → G
Φ→ C(X) Ψ→ C(Y )

in the category Ban such that Ker(Ψ) = Im(Φ) and the range of Ψ is closed in C(Y ).
In Proposition 3.2 of [2], it is shown the existence at least of a concrete C(K)-resolution for G which

we shall name as canonical C(K)-resolution of G.
Given an arbitrary C(K)-resolution of a Banach space G

0 → G
Φ→ C(X) Ψ→ C(Y )

and a quotient bornological space E|F , since C(X) and C(Y ) are L∞-spaces, we define C(X, E|F ) and
C(Y, E|F ) as C(X, E)|C(X, F ) and C(Y, E)|C(Y, F ) respectively. Then a strict morphism

ΨεIdE|F : C(X, E)|C(X, F ) −→ C(Y, E)|C(Y, F )

exists, it is induced by the bounded linear mapping

ΨεIdE : C(X, E) → C(Y, E).

As the category q is abelian, the object Ker(ΨεIdE|F ) exists, and then we obtain the following left exact
sequence in q:

0 → Ker(ΨεIdE|F )
ΦεIdE|F−−−−−→ C(X)ε (E|F )

ΨεIdE|F−−−−−−→ C(Y )ε (E|F )

where
Ker(ΨεIdE|F ) = (ΨεIdE)−1 (C(Y )εF )| (C(X)εF ) .

and the subspace (ΨεIdE)−1 (C(Y )εF ) of C(X)εE is a b-space for the following boundedness: a subset
B of (ΨεIdE)−1 (C(Y )εF ) is bounded if it is bounded in C(X)εE and its image (ΨεIdE) (B) is bounded
in the b-space C(Y )εF . It is also a b-subspace of C(X)εE.

37



B. Aqzzouz, M. Hassan el Alj and R. Nouira

Let
GεRes (E|F ) = (ΨεIdE)−1 (C(Y )εF ) | (C(X)εF ) ,

then each C (K)-resolution of G defines an object GεRes (E|F ). In general, this object depends on C(K)-
resolutions of G. However, if G is an L∞-space, we can show that the strict morphism (GεE) | (GεF ) →
GεRes(E|F ) is an isomorphism, and then it follows that the object GεRes(E|F ) is independent from
C (K)-resolutions of G. To do this we need the following two Lemmas:

Lemma 1 If 0 → G1 → G2 → G3 → 0 is an exact sequence in Ban such that Gi is an L∞-space,
i = 1, 2, 3, then for each quotient bornological space E|F , the sequence 0 → G1ε(E|F ) → G2ε(E|F ) →
G3ε(E|F ) → 0 is exact in q.

PROOF. It follows from Proposition 2.5 and Example 2.4(i) of [9] and Proposition 6.2 of [2], the
exactness in b of the following sequences:

0 → G1εE → G2εE → G3εE → 0

0 → G1εF → G2εF → G3εF → 0.

Since G1, G2 and G3 are L∞-spaces, the sequence

0 → GiεF → GiεE → Giε(E|F ) → 0, i = 1, 2, 3,

is also exact in q (Theorem 1.2 of [2]). These exact sequences induce the following commutative diagram:

0

��

0

��

0

��
0 // G1εF //

��

G2εF //

��

G3εF //

��

0

0 // G1εE //

��

G2εE //

��

G3εE //

��

0

0 // G1ε(E|F ) //

��

G2ε(E|F ) //

��

G3ε(E|F ) //

��

0

0 0 0

where the two first lines and the three columns of the above diagram are exact. It follows from Lemma 4.3.6
of [13], that the third line is exact.

Lemma 2 Let G be a Banach space, 0 → G
Φ→ C(X) Ψ→ C(Y ) a C(K)-resolution of G and u :

E|F → E1|F1 a pseudo-isomorphism between quotient bornological spaces. Then the strict morphism
IdGεResu : GεRes(E|F ) → GεRes(E1|F1) is an isomorphism.

PROOF. By applying the functors .ε(E|F ), .ε(E1|F1) : Ban → q at the C(K)-resolution

0 → G
Φ→ C(X) Ψ→ C(Y )

we obtain the following commutatif square:
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C(X, E|F ) //

IdC(X)εu
��

C(Y, E|F )

IdC(Y )εu
��

C(X, E1|F1) // C(Y, E1|F1).

Let u1 : E → E1 be a bounded linear mapping which induces u. The restriction of IdC(X)εu1 to the
b-space (ΨεIdE)−1(C(Y, F )), is a bounded linear mapping

(ΨεIdE)−1(C(Y, F )) → (ΨεIdE1)
−1(C(Y, F1)).

This restriction defines a strict morphism GεRes(E|F ) → GεRes(E1|F1) that we design by IdGεResu, it
makes commutative the following diagram:

0 // GεRes(E|F ) //

IdGεResu
��

C(X, E|F ) //

IdC(X)εu
��

C(Y, E|F )

IdC(Y )εu
��

0 // GεRes(E1|F1) // C(X, E1|F1) // C(Y, E1|F1)

Since the strict morphisms IdC(X)εu and IdC(Y )εu are isomorphisms (Theorem 1.2 of [2]), the strict
morphism IdGεResu is also an isomorphism (Lemma 4.3.3 of [13]).

Now, we are in position to prove that if G is an L∞-space, then the quotient bornological space
GεRes(E|F ) is independent on C(K)-resolutions of G. In the same way, this result gives a new char-
acterization of the class of L∞-spaces.

Theorem 2 A Banach space G is an L∞-space if and only if for each C(K)-resolution of G and for each
quotient bornological space E|F , we have (GεE) | (GεF ) = GεRes(E|F ).

PROOF. Let
0 → G

Φ→ C(X) Ψ→ C(Y )

be a C(K)-resolution of G. This C(K)-resolution was constructed from the following exact sequence:

0 → G
Φ→ C(X) Ψ1→ C(X)/G → 0

where Ψ1 : C(X) → C(X)/G is the quotient mapping. Since the Banach spaces C (X) and G are L∞-
spaces, it follows from [11, Proposition 5.2 (c), p. 346]) that the cokernel of the mapping G

Φ→ C(X),
which is C(X)/G, is an L∞-space. Now, by Lemma 1, the sequence

0 → (GεE) | (GεF ) → C(X, E|F ) → (C(X)/G)ε(E|F ) → 0

is exact.
On the other hand, the sequence

0 → GεRes(E|F ) → C(X, E|F ) → C(Y, E|F )

is left exact. And since the bounded linear mapping Ψ2 : C(X)/G → C(Y ) is injective and of closed
range, the strict morphism

Ψ2εIdE|F : (C(X)/G)ε (E|F ) → C(Y, E|F )

is injective (Proposition 2.2 of [2]). As Ψ = Ψ2 ◦Ψ1, then

Ker(ΨεIdE|F ) = Ker((Ψ2 ◦Ψ1)εIdE|F ) = Ker(Ψ1εIdE|F )
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This shows that for each quotient bornological space E|F , we have

(GεE) | (GεF ) = GεRes(E|F ).

Conversely, let u1 : X → Y be a surjective bounded linear mapping between Banach spaces, the
mapping u1 induces a pseudo-isomorphism u : X|u−1

1 (0) → Y | {0}. Since the morphism

IdGεResu : GεRes(X|u−1
1 (0)) → GεRes(Y | {0})

is an isomorphism (Lemma 2) and since

GεRes(X|u−1
1 (0)) = (GεX) |

(
Gεu−1

1 (0)
)

and
GεRes(Y | {0}) = (GεY )| {0}

the bounded linear mapping u1εIdG : GεX → GεY is bornologically surjective and then G is an L∞-
space.

Recall that a b-space G is said to be of Schwartz if all bounded completant subset B of G is included
in a bounded completant A of G such that the inclusion iAB : GB → GA is a compact mapping. For more
information about Schwartz b-spaces we refer the reader to [6].

In [2] it is shown the existence of the εc-product of a Schwartz b-space G and a quotient Banach space
E|F as the quotient bornological space

GBεc(E|F ) = ∪B(GBεRes(E|F ))

where ∪B designs the inductive limit and GBεRes(E|F ) is an object of the category qBan such that the
following sequence

0 −→ GBεRes(E|F )
ΦBεIdE|F−−−−−−→ C(XB)ε(E|F )

ΨBεIdE|F−−−−−−−→ C(YB)ε(E|F )

is left exact and where
0 −→ GB

ΦB−→ C(XB) ΨB−→ C(YB)

is the canonical C (K)-resolution of the Banach space GB .
As an application of Theorem 2, we study some properties of Schwartz εb-spaces.

Theorem 3 1. If a Schwartz b-space G is a bornological inductive limit of L∞-spaces and E|F is a
quotient bornological space, then (GεE)|(GεF ) = Gεc(E|F ).

2. Let G be a Schwartz b-space. If for every quotient bornological space E|F , we have (GεE)|(GεF ) =
Gεc(E|F ), then G is a Schwartz εb-space.

PROOF. 1. Since G = ∪BGB , where each Banach space GB is an L∞-space, it follows from Theorem 2,
that for each C(K)-resolution of G, we have

(GBεE)|(GBεF ) = GBεRes(E|F ).

On the other hand, the quotient bornological space (GBεE)|(GBεF ) defines the following exact se-
quence

0 → GBεF → GBεE → (GBεE)|(GBεF ) → 0.

By applying the exact functor ∪B(.) to the above sequence, we obtain

0 → ∪B (GBεF ) −→ ∪B (GBεE) → ∪B ((GBεE)|(GBεF )) → 0.
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It follows that

∪B(GBεE)| ∪B (GBεF ) = ∪B((GBεE)|(GBεF )) = ∪B(GBεc(E|F ))

and hence
(GεE)|(GεF ) = Gεc(E|F ).

2. Let u1 : X → Y be a surjective bounded linear mapping between Banach spaces, it induces a
pseudo-isomorphism

u : X|u−1
1 (0) → Y |{0}.

As G = ∪BGB , let

0 → GB
ΦB→ C(XB) ΨB→ C(YB)

be a canonical C (K)-resolution of the Banach space GB . By applying the left exact functors

.εRes(X|u−1
1 (0)) : Ban → q

and
.εRes(Y |{0}) : Ban → q

to the above C (K)-resolution of GB , we obtain the following commutative diagram:

0 // GBεRes(X|u−1
1 (0)) //

IdGB
εResu

��

C(XB)ε(X|u−1
1 (0)) //

IdC(XB)εu
��

C(YB)ε(X|u−1
1 (0))

IdC(YB)εu
��

0 // GBεRes(Y |{0}) // C(XB)ε(Y |{0}) // C(YB)ε(Y |{0})

Since the Banach spaces C(X) and C(Y ) are L∞-spaces, then the strict morphisms IdC(XB)εu and
IdC(YB)εu are isomorphisms. It follows from Lemma 4.3.3 of [13], that the strict morphism

IdGB
εResu : GBεRes(X|u−1

1 (0)) → GBεRes(Y |{0})

is an isomorphism.
Now, by applying the exact functor ∪B(·) to the system of isomorphisms (IdGB

εResu)B , we obtain the
following isomorphism:

∪B(IdGB
εResu) : ∪B(GBεRes(X|u−1

1 (0))) → ∪B(GBεRes(Y |{0}))

i.e.
IdGεcu : Gεc(X|u−1

1 (0)) → Gεc(Y |{0})

is an isomorphism. As
(GεX) |

(
Gε(u−1

1 (0))
)

= Gεc(X|u−1
1 (0))

and
Gεc(Y |{0}) = (GεY )|{0}

the bounded linear mapping IdGεu : GεX → GεY is bornologically surjective, and hence G is an εb-
space. This ends the proof. �
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