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ABSTRACT

It is proved that, if F (x) be a cubic polynomial with integral coefficients having
the property that F (n) is equal to a sum of two positive integral cubes for all
sufficiently large integers n, then F (x) is identically the sum of two cubes of lin-
ear polynomials with integer coefficients that are positive for sufficiently large x.
A similar result is proved in the case where F (n) is merely assumed to be a sum
of two integral cubes of either sign. It is deduced that analogous propositions
are true for cubic polynomials F (x0, . . . , xr) in more than one indeterminate.
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Introduction

An area in the theory of numbers on which there has been intermittent speculation
is typified by the question of whether, if F (x0, . . . , xr) be a polynomial with integer
coefficients that assumes numerical values of a certain shape for all integer values
of x0, . . . , xr, then is F (x0, . . . , xr) identically of that shape. Subject to appropriate
qualifications about the nature of the numbers N to be represented including their
not forming sequences of positive density, the general response to such a question has
been in the affirmative, although as yet there are not many instances where such a
reaction has been substantiated. Among these are the cases where N is a perfect
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power and where it is a sum of two squares that were settled, respectively, in 1913
and 1965 by Grosh (see [10]) and Davenport, Lewis, and Schinzel [2]. Following
these was the case N = ukvl (k, l ≥ 1) treated unconditionally by Schinzel [12], who
continued by shewing that several important examples of the projected phenomenon
can be established on the substantial assumption that appropriate sets of polynomials
can simultaneously represent prime numbers.

As a contribution to this aspect of the theory of numbers, we consider here cu-
bic polynomials with integral coefficients that are equal to sums of two cubes. In
the first, and perhaps the most significant, part of the paper we shew that a cubic
polynomial F (x) in one variable with integral coefficients that equals a sum of two
positive perfect cubes for integers x > X0 is identically equal to the sum of two cubes
of linear polynomials with integral coefficients (that are positive for x > X ′

0). Then,
having extended the analysis to the case where the cubes are not necessarily positive,
we go on to consider cubics F (x0, . . . , xr) that are sums of two cubes for all integers
x0, . . . , xr and deduce from our previous work that such cubics are also identically
equal to the sum of two cubes of linear polynomials. In contrast to the earlier treat-
ment the methods in the final part are more algebraical than analytical in nature and
involve, in particular, a form of Grosh’s result that we deem best proved here by an
independent procedure. Potentially, however, there are other methods available for
the case r ≥ 1 but these would involve concepts we would wish to avoid on the present
occasion.

It would be desirable to remove the restriction that F (x) be cubic. But this
would be to elevate the problem to a level of difficulty that we are presently unable
to overcome, although there is little trouble involved in eliminating the possibility
that F (x) be linear or quadratic. We have not, however, exhausted the potentialities
of these and other methods to the study of situations of this type and we therefore
intend to return to them on future occasions.

1. Notation

Although the meaning of the notation should usually be clear from the context in
which it arises, the following guide may be helpful. The letters x, x0, . . . , xr, ξ, t1,
. . . , tr, denote variables or indeterminates in polynomials, where (t1, . . . , tr) is written
as t; a, b, A, B, C, s are integers, save where the last is a complex variable; d, j,
h, k, l, m, n, ν are integers that are usually positive; p is a positive prime number;
for any integer denoted by δ, say, δ̄ is a solution of a congruence δδ̄ ≡ 1, mod k, to a
modulus k whose definition is evident from the context.

The letters X, Y are positive variables to be regarded as tending to infinity,
all stated inequalities being true for sufficiently large values of X, Y ; c, c1,. . . are
positive constants depending at most on the polynomials F (x), F (x0, . . . , xr) under
consideration, as are the constants implied by the O-notation. The function σ−α(m)
is the sum

∑
d |m d−α.
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2. Preparations

Our first study regarding polynomials F (x) that are sums of two positive cubes re-
quires some preparations that are also partially pertinent to our later investigations.
The material involved is mostly embodied in a series of initial lemmata, to which
others will be appended when the need for them arises.

By the substitution
r = ξ + η, s = η (1)

of unit modulus the representability of a number as ξ3 + η3 with positive ξ, η is seen
to be equivalent to that of the number by the form

f(r, s) = r(r2 − 3rs + 3s2),

wherein it may be assumed that 0 < s ≤ 1
2r by an interchange of ξ and η if necessary.

Moreover, since the form ξ2 − ξη + η2 to which r2 − 3rs + 3s2 is equivalent does not
primitively admit prime divisors p that are congruent to 2, mod 3 even when p = 2,
the divisibility of f(r, s) by any such prime p implies that p divides r regardless of the
sign of s. Availing ourselves of this property by introducing square-free numbers P
(including 1) that are products (possibly empty) of such primes only, we shall need
the following

Lemma 2.1. Let τ(Y ; h, k) be the number of integers P not exceeding Y that are
congruent to h, mod k. Then, for given integers h, k such that either (h, k) = 1 or
(h, k) = 2, we have

τ(Y ; h, k) >
cY√
log Y

( c = c(k) > 0)

for Y > Y0(h, k).

A sketch of the proof suffices, since it depends on standard contour integral meth-
ods and well-known properties of Dirichlet’s L-functions. Yet, to ease the exposition
in the latter case where (h, k) = 2, we limit our attention in the former case to the
analogue τ ′(Y ; h, k) of τ(Y ; h, k) that merely counts the odd numbers P ′ of type P
appearing in the summation. Then, letting χ(n) denote a character, mod k, where
χ0(n) is principal, we set

τ(Y, χ) =
∑

P ′≤Y

χ(P ′)

and deduce in the usual way that

τ ′(Y ; h, k) =
1

φ(k)

∑
χ

χ(h)τ ′(Y, χ) (2)

209
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when (h, k) = 1. The generating function of τ ′(Y, χ) being

T (s, χ) =
∑
P ′

χ(P ′)
P ′s =

∏
p≡2, mod 3

p�=2

(
1 +

χ(p)
ps

)

for σ > 1, we form the characters

χ∗(n) =

{(−3
n

)
χ(n), if n be odd,

0, if n be even,

of modulus [6, k] that appear in the Dirichlet’s series

L(s, χ∗) =
∞∑

n=1

χ∗(n)
ns

=
∏
p�=2

(
1 − χ∗(p)

ps

)−1

.

Then

L(s, χ)
L(s, χ∗)

=
(

1 − χ(2)
2s

)−1 ∏
p≡2, mod 3

p�=2

(
1 − χ(p)

ps

)−1(
1 +

χ(p)
ps

)

=
(

1 − χ(2)
2s

)−1 ∏
p≡2, mod 3

p�=2

(
1 − χ2(p)

p2s

)−1 ∏
p≡2, mod 3

p�=2

(
1 +

χ(p)
ps

)2

=
(

1 − χ(2)
2s

)−1 ∏
p≡2, mod 3

p�=2

(
1 − χ2(p)

p2s

)−1

T 2(s, χ)

= Z(s, χ)T 2(s, χ),

say, where Z(s, χ) defines a function that is regular and non-zero for σ > 1
2 . Hence

T (s, χ) =

√
L(s, χ)
L(s, χ∗)

√
Z(s, χ),

in the right-hand side of which at s = 1 the function L(s, χ) only has a pole when
χ = χ0 and L(s, χ∗) never has a zero (indeed, it may have a pole when χ �= χ0 and
χ∗ is principal). Therefore, by the arguments used for example by Wilson [16], we
infer that

τ ′(Y, χ0) >
2c1(k)Y√

log Y

and

τ ′(Y, χ) = O
( Y

log Y

)
(χ �= χ0),
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from which and (2) the required result flows for the case (h, k) = 1; the result in
the second case (h, k) = 2 is then an obvious corollary because the numbers P to be
counted are of the type 2P ′.

In much the same vein there is also

Lemma 2.2. Let τ1(Y ; h, k) be defined like τ(Y ; h, k) in the statement of Lemma 2.1
save that the numbers P it counts are to have prime factors that all exceed some given
positive constant c. Then, for (h, k) = 1, we have

τ1(Y ; h, k) → ∞

as Y → ∞.

The demonstrations will also bear upon some properties — of various degrees of
familiarity — of irreducible polynomials f(x) with integer coefficients, of which the
polynomials F (x) under investigation are the usual but not exclusive examples. First
we need a result related to the elementary theory of congruences and then estimates
that flow from the prime ideal theorem and a classical principle due to Dedekind
— for the former see Nagell [9, chapter 3] and for the latter see Erdös [3].

Lemma 2.3. Let f(x) be an irreducible polynomial with integer coefficients and let
ρ∗(k) be the number of incongruent solutions of f(ν) ≡ 0, mod k. Then

(i)
ρ∗(k1k2) = O{ρ∗(k1)ρ∗(k2)},

(ii) ∑
k≤y

ρ∗(k) = O(y),

(iii) ∏
p≤y

(
1 +

ρ∗(p)
p

)
∼ c(f) log y ( c(f) > 0),

where the constants implied by the O-notation depend at most on the coefficients
of f(x).

We shall also depend on the following variant of our findings in our paper [6]
regarding the uniform distribution of the roots of polynomial congruences. In this,
we should note that a part is played by the previous lemma, which, however, has been
stated here because of its significance in our later analysis.

211
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Lemma 2.4. For any irreducible cubic polynomial f(x) let

S(h1, k) =
∑

f(ν)≡0, mod k
0<ν≤k

e2πih1ν/k.

Then, for any positive integers d and h, we have

R(h, X1) =
∑

k≤X1
(k,d)=1

|S(hd̄ 2, k)| = O

(
σ− 1

4
(h)X1

log
1
6 X1

)
, (3)

where the constants implied by the O-notation depend at most on the coefficients
of f(x).

To explain the lemma we temporarily adopt the notation and conventions of our
paper [6], bearing in mind that they are at variance with those adopted in other places
here. Apart from the unimportant possibility that f(x) may be imprimitive, which
is easily handled through the use of its discriminant D, the main differences between
(3) and the estimate in Theorem 1 of [6] are the presence of d̄ in the exponential and
the identification of σ− 1

4
(h) as a legitimate choice for C9(h), since in the earlier paper

it is clear that the summand S(h, k) in R(x, k) may be replaced by its modulus. To
react to the new situation we first restrict all numbers of the type k1, k2, l2, etc.,
previously occurring to be relatively prime to d, whereupon we see that equations
(1) to (8) in [6] are still valid under the new interpretation. Next the analogue of the
equation following (8) becoming∑

6
=

∑
0<a≤k1
(a,k1)=1

|S(ad̄ 2h, k1)|
∑
k2≤y

k2≡ā, mod k1

1

=
∑

0<a≤k1
(a,k1)=1

|S(ah, k)|
∑
k2≤y

k2≡ād̄ 2, mod k1

1

because (d, k1) = (d, k2) = 1 and dd̄ ≡ 1, mod k1, we deduce that the new
∑

6 adheres
to (9) and hence that the new

∑
1 satisfies

∑
1

= O

(
x(log log x)5

log x

∑
l≤x

(l, h)
1
2 ρ

1
2 (l)

l
1
2 φ

1
2 (l)

)
.

The sum in this is not greater than

∑
d |h

d
1
2

∑
l′≤x/d

ρ
1
2 (dl′)

(dl′)
1
2 φ

1
2 (dl′)

= O

(∑
d |h

ρ
1
2 (d)

φ
1
2 (d)

∑
l≤x

ρ
1
2 (l)

l
1
2 φ

1
2 (l)

)

= O

(
log x

logδ3 x

∑
d |h

ρ
1
2 (d)

φ
1
2 (d)

)
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by Lemma 2.3 (i) and by the estimate for (the original)
∑

7 supplied in [6]. As for
the divisor sum, it is

O

(∑
d |h

(2
√

3)
d

1
2

ω(d))
= O

[∏
p |h

{
1 +

4
p

1
2

(
1 − 1

p
1
2

)−1}]

= O

{∏
p |h

(
1 +

16
p

1
2

)}
= O{σ− 1

4
(h)},

and the lemma follows by the final reasoning that preceded the deduction of Theorem 1
in [6] and by then replacing x by X1.

Our final lemma in this section is on trigonometrical approximations to the func-
tion

ψ(t) = [t] +
1
2
− t (4)

and is the main instrument in the application of Lemma 2.4 to our problem. This is
expressed in the accurate form due to Vaaler [14], although earlier less exact forms
would suffice for our present purpose.

Lemma 2.5. For any positive integer N there are coefficients ch,N = ch = O(1/|h|)
and c′h = O(1/N) for 0 < |h| ≤ N and 0 ≤ |h| ≤ N , respectively, with the property
that

ψ(t) =
∑

0<|h|≤N

che2πiht + O

( ∑
|h|≤N

c′he2πiht

)
,

the series within the O-symbol being real and non-negative.

3. Adoption of the Hypothesis P; the reducibility of F (x)

We are ready to examine the implications of

Hypothesis P. F (x) is a cubic polynomial with integral coefficients having the prop-
erty that F (n) is equal to a sum of two positive integral cubes for all sufficiently large
integers n and thus for all n exceeding some integer n0.

We demonstrate that F (x) is not irreducible by assuming the opposite and count-
ing the number Υ(X) of solutions of the equation

r(r2 − 3rs + 3s2) = F (n) (5)

in integers r, s, and n for which

n0 < n ≤ X, 0 < s ≤ 1
2
r. (6)
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Since
r2 − 3rs + 3s2 =

1
4
r2 + 3

(
s − 1

2
r
)2

(7)

and therefore
1
4
r2 ≤ r2 − 3rs + 3s2 < r2, (8)

the conditions governing the definition of Υ(X) imply that

1
4
r3 < c1X

3 and c2n
3 < r3

so that
r ≤ c3X and n ≤ c4r. (9)

Also, on writing (5) in the form
rm = F (n)

and noting that no value of m can be presented more that once when r and n are
given, we now form a workable envelope for the numbers m occurring by using the
already stated impossibility of the simultaneous relations

p |m, p2 � m (10)

when p is a prime congruent to 2, mod 3. To this end, we take a number ζ = ζ(X) to
be chosen explicitly later and cover the set of eligible numbers for each r by those m
that do not have the property (10) for each prime p conforming to the basic conditions

p ≡ 2, mod 3, c5 < p ≤ ζ, (11)

and the supplementary condition
p � r (12)

for a sufficiently large value of c5. Then, in preparation for the usual exclusion
process associated with Legendre, we introduce square-free products d (including 1)
of primes p of type (11), which are governed by the bound

d ≤
∏
p≤ζ

p≡2, mod 3

p < exp
(∑

p≤ζ

log p
)

< ec6ζ = Z, (13)

say, and use the symbolism d |||m to indicate that p ||m for each prime factor p of d.
(We do not use the notation d ||m, because this might be interpreted as meaning that
d was the highest power of d dividing m). Accordingly, by (9), we find that

Υ(X) ≤
∑

r≤c3X

∑
rm=F (n)

n≤c4r

∑
d |||m

(d,r)=1

μ(d) =
∑

r≤c3X

Υr(X), (14)
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say, and complete the first phase of the estimation.
To proceed from this inequality we note that for a given number d the condition

d |||m is tantamount to the simultaneous conditions d |m, (m/d, d) = 1 that mean that

m ≡ ld, mod d2, (15)

for some number l satisfying

0 < l ≤ d, (l, d) = 1. (16)

Therefore, changing the order of summations in Υr(X), we have

Υr(X) =
∑

(d,r)=1

μ(d)
∑

0<l≤d
(l,d)=1

∑
n≤c4r

F (n)≡rld, mod rd2

1

=
∑

(d,r)=1

μ(d)Υd,r, (17)

say, where the primary condition

F (n) ≡ rld, mod rd2, (18)

within the innermost sum is the conjunction of the conditions

F (n) ≡ 0, mod r, (19)

and

F (n) ≡ rld, mod d2, (20)

because (d, r) = 1 by (12). Next this innermost sum equals

∑
0<Ω≤rd2

F (Ω)≡rld, mod rd2

∑
n≤c4r

n≡Ω, mod rd2

1 =
∑

0<Ω≤rd2

F (Ω)≡rld, mod rd2

([
c4r − Ω

rd2

]
−

[−Ω
rd2

])

=
c4

d2

∑
0<Ω≤rd2

F (Ω)≡rld, mod rd2

1

+
∑

0<Ω≤rd2

F (Ω)≡rld, mod rd2

{
ψ

(
c4r − Ω

rd2

)
− ψ

(−Ω
rd2

)}
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in the notation of (4), whence

Υd,r =
c4

d2

∑
0<l≤d
(l,d)=1

∑
0<Ω≤rd2

F (Ω)≡rld, mod rd2

1

+
∑

0<l≤d
(l,d)=1

∑
0<Ω≤rd2

F (Ω)≡rld, mod rd2

{
ψ

(
c4r − Ω

rd2

)
− ψ

(−Ω
rd2

)}

=
c4

d2
Υ∗

d,r + Υ†
d,r, (21)

say. Thus, letting Υ∗(X) and Υ†(X) be the respective contributions to Υ(X) due to
(c4/d2)Υ∗

d,r and Υ†
d,r via (17) and (14) so that

Υ(X) = Υ∗(X) + Υ†(X) (22)

in particular, we get the equations

Υ∗(X) = c4

∑
r≤c3X

∑
(d,r)=1

μ(d)
d2

Υ∗
d,r (23)

and

Υ†(X) =
∑

d

μ(d)
∑

r≤c3X
(r,d)=1

Υ†
d,r (24)

that are to be separately developed.
Starting with Υ∗(X), we extend a notation associated with the verification of

Lemma 2.4 by letting ρ(r) be the number of incongruent roots, mod r, of (19) and
then continue by letting υ(r, l, d) be the number of incongruent roots of (20). Then,
by the comment on (18),

Υ∗
d,r = ρ(r)

∑
0<l≤d
(l,d)=1

υ(r, l, d) = ρ(r)
∑

0<l≤d
(l,d)=1

υ(1, l, d),

the last sum in which through (15) and (16) is equal to the number of incongruent n,
mod d2, for which d |||F (n). Hence, as the prime factors of d exceed c5,

∑
0<l≤d

υ(r, l, d) =
∏
p |d

{pρ(p) − ρ(p2)} =
∏
p |d

(p − 1)ρ(p) = φ(d)ρ(d), (25)
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and we infer from (23) that

Υ∗(X) = c4

∑
r≤c3X

ρ(r)
∑

(d,r)=1

μ(d)φ(d)ρ(d)
d2

= c4

∑
r≤c3X

ρ(r)
∏

c5<p≤ζ
p�r;p≡2, mod 3

(
1 − (p − 1)ρ(p)

p2

)

= c4

∑
r≤c3X

ρ(r)ψr(ζ), (26)

say, in which

ψr(ζ) ≤ ψ1(ζ)
∏
p |r
p>3

(
1 − (p − 1)ρ(p)

p2

)−1

≤ ψ1(ζ)
∏
p |r
p>3

(
1 − 3

p

)−1

≤ c7ψ1(ζ)
∏
p |r

(
1 +

3
p

)
= c7ψ1(ζ)σ∗(r), (27)

say. Also

ψ1(ζ) ≤
∏

c5<p≤ζ
p≡2, mod 3

(
1 +

(p − 1)ρ(p)
p2

)−1

=
∏

c5<p≤ζ
p≡2, mod 3

(
1 +

ρ(p)
p

)−1 ∏
c5<p≤ζ

p≡2, mod 3

{
1 + O

(
1
p2

)}

≤ c8

∏
c5<p≤ζ

(
1 +

ρ(p)
p

)−1 ∏
c5<p≤ζ

p≡1, mod 3

(
1 +

ρ(p)
p

)

≤ c9

∏
c5<p≤ζ

(
1 +

ρ(p)
p

)−1 ∏
c5<p≤ζ

p≡1, mod 3

(
1 +

2ρ(p)
p

) 1
2

=
c9Ψ

1
2
2 (ζ)

Ψ1(ζ)
, (28)

say. Here
Ψ1(ζ) > c10 log ζ (29)

by Lemma 2.3, which also estimates the other product through the intercession of

Lemma 3.1. Let f1(x) and f2(x) be given irreducible polynomials with integral co-
efficients and co-prime degrees ∂1 and ∂2, the number of incongruent roots of the
congruence fi(x) ≡ 0, mod p, being denoted by ρi(p) for i = 1 and 2. Then there
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is an irreducible polynomial f3(x) with integral coefficients and degree ∂1∂2 with the
property that the number ρ3(p) of incongruent roots of f3(x) ≡ 0, mod p, is given by

ρ3(p) = ρ1(p)ρ2(p)

for all p > c5.

Although presumably well-known, this result does not seem to have been explicitly
enunciated in the literature. It is, however, easily demonstrated by ideal theory;
alternatively, there is a more elementary method on which it would be inappropriate
to comment on the present occasion.

Take f1(x) and f2(x) in the lemma to be the given cubic polynomial (assumed
irreducible) F (x) and x2 + x + 1 so that ρ3(p) becomes 2ρ(p) or 0 according as
p ≡ 1, mod 3, or p ≡ 2, mod 3. Hence, having seen that

Ψ2(ζ) < c11 log ζ,

we deduce from (29) and (28) the inequality

ψ1(ζ) <
c12√
log ζ

,

which implies that
Υ∗(X) <

c13√
log ζ

∑
r≤c3X

ρ(r)σ∗(r)

in virtue of (26) and (27). Finally, since

σ∗(r) ≤
∑
j|r

3ω(j)μ2(j)
j

,

we have from Lemma 2.3 that

∑
r≤c3X

ρ(r)σ∗(r) ≤
∑

jr′≤c3X

3ω(j)μ2(j)ρ(jr′)
j

≤ c14

∑
jr′≤c3X

3ω(j)μ2(j)ρ(j)ρ(r′)
j

≤ c14

∑
j≤c3X

9ω(j)

j

∑
r′≤c3X/j

ρ(r′)

≤ c15X
∑

j≤c3X

9ω(j)

j2
≤ c16X
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with the conclusion that

Υ∗(X) = O

(
X√
log ζ

)
. (30)

To estimate Υ†(X) we return to the sum Υ†
d,r in (21) whose treatment entails the

introduction of the exponential sums

U1(h, r, l, d) =
∑

0<Ω≤rd2

F (Ω)≡rld, mod rd2

e2πihΩ/rd2
,

U(h, r, d) =
∑

0<l≤d
(l,d)=1

U1(h, r, l, d),

S(h1, r) =
∑

0<ν≤r
F (ν)≡0, mod r

e2πih1ν/r,

u(h2, r, l, d) =
∑

0<ν1≤d2

F (ν1)≡rld, mod d2

e2πih2ν1/d2
,

(31)

the last of which is bounded in magnitude by its specialization υ(r, l, d) taken when
h2 = 0. Since by a familiar process in the handling of exponential sums (see, for
example, Lemma 3 in [8]) the assumed coprimality of r and d implies the multiplicative
relation

U1(h, r, l, d) = S(hd̄2, r)u(hr̄, r, l, d),

we deduce first that

U(h, r, d) = S(hd̄2, r)
∑

0<l≤d
(l,d)=1

u(hr̄, r, l, d),

and therefore that

|U(h, r, d)| ≤ |S(hd̄2, r)|
∑

0<l≤d
(l,d)=1

υ(r, l, d)

= ρ(d)φ(d)|S(hd̄2, r)| (32)

by (25). This inequality suffices for our purposes although a sharper one can be
obtained by the replacement of φ(d) by a smaller entity.

By (21) and by Lemma 2.5 with a suitable value of N = N(X) to be chosen soon,
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we have

Υ†
d,r =

∑
0<l≤d
(l,d)=1

∑
0<Ω≤rd2

F (Ω)≡rld, mod rd2

{ ∑
0<|h|≤N

ch

(
e2πih(c4r−Ω)/rd2 − e−2πihΩ/rd2)

+ O

( ∑
0≤|h|≤N

c′h
(
e2πih(c4r−Ω)/rd2

+ e−2πihΩ/rd2))}

=
∑

0<l≤d
(l,d)=1

∑
0<Ω≤rd2

F (Ω)≡rld, mod rd2

∑
0<|h|≤N

ch

(
e2πih(c4r−Ω)/rd2 − e−2πihΩ/rd2)

+ O

( ∑
0<l≤d
(l,d)=1

∑
0<Ω≤rd2

F (Ω)≡rld, mod rd2

∑
0≤|h|≤N

c′h
(
e2πih(c4r−Ω)/rd2

+ e−2πihΩ/rd2))
,

from which, changing the order of summations and using both (31) and then (32)
with r �= 0 and h = 0, we deduce that

|Υ†
d,r| ≤ 2

∑
0<|h|≤N

|ch||U(h, r, d)| + O

( ∑
0≤|h|≤N

|c′h||U(h, r, d)|
)

= O

(
U(0, r, d)

N

)
+ O

( ∑
0<h≤N

|U(h, r, d)|
h

)

= O

(
ρ(d)φ(d)ρ(r)

N

)
+ O

(
ρ(d)φ(d)

∑
0<h≤N

|S(hd̄2, r)|
h

)
.

The first term on the last line of the above inequality provides by way of (24)
and (13) a donation of

O

(
Z

N

∑
r≤c3X

ρ(r)
∑
d≤Z

ρ(d)
)

= O

(
Z2X

N

)

to Υ†(X), whereas the effect of the second term is

O

(
Z

∑
d≤Z

ρ(d)
∑

0<h≤N

1
h

∑
r≤c3X
(r,d)=1

|S(hd̄2, r)|
)

= O

(
ZX

log
1
6 X

∑
d≤Z

ρ(d)
∑

0<h≤N

σ− 1
4
(h)

h

)

= O

(
Z2X log N

log
1
6 X

)
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by Lemmata 2.3 and 2.4. Let us therefore now set N = [log
1
6 X], whereupon we get

the estimate

Υ†(X) = O

(
Z2X

log
1
7 X

)
.

The estimate we seek flows from this, (22), and (30), which imply that

Υ(X) = O

(
X√
log ζ

)
+ O

(
Z2X

log
1
7 X

)

= O

(
X√

log log log X

)
(33)

if in (11) and (13) we take

ζ =
1

15c6
log log x

and therefore
Z = log

1
15 X.

But this is inconsistent with the inequality

Υ(X) ≥ X − n0

that stems from Hypothesis P, and we therefore deduce that F (x) is reducible.

4. The proof of the first theorem completed

Having shewn that F (x) must be reducible, we first dispose of the special case in
which F (x) is of the form

D(ax + b)3, (34)

where a > 0 (by the form of Hypothesis P) and where it may be assumed that
(a, b) = 1. To do this we shun any reference to the theory of elliptic curves but
instead take the constant c in the statement of Lemma 2.2 to satisfy

c >
3
√

4D = c17,

say, and choose in accordance with this lemma some integer n exceeding n0 for which
an + b is a square-free number P whose prime factors exceed c. Then the equation

DP 3 = D(an + b)3 = f(r, s) = rg(r, s)

being soluble in positive integers r, s, we have P |r by our preparatory remarks and
thus r = Pl for some positive integer l. However, since

f(r, s) ≥ 1
4
r3
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by (7), it follows that
1
4
l3P 3 ≤ DP 3

so that l < c. Hence, from

DP 2 = l(l2P 2 − 3lPs + 3s2), (35)

we deduce that P |s and s = l1P with 0 < l1 ≤ 1
2 l, wherefore

D = l(l2 − 3ll1 + 3l21) = (l − l1)3 + l31.

Therefore in this case

F (x) = {(l − l1)(ax + b)}3 + {l1(ax + b)}3, (36)

as desired.
In all other cases, being cubic, F (x) has at least one integral linear factor and may

therefore be expressed in the not yet necessarily unique form

(ax + b)(Ax2 + Bx + C),

where (a, b) = 1 and a, A are positive. Associated with the polynomial as thus
written, there are the determinant


 = B2 − 4AC (37)

of the second factor and the resultant

R = Ab2 − Bab + Ca2, (38)

not both of which can vanish in the situation we are now in. Then, to execute the
demonstration further, we shall need the services of a suitable sequence S of positive
integers n for which an+b is of the form P , the number t(X) of such n up to X being
subject to an inequality of the type

t(X) >
cX√
log X

(39)

for some small positive constant c = c(F ). Initially left unspecified, this sequence
will be later defined through Lemma 2.1 in the light of subsequent experience in such
a way that its earlier use is justified. (In fact its choice will only depend on the
coefficients a, b, c, A, and B.)

As the equation

(an + b)(An2 + Bn + C) = r(r2 − 3rs + 3s2) (40)

is always soluble for n > n0, we deduce that for any large n in S we have (an + b) |r
and thus

r = l(an + b) (41)
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for some positive integer l, the next implication being that

An2 + Bn + C = l(r2 − 3rs + 3s2) (42)

where again for convenience we still assume that

s ≤ 1
2
r (43)

in virtue of an early remark in section 2. On the other hand, by (40) and (8), we have
the inequality

D1(an + b)3 >
1
4
r3

for some suitable positive number D1 and thus

r < 3
√

4D1(an + b),

which inequality shews that

0 < l < 3
√

4D1 = c18 (44)

in (41).
For each of the finite number of possible values l1 of l in (44) let us consider the

number of integers n in S that answer to it by way of (41) and (42), where it must
be borne in mind that the same n might correspond to more than one l1 because
the number of ways of representing a number as the sum of two cubes is not always
essentially unique. We have

An2 + Bn + C = l1{l21(an + b)2 − 3l1(an + b)s + 3s2}
and therefore

4(An2 + Bn + C) − l31(an + b)2 = 3l1{2s − l1(an + b)}2,

which equality we write as

A1n
2 + B1n + C1 = 3l1{2s − l1(an + b)}2 (45)

where A1 = A1(l1), B1 = B1(l1), C1 = C1(l1) cannot all be zero. If the determi-
nant �(l1) of the quadratic A1x

2 + B1x + C1 be non-zero, then the equation takes
the form of either

B1n + C1 = 3l1{2s − l1(an + b)}2 (A1 = 0, B1 �= 0)
or

(2A1n + B1)2 − 12A1l1{2s − l1(an + b)}2 = �(l1) (A1 �= 0).

In the first of these B1n + C1 is a fixed multiple of a perfect square and there are
consequently only O(X

1
2 ) possible values of n whereas in the second the number of n
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is O(log X) by a customary argument involving the Pellian equation and the theory
of indefinite quadratic forms. (For an example of this reasoning, see [5].) Hence the
majority of values of n in S that relate to (45) correspond to a zero l of �(l), having
indeed a cardinality exceeding

cX√
log X

− c19X
1
2 >

cX

2
√

log X
.

Moreover, since

�(l) = (4B − 2abl3)2 − 4(4A − l3a)(4C − l3b)

= 16(
− Rl3)

by (45), (37), and (38), the vanishing of �(l) is equivalent to


 = Rl3, (46)

which has a unique solution because 
 and R are not both zero. (Indeed, it is
now seen that neither 
 nor R is non-zero.) In the major case thus isolated when
(46) holds, we may therefore write

A1x
2 + B1x + C1 = m(A2x + B2)2,

where (A2, B2) = 1, A2 ≥ 0, and m is a positive integer, and the equality (45) becomes

m(A2n + B2)2 = 3l{2s − l(an + b)}2. (47)

In the simplest instance where A2 = 0, we have B2 = 1 with the deduction that
3l |m, m = 3lμ2 with μ > 0, and

μ2(A2n + B2)2 = {2s − l(an + b)}2
. (48)

In this case the choice of the sequence S is particularly easy because no restriction
on the numbers P to be represented by an + b is needed, wherefore we derive (39)
by using Lemma 2.1 with h = b, k = a, and Y = aX + b. But in the other cases to
be considered the choice of S is more complicated because it must depend in part on
the integer l defined by (46).

When A2 �= 0 we let l2 denote the square-free product of the prime divisors of 3l.
Suppose first that l be odd. Then, for any prime divisor p of l2, the congruential
conditions

A2Hp + B2 �≡ 0, mod p, aHp + b �≡ 0, mod p, (49)

have at least one solution Hp, modp, because there are at most two incongruent
values of Hp for which either A2Hp + B2 ≡ 0, mod p or aHp + b ≡ 0, mod p. There
being therefore a residue class H, mod l2, for which

(A2H + B2, l2) = (aH + b, l2) = 1, (50)
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we consider the numbers an + b in which n is limited to be of the form n1 = H + ql2.
Since these constitute an arithmetical progression aH +b+aql2 where (aH +b, al2) ≤
(b, a)(aH + b, l2) = 1, we form a sequence of n1 of type S by requiring that an1 + b
be a number P and by using Lemma 2.1 with h = aH + b, k = al2, and Y = aX + b.
Therefore, on taking any value of n = n1, for which (47) applies, we deduce that 3l |m
and thus recoup (48).

A slight adjustment in the above procedure is called for if l be even because we
may need to reappraise (50). Should (49) be still possible for p = 2, then S is chosen
as before with a like conclusion. But, if it be impossible, then clearly a is odd because
b would be odd if a were even, whence we can find a solution of

A2H2 + B2 �≡ 0, mod 2, aH2 + b ≡ 2, mod 4,

and can thus produce a residue class H, mod 2l2, for which

(A2H + B2, l2) = 1, (aH + b, 2l2) = 2.

By means of this residue class, we replace the numbers n = n1 previously used in an+b
by the numbers n2 = H + 2ql2 to obtain the arithmetical progression aH + b + 2aql2
for which 2 ≤ (aH + b, 2al2) ≤ (b, a)(aH + b, 2l2) = 2 and thus (aH + b, 2al2) = 2 and
to which, therefore, Lemma 2.1 is applicable for the formation of a suitable sequence
of n2 of type S. Once again, taking any value of n = n2 for which (47) holds, we
regain (48), in which μ is now obviously even.

The theorem follows quickly from the truth of (48) for the infinite sequences of n
used therein. First,

2s = l(an + b) ± μ(A2n + B2)

so that choosing the minus sign in accord with (43) and the signs of A2 and B2, we
have

s = αn + β

for definite numbers α and β, where either α > 0 or α = 0, β > 0; these are integers
if l be even but are otherwise quotients of integers divided by 2. From this, returning
to (40) via (41), we find that

F (n) = l(an + b){l2(an + b)2 − 3l(an + b)(αn + β) + 3(αn + β)2}
for as many values of n as we wish. Thus there is the identity

F (x) = l(ax + b){l2(ax + b)2 − 3l(ax + b)(αx + β) + 3(αx + β)2},
from which it is clear that α and β are integers even when l is odd because F (x) has
integral coefficients. Consequently, along with (36), we see that

F (x) = {l(ax + b) − (αx + β)}3 + (αx + β)3 (51)

identically, and we therefore have
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Theorem 1. Suppose that F (x) is a cubic polynomial with integral coefficients with
the property that F (n) is equal to a sum of two positive integral cubes for all sufficiently
large integers n. Then F (x) is identically the sum of two cubes of polynomials with
integral coefficients (in this case linear or constant that are both positive for sufficiently
large values of x).

5. Two cubes of either sign

Partially for its own interest and partially as a preparation for our consideration of
general cubic polynomials F (x0, . . . , xr) that are sums of two cubes, the next topic
concerns what happens when we substitute for Hypothesis P the weaker

Hypothesis P1. The conditions of Hypothesis P hold except that F (n) is now merely
assumed to be equal to a sum of two integral cubes of either sign.

For reasons that will become clear in due course, this hypothesis is not quite strong
enough to serve our purposes fully and we shall therefore add to it by assuming either

(i) F (x) is not the cube of an integral linear form, or

(ii) the cubes in the representation of F (n) are both non-zero,

although ultimately it will be obvious that (i) is stronger than (ii) when P1 is given.
Yet, until we have completed the first part of the demonstration by shewing that F (x)
is still reducible when P1 is assumed, no cognizance of the additional suppositions need
be taken.

Without losing any generality, we may clearly assume that the leading coefficient
in F (x) is positive so that F (n) > 0 for n > n0. Thus in the assumed representation
of F (n) as ξ3 +η3 we see that ξ+η > 0 so that the number r in (1) is positive whereas
s may be of either sign; in particular s ≤ 0 when η ≤ 0. Next, first assuming as at
the beginning of section 3 that F (x) is irreducible and then choosing a suitably large
positive constant c20, we take instead of Υ(X) the parallel sum Θ(X) that stems from
the removal of the condition s > 0 in (6). Then, let us take Θ(1)(X) and Θ(2)(X) to
be the respective contributions to Θ(X) due to the ranges

−c20r ≤ s ≤ 1
2
r and s < −c20r

so that Θ(X) = Θ(1)(X) + Θ(2)(X). An examination of the former sum Θ(1)(X)
reveals that the secondary inequality in (8) must give way to

r2 − 3rs + 3s2 ≤
{

1
4

+ 3
(

c20 +
1
2

)}2

r2 (52)
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with the implication that (9) is still valid provided that c4 be turned into a sufficiently
large constant c21. The bound for Υ(X) being thus applicable to Θ(1)(X), we find
that

Θ(X) = Θ(2)(X) + o(X) (53)

in virtue of (33).
A different approach is needed for the sum Θ(2)(X), the estimation of which begins

with the observation that the opposite of (52) implies that (9) should be superseded
by the inequalities

r ≤ γX, n ≤ X,

in which γ = γ(c20) can be taken to be a positive number as small as we please.
Therefore

Θ(2)(X) =
∑

r≤γX

Θ(2)
r (X), (54)

where Θ(2)
r (X) is the number of positive integers n up to X for which the equality

F (n) = rm

holds with m of the form 1
4r2 + 3(1

2r − s)2. Here, as in previous arguments, n must
belong to one of the ρ(r) incongruent residue classes ν, mod r, for which F (ν) ≡ 0,
mod r, whence we write

Θ(2)
r (X) =

∑
F (ν)≡0, mod r

0<ν≤r

Θ(2)
r,ν(X), (55)

Θ(2)
r,ν being the contribution to Θ(2)

r (X) due to the values of n that are congruent to ν,
mod r.

The conditions of summation in Θ(2)
r,ν(X) not only imply (when non-empty) that

n is restricted to a single residue class, mod r, but also that

F (n) ≡ r

(
1
4
r2 + 3

(
1
2
r − s

)2)
, mod p, (56)

for any prime p and, in particular, for any one that is subject to the conditions

p � r, c22 < p ≤ u, (57)

where c22 is sufficiently large and u = u(X, r) will be chosen suitably later. Let
S(r, p) be the number of incongruent solutions in n and s of (56) or, in other words,
the number in n and σ of

4F (n) ≡ r3 + 3rσ2, mod p, (58)

which by a well-known theorem due to Weil [15] is equal to

p + O
(
p

1
2
)

>
1
2
p
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because of the obvious absolute irreducibility of

4F (n) − r3 − 3rσ2

as a polynomial, mod p, in n and σ. For each admissible value of n, mod p, in (58),
there correspond two incongruent solutions in σ save when 4F (n)−r3 ≡ 0, mod p, in
which case there is one solution σ ≡ 0, mod p that occurs at most thrice. Therefore,
for any prime p in the set given by (57), the number T (r, p) of incongruent residue
classes, mod p, to which n in (56) can belong is equal to

1
2
S(r, p) + O(1) =

1
2
p + O

(
p

1
2
)
. (59)

The values of n that can occur in connection with the sum Θ(2)
r,ν(X) being restricted

by the residue classes to various moduli in which they lie, their cardinality is most
handily majorized by using the following ingenious theorem of Gallagher’s [4] (see,
for example, chapter 1 of our tract [7]).

Lemma 5.1. If a set of positive integers not exceeding X include only representatives
from at most v(k) > 0 residue classes for each prime power modulus k, then the
number of integers in the set is at most(∑

k∈T

Λ(k) − log X

)/(∑
k∈T

Λ(k)
v(k)

− log X

)
(60)

whenever T is any finite set of moduli for which the denominator is positive.

In adopting this procedure, we follow the precedent of our work on power-free
numbers [7, chapter 4], in which there is an application of the lemma in a somewhat
similar vein.

The moduli k in the set T to be used in the estimation of Θ(2)
r,ν(X) are to be the

prime power divisors of r and the primes p governed by (57). Then, by (59), the
denominator in the appropriate form of (60) is∑

k |r
Λ(k) +

∑
c22<p≤u

p�r

log p

T (r, p)
− log X = 2

∑
c22<p≤u

p�r

log p

p
+ O

(∑
p

log p

p
3
2

)
− log

X

r

≥ 2 log u −
∑
p |r

log p

p
− log

X

r
+ O(1),

which exceeds 1 if

u = c23

(
X

r

) 1
2

exp
(

1
2

∑
p |r

log p

p

)

≤ c23

(
X

r

) 1
2 ∏

p |r

(
1 +

log p

p

)
≤ c23

(
X

r

) 1
2

σ− 1
2
(r)
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by some simple inequalities. The numerator in (60) being then not greater

∑
k |r

Λ(k) +
∑
p≤u

log p − log X < 2u − log
X

r
< 2u,

we deduce that

Θ(2)
r,ν = O

{(
X

r

) 1
2

σ− 1
2
(r)

}

and hence that

Θ(2)(X) = O

(
X

1
2

∑
r≤γX

ρ(r)σ− 1
2
(r)

r
1
2

)

by way of (54) and (55).
But, by Lemma 2.3 and partial summation,

∑
r≤y

ρ(r)σ− 1
2
(r)

r
1
2

=
∑

r′d≤y

ρ(r′d)
r′

1
2 d

3
2

= O

(∑
r′≤y

ρ(r′)
r′

1
2

∑
d

ρ(d)
d

3
2

)

= O

(∑
r′≤y

ρ(r′)
r′

1
2

)
= O

(
y

1
2
)
,

wherefore

Θ(2)(X) = O
(
γ

1
2 X

)
<

1
2
X

if γ be chosen to be sufficient small, the constants implied by the O-notation being
only dependent on F (x). Hence from (53) we reach the inequality

Θ(X) <
3
4
X (X > X0),

which, being inconsistent with Hypothesis P1, means that we infer that F (x) is not
irreducible.

Our conclusions on the constitution of F (x) are drawn by following closely the
argument in section 4 provided that we assume one of the extra stipulations (i) or (ii)
given below the statement of P1. Remembering that the number s appearing in the
analysis is no longer necessarily positive, let us first consider the situation where F (x)
is of the form D(ax+b)3 as in (34). Then, in (35), s �= 0 by either (i) or (ii) because D
cannot equal l3 under the former condition, whence (35) holds with a non-zero value
of l1 (positive or negative) not exceeding 1

2 l. In the other case where (34) does not
obtain it is obvious that we still have (51), in which neither cube vanishes for x > x0.
We therefore have demonstrated

229
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Theorem 2. Suppose F (x) is a cubic polynomial with integral coefficients having the
property that F (n) is equal to the sum of two cubes for all sufficiently large integers n.
Suppose also that either F (x) is not the perfect cube of a linear integral binomial or
that the cubes in the representation of F (n) are both non-zero. Then F (x) is identi-
cally equal to the sum of two cubes of non-zero polynomials with integral coefficients
(in this case, linear or constant, having invariable signs for sufficiently large x).

A final comment should be made on the treatments of the reducibility of F (x) in
section 2 and this section. At first sight it may seem incongruous that different types
of sieve method should have been adopted for Θ(1)(X) (or Υ(X)) and Θ(2)(X). But,
underlying the differences between the two types of sum that are delineated by the
sign of s and the size of r, there is the feature that Θ(1)(X) is less demanding that
Θ(2)(X) in regard to the strength of the sieving needed but that it is more demanding
in that its treatment cannot avoid the use of exponential sums. Since to overcome
the harder aspects of both sums in a unified analysis would involve complications
including the necessity of replacing Gallagher’s method by the Selberg sieve, it is
simpler to deal with each sum separately.

6. Polynomials in several variables that are a sum of two cubes

Going on to cubic polynomials in several variables, we generalize the Hypothesis P1

of the previous section by enunciating

Hypothesis P2. F (x0, . . . , xr) is a cubic polynomial with integral coefficients that is
not identically the cube of a linear polynomial and that has the property that it equals
the sum of two integral cubes for all integral values of x0, . . . , xr.

Our aim is to shew that under this hypothesis the polynomial F (x0, . . . , xr) is
identically the sum of two cubes of linear polynomials in x0, . . . , xr that have inte-
ger coefficients. This being so, there are a number of simplifying assumptions and
comments we should make before we embark on the main part of the proof. First,
although we do not advert to this point again, it would be enough to assume that
the second property in P2 held merely for all sufficiently large values of x0, . . . , xr.
Secondly, in the interests of clarity, we may suppose that each indeterminate xi ap-
pears explicitly in the expression for F (x0, . . . , xr) and then that r ≥ 1 in virtue of
Theorem 2. Also, it being obvious that the proposition to be established is invariant
under transformations of the indeterminates by unimodular substitutions with inte-
gral coefficients, we may assume in the usual way that the coefficient a of the leading
term ax3

0 in F (x0, . . . , xr) is non-zero (and indeed positive) by using, if necessary,
relative prime integers α0, . . . , αr for which F (α0, . . . , αr) �= 0 and a substitution that
takes (α0, . . . , αr) into (1, 0, . . . , 0). Indeed, this is just a part of a general principle,
to which we shall have occasion to refer later, to the effect that any set of non-zero
polynomials φ1(y0, . . . , ys), . . . , φu(y0, . . . , ys) is equivalent under a non-singular uni-
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modular substitution with integral coefficients to a set of polynomials whose leading
coefficients are non-zero.

In reflection of these remarks and our later needs we now decide on a change of
notation and write

x0 = ξ; (x1, . . . , xr) = (t1, . . . , tr) = t (r ≥ 1) (61)

with the consequence that

F (ξ, t) = aξ3 + l(t)ξ2 + q(t)ξ + c(t), (62)

where, as the alphabetic representation suggests, l(t), q(t), c(t) are polynomials in
t1, . . . , tr with integral coefficients that have degrees not exceeding two, three, or
four. Initially the symbols ξ, ti are indeterminates but, in accordance with standard
practice, may also denote certain of their specializations in a manner to be described.

There are two cases to be considered, the first and easier being where F is a
multiple — necessarily not by a perfect cube — of a perfect cube of a primitive linear
polynomial. In this instance, for some number D that is not a perfect cube,

F (ξ, t) = D(a∗ξ + l∗(t))3 = D(a∗ξ + l1t1 + · · · + lrtr + lr+1)3

(h. c. f.(a∗, l1, . . . , lr+1) = 1) (63)

and this, for any given integral t and all integers ξ, is equal to a sum of two integral
cubes. In this, as we shall shew is possible, let us choose an integral t that has the
property that

(a∗, l∗(t)) = 1. (64)

Indeed, it being evident that we need only consider the case where (l1, . . . , lr+1) = 1,
let q = h. c. f.(l1, . . . , lr) and infer first that (q, lr+1) = 1 and that

l1t1 + · · · + lrtr = q(l′1t1 + · · · + l′rtr),

say, can take any integral value of the type qt by a suitable choice of t1, . . . , tr. Then
to meet our requirement we only need to find t so that

l∗(t) + lr+1 = qt + lr+1

is incongruent to zero, modulis all prime factors p of a∗, this being done by taking
t ≡ 1, mod p, or t ≡ 0, mod p, according as p | lr+1 or p � lr+1 because in the former
case p � q. Taken with (64), the polynomial in (63) becomes an example of (34),
whence, by the reasoning following the latter equation that is continued in section 5,
we see that

D = D3
1 + D3

2

for non-zero integers D1, D2. Therefore in these circumstances

F (ξ, t) = D3
1(a

∗ξ + l∗(t))3 + D3
2(a

∗ξ + l∗(t))3
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in settlement of the first case.
In considering the second and more important case where (63) does not obtain we

shall allow ξ to take any integer value but shall restrain t (when taken with integer
components) to lie in a region L = L(Q) (of integer vectors) defined by

‖t‖ ≤ Q (65)

for some large Q. Since part of the argument will relate to certain sub-sets of the
region, it will be convenient to use the phrase ‘almost all t’ to mean that t belongs to
a sub-set L∗ of L whose cardinality differs from that of L by o(Qr). Also, for future
reference, we should mention that it is obvious that a set of type L∗ must contain
a representative of every residue class a, mod λ, for any small modulus λ; thus the
principle embodied in (64) is seen to extend to t ∈ L∗ by the replacement, if necessary,
of the given t by one congruent to it, mod a∗. Consequently we readily establish the
truth of the statement:

if l†(t) be a linear polynomial with rational coefficients (independent of Q)
that is an integer for almost all t, then these coefficients are integers

(66)

by using the positive integer d that makes dl†(t) primitive. Furthermore, it may be
helpful to remind the reader that the number of zeros in L of a non-identically zero
polynomial with integral coefficients is O(Qr−1).

It is easily verified that the condition that F (ξ, t), as expressed in (62), have a
triple repeated factor of the form a(ξ + u)3 for a given integral t is that

3aq(t) = l2(t), 27a2c(t) = l3(t),

which equations cannot both become identities when we are outside the first case.
Consequently the number of t in L for which F (ξ, t) has a triple repeated factor
is O(Qr−1) and therefore the opposite holds for almost all t. Since, by hypothesis,
F (ξ, t) is a sum of two integral cubes, we deduce from Theorem 2 and the remarks
before it that, for almost all t, it is identically in ξ a sum of two cubes of non-
proportional linear polynomials in ξ, or, in other words, that

F (ξ, t) = {B0(t)ξ + B1(t)}3 + {C0(t)ξ + C1(t)}3, (67)

where Bi(t), Ci(t) are integers depending on t and B0(t)C1(t) − C0(t)B1(t) �= 0.
From this, equating coefficients of ξ3, we find the equation

B3
0(t) + C3

0 (t) = a

having only a finite number E, say, of distinct solutions in B0(t), C0(t), one of
which B0, C0, say, must occur in a sub-set L1 of L of values of t in a set of cardi-
nality Qr/E. Consequently, in completion of the first stage of the treatment, there
emerges the relation

F (ξ, t) = {B0ξ + B1(t)}3 + {C0ξ + C1(t)}3 (68)
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as an identity in ξ for t ∈ L1, where

B0C1(t) − C0B1(t) �= 0. (69)

However, it remains to determine the forms of B1(t) and C1(t) in order to replace (68)
by an identity in ξ and t, to which end we shall have recourse to several lemmata.

First there is the familiar

Lemma 6.1. A cubic polynomial in y having a Hessian with distinct linear factors
is uniquely expressible (apart from order) in the form

λ(y + α)3 + μ(y + β)3,

where α �= β.

For the proof, which can depend on linear recurrences, see any classical treatise
on quantics or invariants (for example Salmon [11]).

The other two lemmata upon which we shall directly depend follow from two
introductory ones, the first of which states a weak form of the Lang-Weil theorem on
the solutions of congruences (see Schmidt [13, corollary 5C, page 213]).

Lemma 6.2. Let ψ(u1, . . . , us) be an absolutely irreducible (non-constant) polynomial
with integral coefficients. Then, for p > p0(ψ), the number N(p) of incongruent
solutions of the congruence

ψ(u1, . . . , us) ≡ 0, mod p,

does not exceed
(12/11)ps−1.

The other initial result required is due to Bombieri and Pilá [1].

Lemma 6.3. Let ψ(u, v) be a polynomial of degree d > 1 with integer coefficients
that is absolutely irreducible. Then the number of integral solutions of the equation
ψ(u, v) = 0 for which |u|, |v| ≤ Q1 is O

(
Q

1
d +ε
1

)
, where the constants implied by the

O-notation are independent of the coefficients in ψ(u, v).

From Lemma 6.2 we can deduce

Lemma 6.4. Let L = L(Q) be still defined as before through condition (65) and sup-
pose h(t) is a (given) polynomial with integral coefficients that is equal to a perfect
square for more than E1Q

r vectors t in L, where E1 is any (small) positive con-
stant. Then h(t) is identically equal to the square of a polynomial in t with integral
coefficients.

In this statement the word ‘square’ may be replaced by ‘cube’.
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The result is obvious if h(t) be a constant. Otherwise, let us assume that h(t) is
not identically a multiple of a square of a polynomial with integral coefficients so that
the polynomial

h(t) − u2 (70)

would be absolutely irreducible. Then, choosing p0 as in Lemma 6.2 when ψ therein
is (70), let us take a sequence of consecutive primes p1 < p2 < · · · < pw exceeding p0

whose product Π is less than Q so w can be taken to be large. The number M(Q)
of t in L for which h(t) is a perfect square is obviously not more than the number
of t in L for which h(t) is congruent to a square, mod Π, and therefore

M(Q) ≤
(

2Q

Π

)r

R(Π),

where R(Π) is the number of incongruent t, mod Π for which h(t) is congruent to a
square, modulis all prime divisors p of Π. To profit from this statement, let N1(p)
and N(p), respectively, be the number of incongruent solutions of h(t) ≡ 0, mod p,
and of (70) equated to zero, mod p, with the consequence that

N1(p) = O(pr−1) and N(p) ≤ (11/10)pr (p > p0)

by Lemma 6.2. Thus, since a soluble congruence of the type u2 ≡ m, mod p, has two
or one incongruent solutions according as p � m or p |m, we would deduce that

M(Q) ≤
(

2Q

Π

)r 1
2w

∏
{N1(pi) + N(pi)} <

(
3
5

)w

(2Q)r,

which is less than E1Q
r. Hence, the assumption being inconsistent with what we

were given, we deduce that h(t) = mh2
1(t) for some integer m, which is seen to be a

perfect square by a selection of t for which h(t) itself is. This completes the proof of
the first part; the second part is demonstrated similarly except that we should restrict
the primes p to be congruent to 1, mod 3.

As stated in the introduction, propositions of the above type have a long history.
But, for the result as stated, the proof chosen seems to be the shortest.

Finally, from Lemma 6.3, we can obtain our final ancillary result, in the statement
of which L = L(Q) has the same meaning as in Lemma 6.4.

Lemma 6.5. Suppose that f(t) and g(t) are mutually prime non-zero polynomials
and that f(t)/g(t) is a (determinate) integer for more than E1Q

r vectors t in L,
where E1 is any (small) positive constant. Then g(t) is identically equal to a non-
zero constant.

Assume that the degree of g(t) is greater than zero and consider first the case
where f(t) is the constant G �= 0. Then in looking at the underlying indeterminate
equation

f(t) = ug(t) (g(t) �= 0) (71)
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in t ∈ L and u, we see in this case that u divides G and has O(1) possible values.
Hence g(t) can only assume a finite number of determinations G1, say, while the
number of solutions of g(t) = G1 in L is O

(
Qr−1

)
. The total number of relevant

solutions of (71) in t being less than what was stated, we deduce that g(t) is a non-zero
constant.

To avoid awkward notational conventions we restrict our attention to the case
r > 1 when considering the situation where f(t) is of degree ρ ≥ 1, it then being clear
how the easier case r = 1 should be treated along parallel lines; indeed, the latter
could be handled in a very elementary way without the use of Lemma 6.3. First, by an
introductory comment in this section, we may suppose that f(t) and g(t) have been
so prepared that their leading coefficients a0, b0 are non-zero provided that Q and E1

be adjusted through their being affected by numerical multipliers. Thus, changing for
convenience the notation by expressing t as

(t, t2, . . . , tr) = (t, t2),

we may write

f(t) = ft2(t) = a0t
ρ + a1(t2)tρ−1 + · · · + aρ(t2),

g(t) = gt2(t) = b0t
σ + b1(t2)tσ−1 + · · · + bσ(t2),

which qua polynomials in t have a resultant R(t2) that is subject to an identity of
the type

h1(t)ft2(t) + h2(t)gt2(t) = R(t2)

containing polynomials h1(t), h2(t) of degrees less than σ, ρ in t. Here R(t2) is not
identically zero, since otherwise f(t) and g(t) would have a non-constant factor in
common. Hence, save for O(Qr−2) determinations of t2 for which R(t2) = 0 and
‖t2‖ ≤ Q, the polynomials f(t) and g(t) are relatively prime apart from numerical
factors depending on a0 and b0. We then return to (71) and, in counting the number
of its relevant solutions, ignore those appertaining to the exceptional set of t2 above
because they correspond to a sub-set of L having cardinality O(Qr−1).

Since, for any integer G2, the indeterminate equation g(t) = G2 has O(Qr−1)
solutions in L, the relevant solutions of (71) for which |g(t)| ≤ Q

1
2 are in number

O(Qr− 1
2 ) and may therefore be also ignored. But, for the other solutions, let us

rephrase (71) as
ft2(t) − ugt2(t) = 0 (72)

and, for each eligible t2, regard it as an equation in integers u, t that are circumscribed
by the obvious inequalities

|u| < Q− 1
2 ft2(t) < cQρ− 1

2 , |t| ≤ Q.

Here the defining polynomial is not only absolutely irreducible by the co-primality of
ft2(t) and gt2(t) but also of degree not less that 2 or ρ according as ρ = 1 or ρ > 1.
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Hence, by Lemma 6.3, the number of relevant solutions of (72) is O(Q
1
2+ε) if ρ = 1 but

O(Q
1
ρ (ρ− 1

2 )+ε) = O(Q1− 1
2ρ +ε) if ρ > 1, whence summing over t2, we get O(Qr− 1

2ρ +ε)
solutions in t in contradiction with the data supplied. This completes the proof for
the case ρ ≥ 1.

Being ready to take account of equation (68), we begin with the case where one
(but not both) of B0, C0 is zero and choose, for example, that where B0 = 0. Then,
comparing the consequential equation

F (ξ, t) = C3
0ξ3 + 3C2

0C1(t)ξ2 + 3C0C
2
2 (t)ξ + C3

1 (t) + B3
1(t)

with (62) when t ∈ L1, we deduce that

3C2
0C1(t) = l(t)

and then that

B3
1(t) = c(t) − l3(t)

27C6
0

�= 0.

by (69). Being of degree not exceeding three and being a perfect cube for all t ∈ L1,
the polynomial on the right is seen through Lemma 6.4 to be identically a perfect
cube of a rational multiple λw1(t) of a primitive linear polynomial. Thus

F (ξ, t) = {λw1(t)}3 + {C0ξ + w2(t)}3,

where w2(t) is also a linear polynomial, and this, being true for t ∈ L1, is actually an
identity. Since, by (67) and the uniqueness theorem of Lemma 6.1, λw1(t) and w2(t)
are integers for almost all t, we deduce from statement (66) that λw1(t) and w2(t)
have integral coefficients and thus obtain what we need in this instance.

Going on to the case where B0, C0 �= 0, we observe that F (ξ, t) as a cubic in ξ has
a Hessian that is both

{B0C1(t) − C0B1(t)}2{B0ξ + B1(t)}{C0ξ + C1(t)} (73)

and of the form
q1(t)ξ2 + c1(t)ξ + b1(t) (q1(t) �= 0) (74)

for t ∈ L1 because of (68) and (62), where the degrees of q1(t), c1(t), and b1(t) do not
exceed two, three, and four, respectively. Consequently, for t ∈ L1,the quadratic (74)
breaks up into rational linear factors and therefore its discriminant

c2
1(t) − 4q1(t)b1(t)

is a perfect square (but not zero by what has gone before). Hence, by Lemma 6.4,
this discriminant is identically a perfect square and (74) may be thrown into the form

u(t){v0(t)ξ + v1(t)}{w0(t)ξ + w1(t)}, (75)
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where v0(t), v1(t) and w0(t), w1(t) are pairs of relatively prime polynomials with
integer coefficients. Comparing the factors in (73) and (75) by ordering them appro-
priately with a suitable notation, we then deduce that, for t in a set L2 consisting
of not less than half the number of members of L1, the factors B0ξ + B1(t) and
C0ξ + C1(t) are proportional to v0(t)ξ + v1(t) and w0(t)ξ + w1(t), respectively.

First, if v1(t) = 0 identically, then v0(t) is a non-zero constant. Yet, if v1(t) and
therefore B0v1(t) be not identically zero, then

B0v1(t)
v0(t)

= B1(t)

is always an integer in L2, whence v0(t) is still identically a non-zero constant by
Lemma 6.5. Since similar conclusions about the other factor in the Hessian may be
drawn, we deduce, for t ∈ L2 in the first place and hence identically, the formula

F (ξ, t) = {B0ξ + υ(t)}3 + {C0ξ + w(t))3

containing polynomials υ(t), w(t) with rational coefficients. But, if υ∗(t), w∗(t) be
the components of υ(t) and w(t) of degree exceeding one, then, since F (ξ, t) is cubic
and B0 �= −C0,

υ∗3(t) + w∗3(t) = 0, B0υ
∗2(t) + C0w

∗2(t) = 0

and hence υ∗(t) = −w∗(t) = 0, the polynomials υ(t) and w(t) being linear. Finally,
by (67) and the uniqueness theorem of Lemma 6.1, υ(t) and w(t) are integers for all t
and therefore have integral coefficients in virtue of statement (66).

Reverting to the original notation associated with (61), we have thus obtained

Theorem 3. Let F (x0, . . . , xr) be a cubic polynomial with (rational) integral coeffi-
cients that is not identically the cube of a linear polynomial with integral coefficients
and that has the property that it equals the sum of two perfect cubes for all integral
values x0, . . . ,xr. Then F (x0, . . . , xr) is identically equal to the sum of two cubes of
linear polynomials in x0, . . . , xr with integral coefficients.
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