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ABSTRACT

An interesting and open question is the classification of affine algebraic plane
curves. Abhyankar and Moh [1] completely described the possible links at in-
finity for those curves where the link has just one component, a knot. Such
curves are said to have one place at infinity. The Abhyankar-Moh result has
been of great assistance in classifying those polynomials which define a con-
nected curve with one place at infinity. This paper provides a new proof of
the Abhyankar-Moh result which is then used to find a description for the case
where the polynomial defines a curve with one point at infinity.
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1. Introduction

An important topological feature of curves defined by polynomials is the link at in-
finity. For a polynomial f ∈ C[x, y] the link at infinity is the intersection of the
associated curve C, defined by f(x, y) = 0, with a three dimensional sphere in C

2

of radius large enough that all isolated singularities of C lie within the sphere. The
link at infinity is invariant under automorphisms of C

2 and is an important tool for
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studying the topology of such curves. Consider the fibres, {f−1(c) : c ∈ C}, of a poly-
nomial f ∈ C[x, y]. A fibre f−1(c) is regular if for some neighbourhood D of c ∈ C,
f |f−1(D): f−1(D) → D is a locally trivial C∞ fibration. Thus f−1(c) looks like
nearby fibres and has no isolated singularities. The link at infinity of a regular plane
curve C determines the topology of C ⊂ C

2 as an embedded smooth 2-manifold up to
ambient isotopy (see [18]). If C is not regular, the link at infinity, together with the
Milnor numbers of any singularities in C, gives the Euler characteristic of C. Thus
knowledge of the link at infinity of regular algebraic plane curves helps one to classify
those with a given topology.

The question of classification of polynomials up to equivalence under automor-
phisms of C

2 for certain specific cases has been addressed by a number of mathe-
maticians. Perhaps the most well-known case is the Abhyankar-Moh-Suzuki theorem
[1, 28] which says that, if f ∈ C[x, y] defines a curve f(x, y) = 0 that is smooth, con-
nected and contractible, then f is equivalent to g(x, y) = x. This theorem has been
proved by a number of people. As well as proving the theorem in a new way, Artal
Bartolo [6] gives a history of proofs of this result.

Various people have looked at the classification of those polynomials which define
a curve which is connected with one puncture, that is, where the link at infinity is
a knot. Such polynomials are said to have one place at infinity. Neumann [18] has
given a classification up to equivalence of irreducible polynomials whose curves are
smooth, once punctured, connected and of genus less than or equal to 4. Miyanishi
[16] describes simple forms to which once punctured, irreducible, smooth affine curves
of genera 1, 2, 3, 4 are equivalent. A’Campo and Oka [5] have classified smooth curves
of genus 1 or 2 with one place at infinity. Nakazawa and Oka [17] classify smooth,
algebraic plane curves with one place at infinity of given genus ≤ 16 and have written
down all possible normal forms of equations. There has been some duplication of cases
classified, however the techniques used have varied from researcher to researcher.

Another related result is that of Zaidenberg and Lin [33] who have classified curves
which are contractible and singular.

Progress in classification has also been made for polynomials for which every fibre
is smooth and connected but not contractible. Artal Bartolo, Cassou-Noguès, and
Velasco [8] have looked at families of smooth polynomial mappings of degree 6n + 4
with fibres that are irreducible and generically of genus n. Cassou-Noguès [11] has
used rational maps to find other families of polynomials with fibres that are smooth
and irreducible.

A beautiful result of Abhyankar and Moh ([1]) completely described the possible
links at infinity for those curves with one place at infinity. This result has been of
great assistance in classifying those polynomials which define a connected curve with
one place at infinity.

Given the importance of the Abhyankar–Moh result it is natural to ask

Can we find descriptions of the links at infinity for affine algebraic plane
curves which have more than one place at infinity?
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This question is addressed in sections 3 and 4 and descriptions are found for two
cases, in particular for the case of one point at infinity and many places at infinity.

To describe links at infinity of affine algebraic plane curves we use the splice
diagrams developed by Eisenbud and Neumann in [12]. These are a particularly
useful way of encoding the details of certain links. Briefly the splice diagram is a
finite tree with certain numerical and other decorations on it. These splice diagrams
are particularly useful in the analysis of the links of affine algebraic plane curves. In
section 2 we give a description of the splice diagram as it applies to the link at infinity
of an algebraic curve and how to find it. This was first described by Neumann in [18]
and also by Cassou-Noguès in [10] and Wightwick in [31]. We refer the reader to [18]
and [10] for a full discussion of the properties of splice diagrams and the invariants
which arise from these.

The splice diagram encoding the information for the link at infinity for a curve
with one place at infinity is

. . .
p1

q1

p2

q2 qh

ph

with gcd(pk, qk) = 1, pk, qk > 0, for k = 1, 2, . . . , h. The conditions, called the
Abhyankar-Moh semi-group conditions, are defined as follows. Let

semi-group{δ0, δ1, . . . , δj−1}

be the set of all non-zero linear combinations of δ0, δ1, . . . , δj−1 with non-negative
integer coefficients.

Theorem 1.1 ([1]). Let f ∈ C[x, y] be an irreducible polynomial that defines a
curve f(x, y) = 0 with one place at infinity with the above splice diagram. Then
for j = 1, 2, 3, . . . , h,

qjpjpj+1 · · · ph

∈ semi-group{p1p2 · · · ph, q1p2p3 · · · ph, q2p3p4 · · · ph, . . . , qj−1pj · · · ph}.

Sathaye ([24]) and Sathaye and Stenerson ([25]) show that any set of the linking
numbers as defined above, {p1, q1, p2, q2, . . . , ph, qh}, satisfying the Abhyankar-Moh
semi-group conditions is realisable as a semi-group associated with an algebraic curve.

In section 3 a new elementary proof for the Abhyankar–Moh result is provided.
This uses the Newton polygons that are used in finding the Newton-Puiseux expansion
of the polynomial. The Newton-Puiseux expansion refers to finding the roots of a
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polynomial, f(x, y) in the form y − a(x) where a is a fractional power series in x1/n

for some positive integer n (or similarly in the form x− a(y)). The advantage of the
new proof is that it can easily be extended to find semi-group conditions which hold
in other special cases.

The Newton polygons used in this paper are based on those used in [31] and differ
from those described in [18] and [10]. As the form of the Newton polygons used to find
the Newton-Puiseux expansion of a polynomial is a key element of the proof of the
Abhyankar-Moh result, we give, in section 2, a detailed description of the procedure
that is used.

In the original proof of Theorem 1.1 Abhyankar and Moh used the theory of
valuations. Suzuki ([28]) has given an alternative proof of this result using the theory
of resolutions. His proof gives some valuable insight into the geometry of an algebraic
curve with one place at infinity. Another readable proof was given by Pinkham ([22]).

In section 4, I generalize the semi-group conditions from the case of one place
at infinity to the important case of polynomials which define curves which have one
point at infinity. The semi-group conditions arise quite naturally from the shapes of
the splice diagrams (see sections 3 and 4).

Assuming that we have f ∈ C[x, y] irreducible with one point at infinity occurring
at y = 0, then f will be monic in y but may have more than one component in the
link at infinity. In this case there will be a maximal h such that the splice diagram
of f contains the following section:

. . .
p1

q1

p2

q2 qh

ph

l branches (l 1). 
. 
.

and such that degx(f) < degy(f) = p1p2 · · · phd for some positive integer d.

Theorem 1.2. Let f ∈ C[x, y] be an irreducible polynomial that defines a curve
f(x, y) = 0 with one point at infinity with its splice diagram containing the section
pictured above.

Then for j = 1, 2, . . . , h− 1,

qjpj · · · phd

∈ semi-group{p1p2 · · · phd, q1p2p3 · · · phd, q2p3p4 · · · phd, . . . , qj−1pj · · · phd}.

Furthermore, there exists r ∈ Z with 1 ≤ r ≤ l such that

rqhd ∈ semi-group{p1p2 · · · phd, q1p2p3 · · · phd, q2p3p4 · · · phd, . . . , qh−1phd}.
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Here the Abhyankar-Moh semi-group conditions are the case d = 1.
Note that the knots that are components of links at infinity are classified — they

are simply the knots whose Puiseux pairs satisfy the reverse Puiseux inequalities
(see [18]). Thus any additional restriction on Puiseux pairs of a branch must depend
on how different branches are positioned with respect to each other. Moreover, ex-
amples show that one really only expects to be able to get a reasonable condition on
an individual branch up to the point where branches diverge; weights no longer even
have to be positive, in fact it is not hard to make them arbitrarily negative beyond
this point.

The proof of Theorem 1.2 also gives some restrictions on the case with two points
at infinity, but these are rather more technical (see section 5).

Ultimately one would like to understand what splice diagrams may be realised as
affine algebraic plane curves and to understand the moduli spaces of the families of
polynomials which give rise to these. The results and methods in this paper may help
to achieve this objective.

2. Iterated torus links and the splice diagram

In this section we describe the splice diagrams of links at infinity of affine algebraic
plane curves, and how to use the method of Newton polygons to find these. Some
parts of this section have been discussed in [20].

2.1. The splice diagram

The link at infinity of an algebraic plane curve is a cabled torus link in S3 and can
be conveniently represented by the splice diagram. The splice diagram is a tree with
various decorations. We briefly describe splice diagrams below. See Neumann [18],
and Cassou-Noguès [10] for further details. For example, if the link at infinity is a
knot it has a splice diagram of the form

. . .
p1

q1

p2

q2 qh

ph

T1

T0

T2 Th
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This splice diagram encodes the information that we:

• Start with an unknot.

• Cable a (p1, q1) torus knot on the unknot.

• Cable a (p2, q2) torus knot on the (p1, q1) torus knot.

...

• Cable a (ph, qh) torus knot on the (ph−1, qh−1) torus knot.

The final (ph, qh) cable is the link at infinity. The earlier “virtual” components used in
constructing the link are represented by the vertices, T1, . . . , Th (those with just one
edge adjoining them), the unknot being represented by the node T1 and the (pk, qk)
cable being represented by Tk+1. The nodes T0 and T1 form a virtual Hopf link. Note
that

• T0 is called the “root node” and is indicated by a solid disk rather than a circle.

• The valency of a vertex is the number of edges adjoining it.

• Vertices of valency 1 other than the root node are called leaves.

• Vertices of valency 2 or more are called nodes.

• Arrowheads represent actual components of the link at infinity.

• The weights attached to the diagram are oriented with respect to the root node,
the weight closest to the root node on an edge is called the near weight and
the one furthest away (if it exists) is called a far weight. Edge weights of 1 are
usually omitted from the splice diagram.

• We can associate a numeric weight with each component of a link. Such a link,
together with the numeric weights is called a multilink. The numeric weights are
included in splice diagrams at the end of the arrowheads corresponding to the
components. Such weights occur quite naturally in algebraic links and reflect
the multiplicity of factors of polynomials.
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Let f ∈ C[x, y] be such that

f = fN + fN−1 + · · · + f1 + f0

where each fi is homogeneous of degree i. Then the points at infinity where the
algebraic plane curve f−1(c) meet infinity are the solutions of

fN (x, y) = 0.

If there is more than one point at infinity the link at infinity is constructed by cabling
on a Hopf link with one component for each point at infinity. There may be nodes of
valency greater than three. For example

qh

ph

l branches (l 1)

. .
.

. . 
.

. . .

. . .
qh 1

ph 1

may arise in the construction of the link. In this case there are l parallel (ph, qh) torus
knots cabled on the (ph−1, qh−1) cable.

If we take c ∈ C then an algebraic curve, f−1(c), is regular if for some neighbour-
hood of c, say D, f |f−1(D) is a locally trivial fibration. For all but finitely many
values of c, f−1(c) is regular.

A minimal Seifert surface, F say, is a Seifert surface with maximum Euler charac-
teristic among all oriented embedded surfaces with no closed components in S3 with
∂F = L where L is a link. F may not be unique up to isotopy as a Seifert surface
and the isotopy need not fix L.

Theorem 2.1 ([18]). The topology of a regular algebraic curve V = f−1(c) ⊂ C
2,

as an embedded smooth manifold is determined up to ambient isotopy by its link L
at infinity. In fact a minimal Seifert surface F for L in S3 is unique up to isotopy
in S3, and V can be recovered up to isotopy by attaching a collar out to infinity in C

2

to the boundary of F .

While we are able to recover a minimal Seifert surface with the same topology as
a regular algebraic curve this is not the case for irregular curves. However we are at
least able to find the Euler characteristic for this case.

Not all cable links arise as the link at infinity of an algebraic plane curve. The
splice diagrams of links at infinity of algebraic plane curves can always be reduced to
a unique minimal splice diagram satisfying the following conditions:

(i) All near weights are positive.

(ii) At most one near weight of a node differs from 1.
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(iii) For the following edge in a splice diagram

a0 b0� ��
�

�

�
�

�

a1
...

an

�
�

�

�
�

�

b1
...

bm

the edge determinant of the edge is

a0b0 − a1 · · · anb1 · · · bm.
All the edge determinants of a splice diagram for a link at infinity are negative.

A non-minimal splice diagram of a link at infinity can be simplified by the following
moves:

EN 1: removing edges of weight 1 ending in a leaf or

EN 2: removing nodes of valency 2 (other than the root node).

We call a diagram which does not admit either of these moves the minimal splice
diagram of f . If we allow deletion of the root vertex we obtain the minimal unrooted
splice diagram of f .

We can use the above moves to reduce the number of edges in a splice diagram.

Theorem 2.2 ([12, 18]). If Γ is a splice diagram which does not contain any edges
of weight one ending in a leaf or nodes of valency 2 then Γ is minimal. Moreover Γ
is unique in its equivalence class up to change of sign.

Note that Theorem 2.2 implies that if we remove the root vertex from a splice dia-
gram and obtain a minimal splice diagram satisfying its conditions then the resultant
splice diagram is a combinatorial invariant of a given link at infinity of an algebraic
plane curve under automorphisms of C

2. However the same is not true for the rooted
splice diagram which includes additional information about the curve defined by a
specific polynomial. For example, the root node encodes the number of points at
infinity of the curve and the degree of the polynomial (see below).

2.2. The Newton-Puiseux expansion and the link at infinity

The Newton-Puiseux techniques for studying the singularities of affine algebraic plane
curves have been long established (for example see [14, 21, 23]). It is only relatively
recently that these methods have been extended to include the study of points at
infinity (see Abhyankar and Moh [1], Neumann [18] and Cassou-Noguès [10]).
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The idea is to find the Puiseux expansion for each component of the link at infinity.
For example, if a component of a link at infinity corresponds to the curve meeting
infinity at y = 0 we obtain an equation of the form

y = xq1/p1(t1 + x−τ2/(p1p2)(t2 + x−τ3/(p1p2p3) + · · · ))

with q1 < p1, gcd(p1, q1) = 1, pi > 0, τi > 0, and gcd(pi, τi) = 1 for all i. For some
h, pj = 1 for all j > h. We need only find the terms up to this point. This gives a
branch of the splice diagram for f = 0 corresponding to one component of the link at
infinity:

. . .
p1

q1

p2

q2 qh

ph

where qi = qi−1pi−1pi − τi for i = 2, . . . , h. In this context “branch of the splice
diagram” means part of the finite tree in the natural way.

Definition 2.3. The pairs (p1, q1), (p2,−τ2), . . . ,(ph,−τh) are called Newton pairs.
The pairs (p1, q1), (p2, q2), . . . , (ph, qh) are called cabling pairs.

Note that one or more of the pi may be equal to 1. Replacing a link component by
a (1, qi) cable does not change the topology of the link. We can find all the relevant
equations and assemble the branches of the splice diagram by merging parts that
correspond to identical initial Puiseux expansions.

In practice we use Newton polygons to find the Newton and cabling pairs and
build up the splice diagram.

Definition 2.4. Let f ∈ C[x−1, x, y] where

f =
∑

aαβx
αyβ

and consider the curve C defined by f(x, y) = 0. The Newton polygon of f is the
convex hull of the points

{(α, β) | aαβ �= 0}.
The Newton polygon of f is denoted NP(f).

The process of using Newton polygons to find the splice diagram is as follows:
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Step 1: Find the starting Hopf link

f = fN + fN−1 + · · ·+ f0 where fi is homogeneous of degree i. We find the solutions
of fN = 0, which will be of the form x = a, y = b or y = cx, a �= 0. We can always
apply linear automorphisms of C[x, y] of the form φ(x, y) = (c1x+ d1y, c2x+ d2y) to
ensure that the roots will be one of the following:

(i) Where there is just one point at infinity: y = 0

(ii) Where there are two point at infinity: y = 0 and x = 0

(iii) Where there are more than 2, say r + 2, points at infinity: y = 0, x = 0 and
y = cix, i = 1, . . . , r.

The initial splice diagram will consist of a root node and one arrowhead for each point
at infinity. In two special cases we stop at this point.

(i) If f = (y−b)N , the Newton polygon includes the point (0, N) which corresponds
to one point at infinity. The link is the unknot with multiplicity N .

(N)

(ii) If f = (x− a)m(y − b)n with m,n ≥ 1, the Newton polygon includes the point
(m,n), not on either axis, and the points at infinity are x = 0 and y = 0. The
link is the Hopf link with two components with multiplicitym and n respectively.

(n)(m)

There are two other special cases worthy of mention.

(iii) If f =
∏m

i=1(y − ai)ni , m > 1 then there is one point at infinity and m compo-
nents of the link at infinity. The solutions to f(x, y) = 0 are y = aix

0/1 with
multiplicity ni. We replace the one component Hopf link (the unknot) by m
parallel (0, 1) cables giving m parallel unknots.

0

1
(nm)

(n1)
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(iv) If f = xayb
∏m

i=1(x
qyp − ci)ni then there are two points at infinity, x = 0 and

y = 0. We can see that the fractional power series solutions are of the form

y = p
√
cix

−q/p

or
x = q

√
cix

−p/q

In addition we may have solutions y = 0 or x = 0 with multiplicity b and a
respective. Thus we have cabling pairs (p, q) for the y = 0 point at infinity and
(q, p) for the x = 0 point at infinity. We obtain the splice diagram

p

−q

(n1)

(nm)

−p

q

(n1)

(nm)

m arrows m arrows

if a = b = 0; otherwise for a > 0 or b > 0 we retain the original component of
the Hopf link with the relevant multiplicity a or b.

From now on we assume that we need to add one or more cables to the initial
Hopf link. To analyse these cases we will need the following definition.

Definition 2.5. Let
f =

∑
α,β

aαβx
αyβ .

The (u, v) weighted degree of aαβx
αyβ , aαβ �= 0 is uα + vβ. The maximum (u, v)

weighted degree of f is
max{uα+ vβ | aαβ �= 0}.

Express f in the form

f =
∑

uα+vβ=d

aαβx
αyβ +

∑
uα+vβ<d

aαβx
αyβ

where d is the maximum (u, v) weighted degree of f . Then the terms in
∑

uα+vβ=d

aαβx
αyβ

lie in the boundary of NP(f). If there are two or more such terms then there is a line
segment in ∂NP(f) satisfying uα+ vβ = d.
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Definition 2.6. A single point in ∂NP(f) satisfying uα+vβ = d is called a maximum
(u, v) point of NP(f) while a line segment consisting of all points satisfying uα+vβ =
d is called the maximum (u, v) line segment of NP(f).

We then have the following:

(i) The line segments corresponding to the point at infinity y = 0 are the maximum
(pi, qi) line segments of NP(f), i = 1, . . . ,m say, where pi, qi ∈ Z, pi > 0,
gcd(pi, qi) = 1 and pi > qi. These line segments have slope −pi/qi, although
one slope might be infinite. For convenience we think of this as slope 1/0.

(ii) The line segments corresponding to the point at infinity x = 0 are the maximum
(q′j , p

′
j) line segments of NP(f), j = 1, . . . , k say, where q′j , p

′
j ∈ Z, p′j > 0,

gcd(p′j , q
′
j) = 1 and p′j > q′j . These line segments have slope −q′j/p′j .

(iii) The line segment in the Newton polygon which corresponds to points at infinity
of the form y = ax, a �= 0, if any, is the maximum (1, 1) line segment of NP(f),
a line segment of slope −1.

The following diagram shows the relevant line segments in ∂NP(f) if there are three
or more points at infinity:

β

α

maximum (1,1) line segment
of slope -1;
points at infinity y=ax, a �=0

maximum (pi,qi) line segments
of slope −pi/qi, q i<pi, p i>0;
point at infinity y=0

maximum (qj’,pj’) line segments
of slope −qj’/pj’, q j’<pj’, p j’>0;

point at infinity x=0

−qk’/pk’
−q1’/p1’

−p1/q1

−pm/qm

We will describe the procedure for finding further cabling pairs for the point at infinity
y = 0. For the point at infinity, x = 0, one reverses the role of x and y in the initial
substitution. For a point at infinity y = ax we first use an affine automorphism of
R

2, say φ : (x, y) 	→ (c1x+ c2y, d1x+ d2y) to move the point at infinity to y = 0 and
work with φ ◦ f from Step 2.
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Step 2: Adding the first cables

For each maximum (pi, qi) line segment of NP(f) corresponding to the point at infinity
y = 0 we consider the corresponding terms in f :

∑
piα−qiβ=di

aαβx
αyβ = cix

aiybi

si∏
j=1

(ypi − tpi

ijx
qi)lij .

This gives si solutions
y = tijx

qi/pi

where pi > 0, qi < pi and a Newton pair (and cabling pair), (pi, qi). Note that if two
solutions differ by a root of unity they are equivalent. We have q1/p1 > · · · > qm/pm.
We add each (pi, qi) cable to the y = 0 component of the Hopf link in turn. At the ith

operation we retain the Hopf link component unless it is the mth operation in which
case we only retain the original Hopf component if f has a factor yb, b �= 0. For the
case where yb is not a factor of f we obtain

other
points

at infinity

q1

. . . . . .
s1

arrows
s2

arrows

p1 q2 p2

. . .
sm

arrows

. . . qm pm. . .

For the case where yb is a factor of f we obtain

other
points

at infinity

q1

. . . . . .
s1

arrows
s2

arrows

p1 q2 p2

. . .
sm

arrows

. . . qm pm. . . (b)

Thus we obtain si arrowheads for each maximum (pi, qi) line segment. If any lij = 1
no further cabling occurs on the relevant branch of the splice diagram and the corre-
sponding arrowhead represents an actual component of the link at infinity. Otherwise
we continue as in Step 3.

Step 3: Further cabling

For each solution y = tijx
qi/pi where lij > 1 we make the substitution

x = xpi

1 and y = xqi

1 (y1 + tij)
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to find f1(x1, y1) ∈ C[x−1
1 , x1, y1]. Draw NP(f1). Then the line segments correspond-

ing to branches at infinity are the maximum (pij,k,−τij,k) line segments of NP(f1)
where pij,k, τij,k > 0 and pij,k, τij,k ∈ Z, k = 1, . . . ,mij .

β1

α1

maximum (pij,k, −τij,k) line segments
of slope pij,k/τij,k, τ ij,k, p ij,k>0;
f1=0 meets infinity at y1=0

pij,1/τij,1

pij,mij
/τij,mij

rest of NP(f1)
lies to left of
relevant line
segments

If there is just one line segment of height one so that the only Newton pair is
(pij,1,−τij,1) with pij,k = 1 we stop cabling on the branch. Otherwise, we analyse
each line segment as in Step 2. We obtain Newton pairs

(pij,1,−τij,1), . . . , (pij,mij
,−τij,mij

)

giving cabling pairs

(pij,1, qipipij,1 − τij,1), . . . , (pij,mij , qipipij,mij − τij,mij )
= (pij,1, qij,1), . . . , (pij,mij , qij,mij )

and
qij,1/pij,1 > · · · > qij,mij

/pij,mij
.

Cabling gives that the (ij)th arrowhead is replaced by the shaded region:

sm

branches

si

branchess1

branches

other
points

at infinity

q1

. . . . . .

p1 qi pi

. . .

. . . qm pm. . .. . .. . .

qij,1

. . .
sij,1

arrows

pij,1

. . .
sij,mij

arrows

. . .. . . qij,mij
pij,mij
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if f1 does not have a factor ybij

1 for some bij �= 0, otherwise the original component is
retained and we obtain

sm

branches

si

branchess1

branches

other
points

at infinity

q1

. . . . . .

p1 qi pi

. . .

. . . qm pm. . .. . .. . .

qij,1

. . .
sij,1

arrows

pij,1

. . .
sij,mij

arrows

. . .. . .
qij,mij

pij,mij
(bij)

Let the maximum (pij,k,−τij,k) line segment have associated terms

dkx
ak
1 ybk

1

sij,k∏
r=1

(ypij,k

1 − t
pij,k

k,r x
−τij,k

1 )lk,r .

We add sij,k (pij,k, qij,k) cables to the kth component. If any lk,r = 1 no further cabling
will be required on that branch and the arrowhead represents an actual component
in the link at infinity for f . For lk,r �= 1 we make substitutions of the form

(x1, y1) = (xpij,k

2 , x
−τij,k

2 (y2 + tk,r)).

The first two terms of the Newton Puiseux expansion for the rth solution correspond-
ing to the kth pair are now known:

y = tijx
qi/pi + tk,rx

qi/pix−τij,k/(pipij,k) + · · · .

We continue in this fashion to find the Newton pairs. Apart from the initial cabling
step, all the Newton polygons will be of the form found in Step 3.

Example 2.7 (The Briançon Polynomial).

f(x, y) = x2(1 + xy)4 + 3x(1 + xy)3 + (3 − 8/3x)(1 + xy)2 − 4(1 + xy) + y.

We will find the splice diagram for f(x, y) = 0, Γ(f−1(0)). We first find the points
at infinity by solving x2(xy)4 = 0 to get two points at infinity, x = 0 and y = 0.
Thus our initial splice diagram is that of the two component Hopf link. Drawing the
Newton polygon, NP(f), we have
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β

α

2

4

62 4

For y = 0 there is one line segment and the terms in f corresponding to this are

x2(1 + xy)4.

We solve (1 + xy)4 = 0, obtaining y = −x−1/1 as a solution. The Newton pair is
(1,−1) as is the cabling pair. As the exponent of (1 + xy)4 is more than 1 we need
to continue the algorithm. We substitute (x, y) = (x1

1, x
−1
1 (y1 − 1)) to obtain

f1 = x2
1y

4
1 + 3x1y

3
1 + 3y2

1 − 8/3x1y
2
1 − 4y1 + x−1

1 y1 − x−1
1

with Newton polygon

β1

α1

2

4

2−2

We have two line segments corresponding to branches at infinity. The first, of slope 2,
has corresponding terms f1,1 = x2

1y
4
1 −8/3x1y

2
1 = x2

1y
2
1(y2

1 −8/3x−1
1 ) giving a solution

y1 = 2
√

8/3x−1/2
1 as the required solution. The Newton pair is (2,−1) and the cabling

pair is (2,−1× 1× 2− 1) = (2,−3). As the exponent of (y2
1 − 8/3x−1

1 ) in f1,1 is equal
to one, we have completed this branch.

The other line segment of slope 1 has corresponding terms

f1,2 = −8/3x1y
2
1 − 4y1 − x−1

1 = −8/3x1(y1 + (3 +
√

3)/4x−1
1 )(y1 + (3 −

√
3)/4x−1

1 )

with two relevant solutions of f1,2 = 0. The Newton pair is (1,−1) and we add two
(1,−1×1×1−1) = (1,−2) parallel cables. As the exponents of (y1 +(3+

√
3)/4x−1

1 )
and (y1 + (3−√

3)/4x−1
1 ) are both equal to 1 in f1,2 we have completed this branch.
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For x = 0 there is again one line segment with the corresponding terms being

y((x2y)3 + 3(x2y)2 + 3(x2y) + 1) = y(x2y + 1)3

with solution x = −y−1/2. Putting (x, y) = (x−1
1 (y1 − 1), x2

1), we obtain f ′1 which
has a Newton polygon with one relevant line segment giving Newton pair (3,−1) and
cabling pair (3,−1 × 2 × 3 − 1) = (3,−7) at which stage we stop.

Thus we build up the splice diagrams as follows:

2 1 1 1

3 2 2 173

2 1 3 2 2

3

2
1 1

1

Step 1: Hopf link Step 2: First cabling

Step 3: Next cabling Apply EN1 and EN2

7

In step 3, one obtains two edges of weight 1 adjoining leaves. The reduced splice
diagram was obtained by first deleting theses leaves and edges and then deleting the
resultant node of valency two.

2.3. Invariants from splice diagrams

Definition 2.8. Given a vertex, v, of a splice diagram, Γ, the linking coefficient at
v, also called the multiplicity at v is the sum over the arrowheads, w, of Γ:

lv =
∑
w

l(v, w),

where l(v, w) is the product of edge weights directly adjacent to, but not on, the path
from v to w in Γ.

The splice diagram for the Briançon polynomial, Γ(f−1(0)) (Example 2.7) has the
linking coefficients indicated in brackets in the diagram below:
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2 −1 −3 2 −2

−73

(10)(2)(1)

(1) (3)

(0) (−1)

Properties of the linking coefficients

The properties relating to the linking coefficients of splice diagrams of links at infinity
are as follows:

(i) The degree of a polynomial is always the linking coefficient l• at the root vertex.

(ii) A splice diagram is regular, that is, the splice diagram of a regular fibre of f , if
and only if it has no negative linking coefficients.

(iii) A polynomial has fibres with irregular splice diagrams if and only if the regular
splice diagram has at least one zero linking coefficient. Each irregular diagram
determines the regular one and the regular one strongly constrains the number
and form of the irregular ones. See Neumann ([19]), for details.

(iv) The Euler characteristic of the generic fibre of f is

χreg :=
∑

v∈vert Γ(f)

(2 − σv)lv,

where vert Γ(f) is the set of non-arrowhead vertices of Γ(f) and σv is the valency
of vertex v (number of edges at v).

(v) For any c ∈ C define the Milnor number at infinity of f−1(c) as

λc :=
∑

v∈Γ(f−1(c))
lv<0

(2 − σv)lv

so λc = 0 unless Γ(f−1(c)) is irregular. Moreover, if f−1(c) is a reduced fibre
(that is, one without multiple components), the total Milnor number is the sum
of Milnor numbers (see Milnor [15])

μc :=
∑

p∈f−1(c)

μp.
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As μp = 0 at non-singular points, this is a finite sum. Then the Euler charac-
teristic of a reduced fibre f−1(c) is given by

χ(f−1(c)) = μc +
∑

v∈vert Γ(f−1(c))

(2 − σv)lv = μc + λc + χreg.

(vi) Suzuki ([27]) showed that for any f one has

1 − χreg = μc +
∑
c∈C

(χ(f−1(c)) − χreg)

so, if f has only isolated singularities,

1 − χreg =
∑
c∈C

(μc + λc).

One consequence of this formula is that, once we have found finite singularities
and singularities at infinity contributing enough μc and λc to satisfy the formula,
we know that we have found all non-generic fibres.

Example 2.9 (The Briançon Polynomial continued). We have found the splice diagram
Γ(f−1(0)) for this polynomial. There are two other splice diagrams for links at infinity.
For the regular fibres f−1(t), t �= 0,−16/9 we find that Γ(f−1(t) is

2 −1 −3 2

−73

(10)(2)(1)

(1) (3)

(0) (0)
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while for the other fibre f−1(−16/9), Γ(f−1(−16/9)) is

2 −1 −3 2

−7
3

(10)(2)(1)

(1) (3)

(0) (0)

−15
2

(−6)
(−3)

From these diagrams we find

χreg = 1(2 − 1) + 3(2 − 3) + 1(2 − 1) + 2(2 − 3) + 10(2 − 2) + 0(2 − 3) = −3,
λ0 = (−1)(2 − 3) = 1,

and
λ−16/9 = 3.

We thus obtain
χreg + λ0 + λ−16/9 = −3 + 1 + 3 = 1

so that μc = 0 for all c. If follows that the Briançon polynomial has no finite singu-
larities.

3. The semi-group condition for curves with one place at in-
finity

This section gives the new proof of Theorem 1.1. We start by restating the theorem.
Let f ∈ C[x, y] be an irreducible polynomial that defines a curve f(x, y) = 0 with
one place at infinity, thus having a link at infinity whose minimal splice diagram is as
follows:

. . .
p1

q1

p2

q2 qh

ph

Name the vertices of the splice diagram as follows. Starting from the root vertex and
moving towards the arrowhead:
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• vertices with one adjoining edge are u0, u1, . . . , uh

• vertices with three adjoining edges are v1, v2, . . . , vh

Let L denote the link at infinity and let Sw denote the virtual component of the link
corresponding to the node w for w ∈ {ui : i = 1, . . . , h} ∪ {vj : 1, . . . , h}. Then
the linking numbers of the virtual components with the link at infinity are named as
follows:

δ0 = lu0 = link(Su0 , L) = p1p2 · · · ph,

δ1 = lu1 = link(Su1 , L) = q1p2p3 · · · ph,

δ2 = lu2 = link(Su2 , L) = q2p3p4 · · · ph,

...
δh = luh

= link(Suh
, L) = qh,

ψ1 = lv1 = link(Sv1 , L) = q1p1p2 · · · ph,

ψ2 = lv2 = link(Sv2 , L) = q2p2p3 · · · ph,

...
ψh = lvh

= link(Svh
, L) = qhph.

We now restate Theorem 1.1 in terms of these linking numbers.

Theorem 1.1 (The Abhyankar-Moh Semi-Group Theorem restated). Let f ∈ C[x, y]
be an irreducible polynomial that defines a curve f(x, y) = 0 with one place at infinity.
Then using the above notation we have:

For j = 1, 2, 3, . . . , h,

ψj ∈ semi-group{δ0, δ1, . . . , δj−1}
where semi-group{δ0, δ1, . . . , δj−1} is the set of all non-zero linear combinations of
δ0, δ1, . . . , δj−1 with non-negative integer coefficients.

This theorem limits the possible values of qj , in terms of p1, . . . , pj−1 and
q1,. . . ,qj−1.

3.1. The essence of the proof

The proof of the Theorem 1.1 depends on some rather technical lemmas so, before
giving all the details, we describe the main ideas and show how these combine to
give the result. In the case of f = y + c, Theorem 1.1 is trivially true. We prove
the theorem under the assumption that the cabling pairs found are {(p1, q1), (p2, q2),
. . . ,(ph, qh)} with pi > 1, i = 1, . . . , h. The case of redundant cabling pairs of the
type (1, s) is addressed in section 3.6 and the proof follows the same lines as the case
without redundant pairs.

There are three main steps in the proof.
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(i) We express the polynomial f as the sum of other polynomials using “approxi-
mate roots of polynomials” (see below).

(ii) We then analyse the Newton polygon used to find the cabling pair (pk, qk) by
finding the contribution of each summand to the Newton polygon.

(iii) Finally we show that the actual proof follows fairly easily from this analysis.

Step 1: Approximate roots of polynomials (section 3.2)

Abhyankar and Moh [3] developed the concept of approximate roots of polynomials.
Their main result is the following lemma (Lemma 3.7).

Let f ∈ C[x, y] be monic in y with degy(f) = kl, k, l ∈ Z, k, l > 1. Then
there exists a unique g ∈ C[x, y] such that g is monic in y, degy(g) = k
and

f(x, y) = gl + ζ

where degy(ζ) < (l − 1)k = (l − 1) degy(g).

Definition 3.1. The polynomial g is the lth approximate root of f .

The main result used in the proof of Theorem 1.1 is Lemma 3.9 (Suzuki [28]). Let
f ∈ C[x, y] be monic in y and degy(f) = p1p2 · · · pk · · · ph. Then f can be written as

f = gpk···ph

k + ζk

where gk is the (pk · · · ph)th approximate root of f . Moreover

ζk =
∑

γ0,...,γk

aγ0...γk
gγ0
0 gγ1

1 · · · gγk

k

where g0 = x and g1, g2, . . . , gk−1 are the (p1p2 · · · ph)th, (p2 · · · ph)th, . . . ,
(pk−1 · · · ph)th approximate roots of f respectively. In addition, 0 ≤ γ0, 0 ≤ γ1 < p1,
. . . , 0 ≤ γk−1 < pk−1, 0 ≤ γk < pk · · · ph − 1.

We use the approximate roots where p1, p2, . . . , ph are given in the splice diagram
of f .

Step 2: The Newton polygons of f , g0, . . . , gh (sections 3.3 and 3.5)

We match features in the “kth” Newton polygon of f , NPk(f) say, used to find the pair
(pk, qk) with the kth Newton polygons of the components of ζk, aγ0...γk

gγ0
0 gγ1

1 · · · gγk

k .
Before doing so we give a few definitions.

Definition 3.2. The line segments in the boundary of a Newton polygon which
correspond to the points at infinity of a curve C defined by f(x, y) = 0 where
f ∈ C[x, y] are described in section 2. These line segments will be called the key
line segments of the Newton polygon.
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Definition 3.3. If
f(x, y) =

∑
aαβx

αyβ

then the points in the set
{(α, β) | aαβ �= 0}

are called the key points of NP(f), the Newton polygon of f .

We define the notion of corner point where there is one or no key line segments in
a Newton polygon.

Definition 3.4. Let {(α, β) | aαβ �= 0} be the set of key points of NP(f). Then the
corner point of NP(f) is the following key point:

(i) where there is a key line segment, the point (α, β) in the key line segment such
that β is maximum.

(ii) where there is no key line segment, the point (α′, β′) such that α′ = max{α |
aαβ �= 0} and β′ = min{β | (α′, β) | aα′β �= 0}.

rest of
Newton
polygon

key line
segment

key line
segmentcorner

points

corner
point

α´

(1) (2)
Rest of
Newton

polygon lies to
left and above
corner point.

Rest of Newton
 polygon lies to
left and above
corner point.

Some relevant facts about Newton polygons are proved in section 3.4.
We now turn to the Newton polygons of f . Without loss of generality we assume

that C meets infinity at y = 0. Assume that in order to find the Newton pairs of f
we make the substitutions:

Φj : (xj , yj) = (xpj

j+1, x
−τj

j+1(yj+1 + tj))

for j = 1, . . . , h− 1, where (x1, y1) = (x, y).

Definition 3.5. Let
fj = f ◦ Φ1 ◦ · · · ◦ Φj−1

for j = 2, . . . , h. Denote the Newton polygons, NP(f), NP(f2), . . . , NP(fh) by

NP1(f),NP2(f), . . . ,NPh(f)

respectively. We call the set {NPj(f)}h
j=1 the Newton polygons of f .
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Assume that we make the precisely the same substitutions {Φj} in some polyno-
mial H.

Definition 3.6. Define
Hj = H ◦ Φ1 ◦ · · · ◦ Φj−1

for j = 2, . . . , h and define the Newton polygons of H as

NP1(H) = NP(H),NP2(H) = NP(H2), . . . ,NPh(H) = NP(Hh).

In Lemma 3.10 we establish that NPk(f) has just one key line segment as given
in the following diagram:

key line
segment
of NPk(f)

qkpk+1...ph

(qk−1pk−1pk...ph, pkpk+1...ph)

βk

αk

Rest of Newton
polygon contained

in region to left and
above shown key

line segment

This key line segment shown on the diagram is the one used to find the Newton pair
(pk, qk) in the splice diagram. The line segment has slope τk and we know that we
must obtain just one Newton pair from this line segment. Thus the terms in f(xk, yk)
corresponding to this line segment must be of the form

ckx
qkpk···ph

k (ypk

k − tpk

k x−τk

k )pk+1···ph

and every integer point on the key line segment must be a key point of the Newton
polygon.

In section 3.5 we use induction to establish the following results about the Newton
polygons of the components of f , gpk···ph

k and aγ0...γk
gγ0
0 · · · gγk

k .

(i) Neither
NPk(gpk···ph

k )

nor any
NPk(aγ0...γk

gγ0
0 gγ1

1 · · · gγk

k )

where aγ0...γk
gγ0
0 gγ1

1 · · · gγk

k �= 0 has a key line segment parallel to that of NPk(f)
(Lemmas 3.15 and 3.24).
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(ii) The corner point of NPk(aγ0...γk
gγ0
0 · · · gγk

k ) is at

αk = p1 · · · pk−1γ0 + q1p2 · · · pk−1γ1 + · · · + qk−1γk−1 + qk−1pk−1γk.

βk = γk

(Corollary 3.20 to Lemma 3.19).

(iii) The Newton polygons, NPk(gpk···ph

k ) and NPk(aγ0...γk
gγ0
0 · · · gγk

k ), have no point
lying to the right of NP(f) and thus their corner points do not lie to the right
of NPk(f) (Lemmas 3.15 and 3.25). No two of these corner points coincide
(Lemma 3.23).

(iv) For each key point on the key line segment of NPk(f), that is, (αk, βk) where

αk = qk−1pk−1pk · · · ph − sτk,

βk = pk · · · ph − spk

for s = 1, . . . , (pk · · · ph), there exists a term in ζk,

aγ0...γk
gγ0
0 · · · gγk

k

such that the corner point of NPk(aγ0...γk
gγ0
0 · · · gγk

k ) is this key point (Lem-
ma 3.26).

(v) For i = 1, . . . , k, NPi(gk+1) has the same key line segment as NPi(f) and the
terms in gk+1,i and fi corresponding to this key line segment are the same. This
implies that the first k Newton pairs, and hence cabling pairs, of fi and gk+1,i

are identical (Lemmas 3.17 and 3.29).

Diagrammatically the above can be illustrated as follows:

key line segment
of NPk(f) and NPk(gk+1)

qkpk+1...ph

(qk−1pk−1pk...ph, pkpk+1...ph)
βk

αk

(qk−1pk−1pk...ph−τk, pkpk+1...ph−pk)

(qk−1pk−1pk...ph−sτk, pkpk+1...ph−spk)

Each NPk(aγ0...γk
g1

γ0...gk
γk)

lies above & to left of
key line segment of NPk(f)
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Step 3: Proof of Theorem 1.1

Proof of Theorem 1.1. The result is clear for k = 1 as

ψ1 = q1p1 · · · ph, q1 > 1 and δ0 = p1 · · · ph

so that

ψ1 ∈ semi-group{δ0}.
Now consider qk. As described in step 2, result (ii), there is some term in f ,

aγ′
0...γ′

k
g

γ′
0

0 · · · gγ′
k

k ,

say, with aγ′
0...γ′

k
�= 0 whose Newton polygon NPk(aγ′

0...γ′
k
g

γ′
0

0 g
γ′
1

1 · · · gγ′
k

k ) has corner
point at the key point, (qk−1pk−1pk · · · ph − τk, pk · · · ph − pk) on NPk(f). Thus

γ′k = pk · · · ph − pk

and

p1 · · · pk−1γ
′
0 + q1p2 · · · pk−1γ

′
1 + · · · + qk−1γ

′
k−1 + qk−1pk−1γ

′
k

= qk−1pk−1pk · · · ph − τk.

Therefore

p1 · · · pk−1γ
′
0 + q1p2 · · · pk−1γ

′
1 + · · · + qk−1γ

′
k−1 + qk−1pk−1(pk · · · ph − pk)

= qk−1pk−1pk · · · ph − τk

and, as qk = qk−1pk−1pk − τk (from section 2.2),

p1 · · · pk−1γ
′
0 + q1p2 · · · pk−1γ

′
1 + · · · + qk−1γ

′
k−1 = qk−1pk−1pk − τk = qk.

Multiply each side by pk · · · ph to obtain

δ0γ
′
0 + δ1γ

′
1 + · · · + δk−1γ

′
k−1 = qkpk · · · ph = ψk.

As γ′i ≥ 0, for all i, and from Lemma 3.10, qk �= 0, the result follows and

ψk ∈ semi-group{δ0, . . . , δk−1}.

It remains to prove the details summarised above in steps 1 and 2.
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3.2. Approximate roots of polynomials

We first need to understand the ideas behind the generalized Tschirnhausen transfor-
mation developed by Abhyankar and Moh ([3]). Let f ∈ C[y] be a monic polynomial
of degree n:

f(y) = yn + an−1y
n−1 + an−2y

n−2 + · · · + a0.

One can use a substitution, replacing y+ an−1
n by y, to “kill off” the coefficient of yn−1.

This affine automorphism is a Tschirnhausen transformation ([29]). A useful way of
looking at this is the following. Divide f by

(
y + an−1

n

)n and express f in the form

f(y) =
(
y +

an−1

n

)n

+ r1(y)

where ci ∈ C and degy ψ ≤ n− 2. By dividing r1(y) by
(
y + an−1

n

)n−2 we obtain

r1(y) = cn−2

(
y +

an−1

n

)n−2

+ r2(y)

with degy r2 ≤ n− 3. We can continue in this fashion until we find

f(y) =
(
y +

an−1

n

)n

+
n−2∑
j=0

cj

(
y +

an−1

n

)j

for some cj ∈ C.
Abhyankar and Moh generalized this as follows to find the lth approximate root

of f :

Lemma 3.7. Let f ∈ C[x, y] be monic in y with degy(f) = kl, k, l ∈ Z, k, l > 1.
Then there exists a unique g ∈ C[x, y] such that g is monic in y, degy(g) = k and

f(x, y) = gl + ζ

where degy(ζ) < (l − 1)k = (l − 1) degy(g).

The proof of Lemma 3.7 is in [3]. We will use this lemma to show the following:

Lemma 3.8. Let

• f ∈ C[x, y] be monic in y with degy(f) = klm, k, l,m ∈ Z, k, l,m > 1,

• h be the mth approximate root of f and

• g be the lth approximate root of h.

Then g is the lmth approximate root of f .
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Proof. As h is the mth approximate root of f ,

f = hm + ζ

where degy(ζ) < (m− 1)kl = (m− 1) degy(h). As g is the lth approximate root of h,

h = gl + φ

where degy(φ) < (l − 1)k = (l − 1) degy(g). Thus

f = hm + ζ

= (gl + φ)m + ζ

= glm +
m∑

i=1

(
m

i

)
φigl(m−i) + ζ.

Hence

degy(f − glm) ≤ degy(φ) + (m− 1) degy(gl) < kl− k+ (m− 1)kl = (ml− 1) degy(g).

By the uniqueness of approximate roots, g is the lmth approximate root of f .

The main result we need for the proof of Theorem 1.1 is as follows:

Lemma 3.9. Let f ∈ C[x, y] be monic in y and degy(f) = p1p2 · · · pk · · · ph. Let
g0 = x and g1, g2, . . . , gk be the (p1p2 · · · ph)th, (p2 · · · ph)th, . . . , (pk · · · ph)th ap-
proximate roots of f respectively. Then we can express f as a sum of polynomials as
follows. Given

f = g
pkpk+1···ph

k + ζk

then
ζk =

∑
γ0,...,γk

aγ0...γk
gγ0
0 gγ1

1 · · · gγk

k

with 0 ≤ γ0, 0 ≤ γ1 < p1, . . . , 0 ≤ γk−1 < pk−1, 0 ≤ γk < pkpk+1 · · · ph − 1.

The proof is given by Suzuki in [28].

3.3. The Newton polygons of f

We have assumed that the cabling pairs of f are either just {(1, 0)} or, for some h ≥ 1,

{(p1, q1), (p2, q2), . . . , (ph, qh)}
with pi > 1 for all i. (The case where there are redundant cabling pairs of the
form (1, r) is addressed in section 3.6.)

The attributes of NP1(f) are as follows. If f ∈ C[x, y] is irreducible and f(x, y) = 0
defines a curve in C

2 with one place at infinity, its Newton polygon, assuming that f
has a non-zero constant term, is one of the following:
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1. 2.

1

n

m

In case 1, f(x, y) = y, the curve is just a line and has splice diagram

Thus for case 1, Theorem 1.1 is trivially true. Case 2 is the interesting case and we
discuss this in detail. As there is only one place at infinity we know that the key
line segment of NP1(f) will give exactly one Newton pair. As we have assumed that
the curve meets infinity at y = 0, n > m. From the splice diagram, we see that the
root node has linking number δ0 = p1p2 · · · ph. So the degree of the polynomial is
also n = p1p2 · · · ph (see section 2). Thus we can assume, without loss of generality
and by applying, where necessary, polynomial automorphisms of C

2 as described in
Neumann and Wightwick ([20]) and Wightwick ([32]) that

• n > m so that n = p1p2 · · · ph.

• m > 1.

• f is monic in y and

f(x, y) = yn +
n∑

j=2

ajy
n−j

where aj ∈ C[x].

• f is monic in x. As the line segment in the boundary of the Newton polygon
has slope −p1/q1, m = degx(f) = q1p2p3 · · · ph.

• q1 �= 1 and p2, . . . , ph > 1. If any of p2, p3, . . . , ph = 1, the splice diagram would
not be minimal.
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Given the above degrees, the polynomial, f , is of the form

f(x, y) =
∑

p1α+q1β=q1p1p2···ph

aαβx
αyβ +

∑
p1α+q1β<q1p1p2···ph

aαβx
αyβ

or, alternatively,

f(x, y) = (yp1 − tp1
1 x

q1)p2p3···ph +
∑

p1α+q1β<q1p1p2···ph

aαβx
αyβ

with tp1
1 = 1.

Lemma 3.10. At the kth stage, k = 2, 3, . . . , h, of finding Newton pairs, the Newton
polygon, NPk(f),

(i) has one key line segment with end points

(qkpk+1 · · · ph, 0) and (qk−1pk−1pkpk+1 · · · ph, pkpk+1 · · · ph),

(ii) has key points at

αk = qkpk · · · ph − sτk and βk = pk · · · ph − spk

for s = 0, . . . , pk+1 · · · ph and

(iii) has right side boundary components of the following form:

key line
segment
of NPk(f)

qkpk+1...ph

(qk−1pk−1pk...ph, pkpk+1...ph)

βk

αk

Rest of Newton
polygon contained

in region to left and
above shown key

line segment

(iv) is such that qk �= 0.

Proof. We use induction for (i), (ii), and (iii). From equation 3.3 we have a quasi-
homogeneous polynomial which corresponds to the key line segment in NP1(f) being

(yp1 − tp1
1 x

q1)p2p3···ph .
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Our first substitution is

x = xp1
2 , y = xq1

2 (t1 + y2).

The quasi-homogeneous polynomial becomes

xq1p1
2 ((t1 + y2)p1 − tp1

1 )p2p3···ph .

The powers of the terms in this lie on the vertical line segment α2 = q1p1p2 · · · ph,
p2 · · · ph ≤ β2 ≤ p1p2 · · · ph which forms part of the right boundary of NP2(f). All
other key points satisfy α2 < q1p1p2 · · · ph.

key line
segment
of NP2(f)

b2

(q1p1p2...ph, p2p3...ph)

β2

α2

Rest of Newton
polygon contained

in region to left and
above shown line

segments

As the curve, C, has just one place at infinity, there is just one key line segment in
NP2(f) and this has slope p2/τ2 where τ2 = p1q1p2 − q2. The corresponding terms
in f2 are

c2x
q1p1···pk

2 (yp2
2 − tp2

2 x
−τ2
2 )p3···ph

for some c2, t2 ∈ C, and the result follows.
Now assume that at stage k − 1, NPk−1(f) has a key line segment as follows:

key line
segment
of NPk−1(f)

qk−1pk...ph

(qk−2pk−2pk−1...ph, pk−1pk...ph)

βk−1

αk−1

Rest of Newton
polygons contained
in region to left and

above shown line
segments
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and this key line segment corresponds to a quasi-homogeneous polynomial

ck−1x
qk−2pk−2···ph

k−1 (ypk−1
k−1 − t

pk−1
2 x

−τk−1
k−1 )pk···ph .

Substituting
xk−1 = x

pk−1
k , yk−1 = x

−τk−1
k (tk−1 + yk),

this quasi-homogeneous polynomial becomes

(ck−1x
(qk−2pk−2···ph)pk−1−τk−1pk−1···ph)
k ((tk−1 + yk)pk−1 − t

pk−1
k−1 )pkpk+1···ph

= ck−1x
qk−1pk−1···ph

k ((tk−1 + yk)pk−1 − t
pk−1
k−1 )pkpk+1···ph

As the quasi-homogeneous polynomial maps to terms in fk which match the vertical
line segment in the right boundary of NPk(f), we obtain the corner point as shown:

key line
segment
of NPk(f)

bk

(qk−1pk−1pk...ph, pkpk+1...ph)

βk

αk

Rest of Newton
polygon contained

in region to left and
above shown line

segments

Finally, as the curve, C, has one place at infinity, we have one key line segment of
slope pk/τk where τk = qk−1pk−1pk − qk with corresponding equation

ckx
qkpk···ph

k (ypk

k − tpk

k x−τk

k )pk+1···ph

which gives the required key points.
For (iv), if qk = 0, we obtain τk = qk−1pk−1pk. But then gcd(pk, τk) �= 1 which is

a contradiction.

3.4. Basic facts about Newton polygons

Lemma 3.11. Let f, g ∈ C[x, x−1, y], f, g �= 0. Let NP(f) denote the Newton polygon
of f . Then

NP(fg) = NP(f) + NP(g)

where the sum of two sets consists of all the sums of each element in the first set with
each element in the second set.
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This well known fact is left as an exercise in many references and a proof is
presented in Schinzel ([26, Theorem 18, page 89]).

Corollary 3.12. The Newton polygon of fn is similar to the Newton polygon of f .

We will need to have some understanding of how the corner point of fg relates to
the corner points of f and g.

Corollary 3.13. If f is such that NP(f) has a key line segment with corner point
(b, c) and point on the horizontal axis, (a, 0), and g is such that NP(g) has a corner
point on the horizontal axis, (d, 0):

a b

c

NP(f): NP(g):

d

corner
points

Rest of Newton polygons contained in
region to left and above shown line segment

and corner points.

then NP(fg) has a key line segment from (a+ d, 0) to (b+ d, c), with the latter point
being the corner point:

a+d b+d

c

corner
point

Rest of Newton
polygon lies in region

to left and above
shown line segment.
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Revista Matemática Complutense

2007: vol. 20, num. 1, pags. 139–206



Penelope G. Wightwick Semi-group conditions for affine algebraic plane curves

If f is such that NP(f) has a corner point on the horizontal axis at (d, 0), and g is
such that NP(g) has no key line segment and has a corner point at (b, c):

b

c

d

NP(f) NP(g)

corner
points

Rest of Newton polygons contained in regions to
left and above shown corner points.

then NP(fg) has no key line segment and has a corner point at (b+ d, c):

b+d

c

corner
point

Rest of Newton
polygon lies in region

to left and above
corner point.

Lemma 3.14. Assume that we have a key line segment of non-zero slope in the
boundary of NP(f) with key points (α1, β1) and (α2, β2) such that

• (α1, β1) is the end point of the line segment for which β1 is maximum and

• (α2, β2) is the nearest key point to (α1, β1) on the line segment.

β

α

(α1,β1)

(α2,β2)Rest of Newton
polygon contained
in region to left of

shown line segments
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Then NP(fm) will have key points in its boundary at

(mα1,mβ1) and (mα1 − (α1 − α2),mβ1 − (β1 − β2)).

Proof. The terms in f corresponding to the line segment will be of the form

a1x
α1yβ1 + a2x

α2yβ2 +
∑

β<β2

aβx
αyβ ,

a1, a2 �= 0. Taking the mth power of this gives

(a1x
α1yβ1 + a2x

α2yβ2)m + r

where

r =
m∑

j=1

(
m

j

)
(a1x

α1yβ1 + a2x
α2yβ2)m−j

( ∑
β<β2

aβx
αyβ

)j

.

As degy(r) < β1(m− j) + jβ2 this has no term

yβ1m or yβ1(m−1)+β2

with non-zero coefficient in C[x−1, x, y]. However

(a1x
α1yβ1 + a2x

α2yβ2)m

does have such a term with non-zero coefficient.

3.5. Technical lemmas

In this section we use induction to establish the technical lemmas used in the proof
of Theorem 1.1.

Remark. We show that for i = 1, . . . , k, NPi(gk+1) has the same same key line segment
as NPi(f) and the terms in gk+1,i and fi corresponding to this key line segment are
the same. This implies that the first k Newton pairs, and hence cabling pairs, of fi

and gk+1,i are identical (Lemmas 3.17 and 3.29). From Lemma 3.17 we see that gk+1,
k = 1, . . . , h − 1, meets infinity at one point, y = 0. In addition, degy(gk+1) =
p1p2 · · · pk, while from above the first k cabling pairs of gk+1 are {(p1, q1), . . . , (pk, qk)}.
Thus the splice diagram for gk+1 is

. . .

p
1

q
1

p
2

q
2

q
k

p
k
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and the link at infinity of gk+1 corresponds to the virtual component of the link at
infinity of f , Svk

.

We start by establishing what occurs for NP1. We use the fact that

f = gp1···ph

1 + ζ1 and ζ1 =
∑

aαβg
α
0 g

β
1

with β < p1 · · · ph − 1.

Lemma 3.15. NP1(g
p1···ph

1 ) and NP1(aαβg
α
0 g

β
1 ) have no key line segments parallel

to that of NP1(f) and their unique corner points lie within NP1(f).

Proof. This is obvious as g0 = x and g1 = y.

Lemma 3.16. NP1(g
pk+1···ph

k+1 ) is contained within NP1(f) for k = 0, . . . , h − 1 and
includes the key point (0, p1 · · · ph).

Proof. Recall that
f = g

pk+1···ph

k+1 + ζk+1

with ζk+1 ∈ C[x, y], degy(ζk+1) < p1 · · · ph − p1 · · · pk and

gk+1 = gp1···pk

1 + φ

with degy(φ) < p1 · · · pk − 1 (Lemma 3.8). Thus (0, p1 · · · pk) is a key point on the
boundary of NP1(gk+1). Assume we have a key point in NP1(gk+1), (α′, β′) say, which
satisfies

• p1α
′ + q1β

′ > q1p1 · · · pk,

• (α′, β′) lies on the boundary of NP1(gk+1),

• β′ is the maximum possible such value.

Then (0, p1 · · · pk) and (α′, β′) lie on the same line segment in the boundary of
NP1(gk+1) and there are no key points between them. NP1(gk+1) is as follows:

p1p2...pk

β

α
q1p2...pk

(α’,β’)
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From Lemma 3.14 it follows that NP1(g
pk+1···ph

k+1 ) has key points in its boundary at

(0, p1 · · · ph) and (α′, p1 · · · ph − (p1 · · · pk − β′)).

Thus there is a term in gpk+1···ph

k+1 , xα′
yp1···ph−(p1···pk−β′) with non-zero coefficient. The

key point lies outside NP1(f) as

p1α
′ + q1(p1 · · · ph − (p1 · · · pk − β′)) = p1α

′ + q1β
′ + q1p1 · · · ph − q1p1 · · · pk

> q1p1 · · · ph

Thus there must be a term in ζk+1 which cancels the term xα′
yp1···ph−(p1···pk−β′).

But degy(ζk+1) < p1 · · · ph − p1 · · · pk so this is not possible. Thus NP1(g
pk+1···ph

k+1 ) is
contained in NP1(f).

Lemma 3.17. For k = 1, . . . , h − 1, NP1(g
pk+1···ph

k+1 ) has the same key line segment
as NP1(f) and the terms in g

pk+1···ph

k+1 and f corresponding to these are identical.

Proof. As NP1(g
pk+1···ph

k+1 ) is contained in NP1(f), NP1(gk+1) is contained in the given
region:

p1p2...pk

β

α
q1p2...pk

NP(gk+1) contained
in shaded region

Thus

gk+1 =
p2···pk∑

i=0

dix
q1iyp1(p2···pk−i) +

∑
p1α+q1β<q1p1···pk

dαβx
αyβ

for some di, dαβ ∈ C. Note that d0 = 1. Take the (pk+1 · · · ph)th power of this to
obtain

g
pk+1···ph

k+1 =
(p1···pk∑

i=0

dix
q1iyp1(p2···pk−i)

)pk+1···ph

+
∑

p1α+q1β<q1p1···pk

d′αβx
αyβ .

Equate gpk+1···ph

k+1 + ζk+1 to

f = (yp1 − tp1
1 x

q1)(p2···pk)(pk+1···ph) +
∑

p1α+q1β<q1p1···pk

a′αβx
αyβ

=
(p2···pk∑

j=0

(
p2 · · · pk

j

)
(yp1)(p2···pk−j)(tp1

1 x
q1)j

)pk+1···ph

+
∑

p1α+q1β<q1p1···pk

a′αβx
αyβ
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As degy(ζk+1) < p1 · · · ph − p1 · · · pk, the terms with y-degree greater than p1 · · · ph −
p1 · · · pk in gpk+1···ph

k+1 and f must be equal. Hence

d0y
p1···ph + (pk+1 · · · ph)yp1···pk(pk+1···ph−1)

p2···pk∑
i=1

di(xq1)i(yp1)(p2···pk−i)

= yp1···ph+(pk+1 · · · ph)yp1···pk(pk+1···ph−1)

p2···pk∑
j=1

(
pk+1 · · · ph

j

)
(tp1

1 x
q1)jyp1(p2···ph−j)

This uniquely determines the di in terms of tp1
1 and we get the required values for

each di.

Before looking at the more general case we need the following result.

Lemma 3.18. Let f ∈ C[x, y] have one place at infinity and gj ∈ C[x−1, x, y].
Assume that the key line segment of NPj(f) is as follows:

βj

r−sτj r

pj

αj

Rest of Newton
polygon contained

in region to left and
above key line

segment.

key line segment

Assume that NPj(g) = NP(gj) has no key line segment that is parallel to that of
NPj(f). Let φ : (xj , yj) 	→ (xpj

j+1, x
−τj

j+1(y + tj) be the substitution to be used to find
the next Newton pair of f .

Then NP(gj ◦ φ) = NP(gj+1) has a corner point on the horizontal axis with all
other points in the Newton polygon lying above and to the left of that point.

Proof. The key line segment of NPj(f) matches the following terms in fj

axr
j(y

pj

j − t
pj

j x
−τj

j )s

for some constant a. Then gj can be expressed as

gj = cxα′
j y

β′
j +

∑
pjα−τjβ<pjα′−τjβ′

dαβx
α
j y

β
j

for some c, dαβ ∈ C. Put

(xj , yj) = (xpj

j+1, x
−τj

j+1(yj+1 + tj))
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to obtain

gj+1 = cx
α′pj−β′τj

j+1 (yj+1 + tj)β′
+

∑
pjα−τjβ<pjα′−τjβ′

dαβx
αpj−βτj

j+1 (yj+1 + tj)β .

One of the terms in xα′pj−β′τj

j+1 (yj+1 + tj)β′
gives a point lying in the right boundary

of NPj+1(g) at (α′pj − β′τj , 0). This point lies on the αj+1–axis as follows:

βj

αj’
αj

αjpj−βjτj=constant

Rest of Newton
polygon contained

in region to left and
above shown line

segment

βj’

βj+1

αj+1
αj’pj−βj ’τj

Rest of  Newton
polygon contai ned

in region to left and
above sh own p oint

βj ’

NP(gj+1):NP(gj):

Now assume that we have established the following:

(i) that NPk−1(g0) = NPk−1(x) is a point on the αk−1-axis, (p1p2 · · · pk−2, 0).

(ii) that for j = 1, 2, . . . , k−2, NPk−1(gj) has corner point, (qjpj+1 · · · pk−2, 0) with
all other points in the Newton polygon lying above or to the left of that point.

p1p2...pk−2

βk−1

αk−1

NPk−1(g0):

qjpj+1...pk−2

βk−1

αk−1

NPk−1(gj), j=1,...,k-2:

Rest of Newton
polygon contained

in region to left and
above shown point

(iii) that NPk−1(gk−1) has a key line segment which is not parallel to the key line
segment of NPk−1(f) and has corner point (pk−1qk−2, 1).

(iv) that NPk−1(g
pk···ph

k ) and NPk−1(f) have the same key line segments, and
that the terms in f which give this key line segment are also terms
of gpk···ph

k . This means that NPk−1(gk) has a key line segment from (qk−1, 0) to
(pk−2qk−2pk−1, pk−1).
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βk−1

NPk−1(gk):

qk−1 pk−2qk−2pk−1

pk–1

αk−1

βk–1

NPk−1(gk−1):

ak−1 pk−2qk−2

1

αk–1

Rest of Newton
polygons contained
in region to left and

above shown line
segments

Lemma 3.19. Then

(i) NPk(g0) = NPk(x) is a point on the αk-axis, (p1p2 · · · pk−1, 0).

(ii) for j = 1, 2, . . . , k − 2, NPk(gj) has corner point, (qjpj+1 · · · pk−1, 0) with all
other points in the Newton polygon lying above or to the left of that point.

NPk(g0):

p1p2...pk−2pk−1

βk

αk

NPk(gj), j=1, ...,k-2:

qjpj+1...pk−2pk−1

βk

αk

Rest of Newton
polygon contained

in region to left and
above shown point

(iii) NPk(gk−1) has has right boundary which is a vertical line with corner point
(qk−1, 0).

(iv) NPk(gpk···ph

k ) has corner point (pk−1qk−1, 0) and the key line segment of NPk(f)
is not parallel to the key line segment of NPk(gk) if it exists.
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NPk(gk):

βk

pk−1qk−1

1

αk

ak

NPk(gk−1):

βk

qk−1

1

αk

Rest of Newton
polygons contained
in region to left and

above shown line
segments

Proof. (i), (ii), and (iii) follow from Lemma 3.18.

To prove (iv), express gk,k−1 in the form

ckx
pk−2qk−2pk−1
k−1 (ypk−1

k−1 − t
pk−1
k−1 x

−τk−1
k−1 ) +

∑
αk−1pk−1−βk−1τk−1<qk−1pk−1

dαk−1βk−1x
αk−1
k−1 y

βk−1
k−1 .

for some constant ck. When we let

(xk−1, yk−1) = (xpk−1
k , x

−τk−1
k (yk + tk−1))

we obtain

gk,k = ckx
pk−1(pk−2qk−2pk−1−τk−1)
k ((yk + tk−1)pk−1 − t

pk−1
k−1 )

+
∑

αk−1pk−1−βk−1τk−1<qk−1pk−1

dαk−1βk−1x
pk−1αk−1−βk−1τk−1
k (yk + tk−1)βk−1 .

Thus, as pk−2qk−2pk−1 − τk−1 = qk−1, the corner point is as required.

Assume that NPk(gk) has a key line segment parallel to that of NPk(f). Note
that in this case NPk(gk) must include a point on the horizontal axis, (ak, 0), say.
Now compare NPk(f) with NPk(gpk···ph

k ). The key line segment of NPk(f) has slope
pk/τk where qk = qk−1pk−1pk − τk and gcd(pk, τk) = 1.
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αk
akpk...ph

NPk(gk
pk...ph):

key line
segment

βk

qk−1pk−1pk...ph

pkpk+1...ph

Rest of Newton
polygon contained

in region to left and
above shown line

segments

NPk(f):

key line
segment

qkpk+1...ph

βk

αk

qk−1pk−1pk...ph

Rest of Newton
polygon contained

in region to left and
above shown line

segments

From Corollary 3.12, NPk(gpk···ph

k ) has key line segment with slope (pkpk+1 · · · ph)/
(akpkpk+1 · · · ph) and we see that this has the same corner point as NPk(f). Thus if
the the key line segments of NPk(f) and NPk(gpk···ph

k ) are parallel, they are identical.
But then τk = akpk which is not possible because gcd(pk, τk) = 1 and pk > 1.

Corollary 3.20. The corner point of the term NPk(aγ0...γk
gγ0
0 · · · gγk

k ) is at (αk, βk)
where

αk = γ0p1 · · · pk−1 + γ1q1p2 · · · pk−1 + · · · + γk−1qk−1 + γkpk−1qk−1

and

βk = γk.

Lemma 3.21. If NPk(gpk···ph

k ) has a key line segment, then it has key points on this
line segment at

αk = qk−1pk−1 · · · ph − u(qk−1pk−1 − ak), βk = pk · · · ph − u

for some ak ∈ C, u = 0, . . . , pk · · · ph.

Proof. Consider NPk(gk) which either has no point on the horizontal axis or does
have a point on the horizontal axis, at (ak, 0) say. It is only the latter case where
NPk(gpk···ph

k ) will have a key line segment. The key line segment of NPk(gk) has end
points (qk−1pk−1, 1) and (ak, 0):
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ak qk−1pk−1

1

βk

αk

Rest of Newton
polygon contained

in region to left and
above shown line

segments

Thus we can express gk in the form

gk = dkx
qk−1pk−1
k (yk − rkxk) +

∑
αk−βk(qk−1pk−1−ak)<ak

dαkβk
xαk

k yβk

k

for some dk, dαkβk
, rk ∈ C with dk, rk �= 0. It follows that

gpk···ph

k = d′kx
qk−1pk−1pk···ph

k (yk − rkxk)pk···ph +
∑

αk−βk(qk−1pk−1−ak)<akpk···ph

d′αkβk
xαk

k yβk

k

for some d′k, d
′
αkβk

∈ C. Therefore, if NPk(gpk···ph

k )has a key line segment, it has key
points at

(qk−1pk−1 · · · ph − u(qk−1pk−1 − ak), pk · · · ph − u)

for u = 0, 1, . . . , pk · · · ph.

key line
segment
of NPk(gk

pk...ph)

(qk−1pk−1pk...ph, pkpk+1...ph)

βk

αk

(qk−1pk−1pk...ph−(qk−1pk−1−ak), pk...ph−1)

(qk−1pk−1pk...ph−u(qk−1pk−1−ak), pk...ph−u)

akpk...ph

Rest of Newton
polygon contained
to left and above
key line segment

181
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Lemma 3.22. Let p, q, φ, φ′, λ, λ′ ∈ Z and assume that

(i) p ≥ 2, q �= 0,

(ii) gcd(p, q) = 1 and

(iii) 0 ≤ φ, φ′ < p.

If
λp+ φq = λ′p+ φ′q

then
(λ, φ) = (λ′, φ′).

Proof. Without loss of generality, assume φ ≥ φ′. Then

p(λ′ − λ) = q(φ− φ′)

with 0 ≤ φ− φ′ < p. As gcd(p, q) = 1, p is a factor of φ− φ′. Thus φ− φ′ = 0 and

φ = φ′.

Hence
λ′ − λ = 0.

Lemma 3.23. If we have two terms in f , gγ0
0 gγ1

1 · · · gγk

k and g
γ′
0

0 g
γ′
1

1 · · · gγ′
k

k such that

(γ0, γ1, . . . , γk) �= (γ′0, γ
′
1, . . . , γ

′
k)

then

(p1 · · · pk−1γ0 + q1p2 · · · pk−1γ1 + · · · + qk−1γk−1 + pk−1qk−1γk, γk)
�= (p1 · · · pk−1γ

′
0 + q1p2 · · · pk−1γ

′
1 + · · · + qk−1γ

′
k−1 + pk−1qk−1γ

′
k, γ

′
k).

Proof. We prove the contrapositive. Assume

(p1 · · · pk−1γ0 + q1p2 · · · pk−1γ1 + · · · + qk−1γk−1 + pk−1qk−1γk, γk)
= (p1 · · · pk−1γ

′
0 + q1p2 · · · pk−1γ

′
1 + · · · + qk−1γ

′
k−1 + pk−1qk−1γ

′
k, γ

′
k).

Then γk = γ′k and thus

p1 · · · pk−1γ0 + q1p2 · · · pk−1γ1 + · · · + qk−1γk−1

= p1 · · · pk−1γ
′
0 + q1p2 · · · pk−1γ

′
1 + · · · + qk−1γ

′
k−1

so that

pk−1(p1 · · · pk−2γ0 + q1p2 · · · pk−2γ1 + · · · + qk−2γk−2) + qk−1γk−1

= pk−1(p1 · · · pk−2γ
′
0 + q1p2 · · · pk−2γ

′
1 + · · · + qk−2γ

′
k−2) + qk−1γ

′
k−1.
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Then, from Lemma 3.22, as gcd(pk−1, qk−1) = 1 and 0 ≤ γk−1, γ
′
k−1 < pk−1,

γk−1 = γ′k−1

and

p1 · · · pk−2γ0 + q1p2 · · · pk−2γ1 + · · · + qk−2γk−2

= p1 · · · pk−2γ
′
0 + q1p2 · · · pk−2γ

′
1 + · · · + qk−2γ

′
k−2.

Continuing in this fashion we eventually obtain

p1 · · · pk−1γ0 + q1p2 · · · pk−1γ1 = p1 · · · pk−1γ
′
0 + q1p2 · · · pk−1γ

′
1.

Then
p1γ0 + q1γ1 = p1γ

′
0 + q1γ

′
1.

From Lemma 3.22,
(γ0, γ1) = (γ′0, γ

′
1)

and conclude that
(γ0, γ1, . . . , γk) = (γ′0, γ

′
1, . . . , γ

′
k)

Lemma 3.24. The key line segments of the terms of f , NPk(aγ0γ1...γk
gγ0
0 gγ1

1 · · · gγk

k )
where γk > 0

(i) are parallel to each other and are parallel to the key line segment of NPk(g
(pk···ph)
k )

and

(ii) are not parallel to the key line segment of NPk(f).

Note that if γk = 0, NPk(aγ0γ1...γk
gγ0
0 gγ1

1 · · · gγk

k ) does not have a key line segment
and has a corner point on the horizontal axis.

Proof. (i) This follows directly from Corollary 3.13 and Lemma 3.19.

(ii) This follows from Lemmas 3.10 and 3.19.

Let h be a term of f , that is one of gpk···ph

k and aγ0...γk
gγ0
0 · · · gγk

k with aγo...γk
�= 0.

Lemma 3.25. Then NPk(h) does not have any component to the right of NPk(f).
That is, for

h =
∑

αk,βk

bαkβk
xαk

k yβk

k ,

the following holds:
αkpk − βkτk ≤ qkpk · · · ph

and
αk ≤ qk−1pk−1 · · · ph.
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Proof. First we show that NP(gpk···ph

k ) has no component to the right of NPk(f).
There are two cases.

(i) NPk(gk) is a vertical line only. In this case it is clear that there is no component
to the right of NP(f).

(ii) NPk(gk) is not a vertical line. In this case assume that NP(gpk···ph

k ) does have a
component to the right of NPk(f). Then the key line segments of NPk(f) and
NPk(gk) will be as follows:

key line
segment
of NPk(f)

qkpk+1...ph

(qk−1pk−1pk...ph,pkpk+1...ph)

βk

αk

key line
segment
of NPk(gk

pk...ph)

akpk...ph

From Lemma 3.21, the key points on the key line segment of NPk(gpk···ph

k ) are

(qk−1pk−1pk · · · ph − uak, pk · · · ph − u)

with u = 0, . . . , pk · · · ph. (There is a term with non-zero coefficient in gpk···ph

k for each
of these values.) As these key points lie to the right of NPk(f), there must be terms
in

ζk = f − gpk···ph

k

having Newton polygons which include the above key points. In particular, there
must be one to cancel the term in gpk···ph

k corresponding to the key point in
NPk(gpk···ph

k ), that is to cancel (qk−1pk−1pk · · · ph − ak, pk · · · ph − 1). Consider the
terms of ζk, aγ0...γk

gγ0
0 · · · gγk

k . As γk < pk · · · ph − 1, it follows that there is no
NPk(aγ0...γk

gγ0
0 · · · gγk

k ) whose corner point is (qk−1pk−1pk · · · ph − ak, pk · · · ph − 1).
Thus there is a term aγ0...γk

gγ0
0 · · · gγk

k with non-zero coefficient with corner point lying
beyond the right side of NPk(gpk···ph

k ), that is, at some (α′
k, β

′
k) with pkα

′
k −akpkβ

′
k >

pkαk − akpkβk,
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key line
segment
of NP k(g0

γ0...gk
γk)

akpk...ph

(qk−1pk−1pk...ph, pkpk+1...ph)

βk

αk

(qk−1pk−1pk...ph−(qk−1pk−1−ak), pk...ph−1)

key line
segment
of NPk(gk

pk...ph)

Rest of Newton
polygons contained

in regions to left and
above shown line

segments
(αk',βk')

Take the terms aγ0...γk
gγ0
0 · · · gγk

k with aγ0...γk
�= 0 such that pkαk−akpkβk is maximum

for the corner points, (αk, βk), of NPk(aγ0...γk
gγ0
0 · · · gγk

k ). From these choose that term
whose corner point has maximum βk.

required corner point

akpk...ph

(qk−1pk−1pk...ph, pkpk+1...ph)βk

αk

Rest of Newton
polygons contained
to left and above
key line segments

No other term can have a Newton polygon with the same corner point (Lemma 3.23).
By construction, this corner point does not lie within the Newton polygon of any
other aγ0...γk

gγ0
0 · · · gγk

k . Thus this corner point must lie in NPk(f). But this is a
contradiction as we assumed that NPk(f) has key line segment to the left of the key
line segment of NPk(gpk···ph

k ). Hence the key line segment of NPk(gpk···ph

k ) and thus
its corner point lie inside NPk(f).

Secondly, we assume that there is some term aγ0...γk
gγ0
0 · · · gγk

k in ζk, with Newton
polygon whose corner point lies to the right of NPk(f). A similar construction to
that used above leads to a contradiction and the result follows from the fact that
any key line segment of NPk(aγ0...γk

gγ0
0 · · · gγk

k ) is parallel to that of NPk(gpk···ph

k )
(Lemma 3.24).
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Lemma 3.26. The polynomial

f = gpk···ph

k +
∑

aγ0...γk
gγ0
0 · · · gγk

k

with 0 ≤ γ0, 0 ≤ γ1 < p1, . . . , 0 ≤ γk−1 < pk−1, 0 ≤ γk < pk · · · ph − 1, is such that
the following terms have non-zero coefficients:

{aγ0...γk
gγ0
0 · · · gγk

k |
(p1p2 · · · pk−1γ0 + q1p2 · · · pk−1γ1 + q2p3 · · · pk−1γ2 + · · · + γk, γk)

= (qk−1pk−1 · · · ph − sτk, pk · · · ph − spk), s = 1, 2, . . . , pk+1 · · · ph}

Proof. Recall that NPk(gpk···ph

k ) and {NPk(aγ0...γk
gγ0
0 · · · gγk

k ) | aγ0...γk
�= 0}

(i) have unique corner points (Lemma 3.23),

(ii) either have no key line segment or a key line segment which is not parallel to
the key line segment of NPk(f) (Lemma 3.19),

(iii) have corner points which lie within NPk(f) (Lemma 3.25) and

(iv) fk has a term with non-zero coefficient for each key point

αk = qk−1pk−1 · · · ph − sτk and βk = pk · · · ph − spk

on the key line segment of NPk(f) (Lemma 3.10).

Thus there must be terms aγ0...γk
gγ0
0 · · · gγk

k with non-zero coefficients whose corner
points match the key points on the key line segment of f :

key line segment
of NP k(f)

qkpk+1...ph

(qk−1pk−1pk...ph, pkpk+1...ph)
βk

αk

(qk−1pk−1pk...ph−τk, pkpk+1...ph−pk)

(qk−1pk−1pk...ph−sτk, pkpk+1...ph−spk)

Each NPk(aγ0...γk
g1

γ0...gk
γk)

lies  above & to left of
key line segment of NPk(f)
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Lemma 3.27. Assume that for j = 1, . . . , h − k, NPk−1(g
pk+j ···ph

k+j ) has the same
same key line segment as NPk−1(f) for i = 1, . . . , k − 1 and the terms in g

pk+1···ph

k+j,i

and fi corresponding to this key line segment are the same.
Then NPk(gpk+j ···ph

k+j ) lies inside NPk(f).

Proof. We note that the right vertical line segment in NPk(gpk+j ···pk

k+j ) is the same as
the right vertical line segment of NPk(f) (because NPk−1(g

pk+j ···ph

k+j ) has the same
same key line segment as NPk−1(f) for i = 1, . . . , k − 1 and the terms in g

pk+1···ph

k+j,i

and fi corresponding to this key line segment are the same).
As gk+j is the (pk+j · · · ph)th approximate root of f ,

f = g
pk+j ···ph

k+j + ζk+j

where degy(ζk+j) < p1 · · · ph − p1 · · · pk−1+j . Using the techniques of Lemma 3.9 we
have that

ζk+j =
∑

bη0...ηk
gη0
0 · · · gηk

k

with η1 < p1, . . . , ηk−1 < pk−1, ηk < pk · · · ph−pk · · · pk−1+j . Assume that NPk(gk+j)
has a point on its boundary, (α′

k, β
′
k) such that

• α′
kpk − β′

kτk > qkpk · · · pk+j−1 is the maximum possible value and

• β′
k is the maximum for the key points on this line segment.

Then there is a line segment in the boundary of NPk(gk+j) which includes the key
points

(qk−1pk−1pk · · · pk+j−1, pk · · · pk+j−1)

and
(α′

k, β
′
k)

with no other key points in between. Thus, from Lemma 3.14, NPk(gpk+j ···ph

k+j ) includes
the key point (αk, βk) where

αk = qk−1pk−1pk · · · ph − (qk−1pk−1pk · · · pk+j−1 − α′
k)

and
βk = pk · · · ph − (pk · · · pk+j−1 − β′

k).

This point lies outside NPk(f) as

pk(qk−1pk−1pk · · · ph − (qk−1pk−1pk · · · pk+j−1 − α′
k))

− τk(pk · · · ph − (pk · · · pk+j−1 − β′
k))

= qkpk · · · ph − qkpk · · · pk+j−1 + α′
kpk − τkβ

′
k

> qkpk · · · ph
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Thus there must be some bη0...ηk
gη0
0 · · · gηk

k in ζk+j which cancels this term in gpk+j ···ph

k+1

and therefore a term in ζk+1 with corner point of NPk(bη0...ηk
gη0
0 · · · gηk

k ) lying outside
NPk(f). If we do the construction as in the proof of Lemma 3.25 we will get a
contradiction in exactly the same way.

Scholium 3.28. The terms of ζk+j, bη0...ηk
gη0
0 · · · gηk

k , are such that the corner points
of NPk(bη0...ηk

gη0
0 · · · gηk

k ) are inside NPk(f) and contained within the region αk ≤
qk−1pk−1 · · · ph − τkpk+1 · · · pk+j−1.

Proof. From the last part of the proof of the previous result we see that NPk(ζk+j) has
terms, bη0...ηk

gη0
0 · · · gηk

k , with corner points lying within NPk(f) and with
ηk < pk · · · ph − pk · · · pk+j−1. The result follows.

Lemma 3.29. For j = 1, . . . , h − k, NPk(gpk+j ···ph

k+j ) has the same key line segment
as NPk(f) and the terms in g

pk+j ···ph

k+j,k and fk corresponding to these are identical.

Proof. As NPk(gpk+j ···ph

k+j ) is contained in NPk(f), NPk(gk+j) is contained in the region

pkαk − τkβk ≤ qk−1pk−1 · · · pk+j−1 − τkpk+1 · · · pk+j−1

= qkpk · · · pk+j−1

as shown:

NPk(gk+j):

qk−1pk−1pk...pk+j−1−τkpk+1...pk+j−1

=qkpk+1...pk+j−1

qk−1pk−1...pk+j−1

pk...pk+j−1

βk

αk

Rest of Newton
polygon contained

in region to left and
above shown line

segments

We have

gk+j,k = x
qk−1pk−1···pk+j−1
k

pk+1···pk+j−1∑
i=0

di(x−τk

k )i(ypk

k )(pk+1···pk+j−1−i) +
∑

pkαk−τkβk<qk−1pk−1···pk+j−1

dαkβk
xαk

k yβk

k
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for some di, dαβ ∈ C. Take the (pk+j · · · ph)th power of this to obtain

g
pk+j ···ph

k+1 = x
qk−1pk−1···ph

k

(pk+1···pk+j−1∑
i=0

di(x−τk

k )i(ypk

k )(pk+1···pk+j−1−i)

)pk+1···ph

+
∑

pkαk−τkβk<qk−1pk−1···ph

d′αkβk
xαk

k yβk

k . (1)

Equate gpk+j ···ph

k+j,k + ζk+j,k to obtain

fk = d0x
qk−1pk−1···ph

k (ypk

k − t
pk+1
k x−τk

k )(pk+1···pk+j−1)(pk+j ···ph) +
∑

pkαk−τkβk<qk−1pk−1···ph

a′αβx
αk

k yβk

k

= dx
qk−1pk−1···ph

k

·
(pk+1···pk+j−1∑

m=0

(
pk+1 · · · pk+j−1

m

)
y

pk(pk+1···pk+j−1−m)
k (tpk+1

k x−τk)m

)pk+j ···ph

+
∑

pkαk−τkβk<qk−1pk−1···ph

a′αβx
αk

k yβk

k (2)

From Scholium 3.28, ζk+j,k does not have any terms xαk

k yβk

k with non-zero coefficient
satisfying

αk > qk−1pk−1 · · · ph − τkpk+1 · · · pk+j−1.

Thus we see that the terms in (1) and (2) with degree in yk > qk−1pk−1 · · · ph −
τkpk+1 · · · pk+j−1 satisfying pkαk − τkβk = qk−1pk−1 · · · ph correspond. Thus

d0y
pk···pk+j−1(pk+j ···ph)
k

+ (pk+j · · · ph)d0y
pk···pk+j−1(pk+j ···ph−1)
k

pk+1···pk+j−1∑
i=1

dix
−τki
k y

pk(pk+1···pk+j−1−i)
k

= dypk···ph

k + d(pk+j · · · ph)ypk···pk+j−1(pk+j ···ph−1)
k

·
pk+1···pk∑

i=1

(
pk+j · · · pk+j−1

i

)
(tpk

k x−τk

k )iy
pk(pk+1···ph−i)
k .

This uniquely determines the di in terms of d and tpk

k and we get the required values
for each di.

3.6. The case of redundant cables

In the previous part of this section we assumed that the minimal splice diagram was
the same as the original splice diagram. However this is not always the case as we
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may have Newton pairs of the form (1, s) which lead to redundant cables as we build
up the link at infinity. To allow for this we replace the assumptions of Section 3.3 by
the following:

(i) f ∈ C
2 is a polynomial with f(x, y) = 0 defining an irreducible curve C with

one place at infinity.

(ii) f has minimal splice diagram:

. . .
p1

q1

p2

q2 qh

ph

(iii) The cabling pairs of f include (in the given order)

(p1, q1), (p2, q2), . . . , (ph, qh)

with pi > 1 for all i while the Newton pairs include

(p1, q1), (p2,−τ2), . . . , (ph,−τh).

However for one or more values of k, k > 1, we find additional Newton pairs

(1,−ωk,1), (1,−ωk,2), . . . , (1,−ωk,lk)

between (pk−1,−τk−1) and (pk,−τk) which lead to redundant cabling pairs

(1, sk,1), (1, sk,2), . . . , (1, sk,lk).

The relevant part of the non-reduced splice diagram is

. . .
pk−1

qk−1 qk

pk

. . .sk,lk

11

sk,1. . .

(iv) In order to find the cabling pairs of f

(p1, q1), (p2, q2), . . . , (ph, qh)
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we make the following substitutions. If there are no additional Newton pairs
between (pk−1,−τk−1) and (pk,−τk),

Φj : (xk−1, yk−1) = (xpk−1
k , x

−τk−1
k (yk + tk−1))

as before. Where additional Newton pairs occur between (pk−1,−τk−1) and
(pk,−τk) we make the following substitutions:

• Φk−1 : (xk−1, yk−1) = (xpk−1
k,1 , x

−τk−1
k,1 (yk,1+tk−1)). Thus sk,1 = qk−1pk−1−

τk−1.

• Ωk,j : (xk,j , yk,j) = (xk,j+1, x
−ωk,j

k,j+1(yk,j+1 + uk,j)) for j = 1, . . . , kl − 1
giving sk,j = sk,j−1 − ωk,j .

• Ωk,lk : (xk,lk , yk,lk) = (xk, x
−ωk,lk

k (yk + uk,lk)) giving qk = sk,lkpk − τk.

For convenience we call the images of f used at the stages of finding the cabling
pairs (p1, q1), (p2, q2), . . . , (ph, qh), by f1, . . . , fh as before. We denote the image
of f used to determine Ωkj

by fk,j and the corresponding Newton polygon as
NPk,j(f). We carry through the notation of the images and Newton polygons
of each gi under the actions of Φi and Ωk,j in the same way.

We obtain the following Newton polygon after applying Φk−1:

slope
1/ωk,1

sk,1pk+1...ph

βk,1

αk,1

NPk,1(f):

pk−1qk−1pk...ph

pkpk+1...ph

Rest of Newton
polygon contained

in region to left and
above shown line

segments
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After applying Ωk,1, . . . ,Ωk,lk−1 we obtain

slope
1/ωk,j

sk,jpk+1...ph

βk,j

αk,j

NPk,j(f), j=2, ...,lk:

sk,j−1pk...ph

pkpk+1...ph

Rest of Newton
polygon contained

in region to left and
above shown line

segments

Finally we apply Ωk,lk to get

slope
pk/τk

qkpk+1...ph

βk

αk

NPk(f):

sk,lk
pk...ph

pkpk+1...ph

Rest of Newton
polygon contained

in region to left and
above shown line

segments

Lemma 3.30. For i = 0, . . . , k − 1, the corner points of NPk,j(gi) are the same as
the corner points of NPk(gi), j = 1, . . . , lk, which are the same corner points as given
in Lemma 3.19, that is,

(i) NPk(g0) and NPk,j(g0) = NPk,j(x) are points on the horizontal axes,
(p1p2 · · · pk−1, 0).

(ii) NPk(gi) and NPk,j(gi), i = 1, 2, . . . , k−2 have corner points, (qipi+1 · · · pk−1, 0).

(iii) NPk(gk−1) and NPk,j(gk−1) have corner points (qk−1, 0) lying on the horizontal
axis.
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Proof. Initially we apply Φk−1 as in Lemma 3.19, so that the result is true for j = 1.
When we apply Ωk,j , the term corresponding to the corner point of NPk,j(gi), is of
the form cxα

k,j and so maps to cxα
k,j+1 as required.

Lemma 3.31. For i = 0, . . . , h − k and NPk(gk+i) and NPk,j(g
pk+i···ph

k+i ),
j = 1, . . . , lk, have the same key line segments as NPk(f) and NPk,j(f) respectively
and the terms in g

pk+i···ph

k+i,k,j and fk,j corresponding to these are identical.

Proof. (i)

fk,1 = c1x
qk−1pk−1···ph

k,1 (yk,1 − uk,1x
−ωk,1
k,1 )pk···ph +

∑
αk,1−ωk,1βk,1<s1pk···ph

dαk,1βk,1x
αk,1
k,1 y

βk,1
k,1

and

fk,j = cjx
sj−1pk···ph

k,j (yk,j − uk,jx
−ωk,j

k,j )pk···ph +
∑

αk,j−ωk,jβk,j<sk,jpk···ph

dαk,jβk,j
x

αk,j

k,j y
βk,j

k,j

for j = 2, . . . , lk, fk,j has a term, xsjpk···ph−ωk,j

k,j ypk···ph−1, with non-zero coeffi-
cient.

(ii) By the arguments in the proofs of Lemmas 3.27 and 3.25 the right boundary of
NPk,j(g

pk+i···ph

k+i ), lies inside NPk,j(f) for i = 0, . . . , h− k.
Given these two items we can use the same argument as Lemma 3.29 to obtain

the desired result.

Lemmas 3.31 and 3.30 ensure that the results proved in the technical lemmas
needed to prove the Abhyankar-Moh semi-group theorem still hold, that is,

(i) that the terms of f with non-zero coefficients have Newton polygons with corner
points occurring at (αk, βk) where

αk = p1 · · · pk−1γ0 + q1p2 · · · pk−1γ1 + · · · + qk−1γk−1 + sk,lkγk,

βk = γk

(ii) that there is some term in f

aγ′
0...γ′

k
g

γ′
0

0 · · · gγ′
k

k

aγ′
0...γ′

k
�= 0 whose Newton polygon NPk(aγ′

0...γ′
k
g

γ′
0

0 g
γ′
1

1 · · · gγ′
k

k ) has corner point
at the key point on the boundary of NPk(f), (αk, βk) with

αk = sk,lkpk · · · ph − τk,

βk = pk · · · ph − pk

where qk = sk,lkpk − τk.
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Proof of Theorem 1.1. The proof is the same for k = 1 as

ψ1 = q1p1 · · · ph

and
δ0 = p1 · · · ph

so that
ψ1 ∈ semi-group{δ0}.

Under our new assumptions

γ′k = pk · · · ph − pk

and

p1 · · · pk−1γ
′
0 + q1p2 · · · pk−1γ

′
1 + · · · + qk−1γ

′
k−1 + sk,lkγ

′
k = sk,lkpk · · · ph − τk.

Therefore

p1 · · · pk−1γ
′
0+q1p2 · · · pk−1γ

′
1+· · ·+qk−1γ

′
k−1+sk,lk(pk · · · ph−pk) = sk,lkpk · · · ph−τk

and thus

p1 · · · pk−1γ
′
0 + q1p2 · · · pk−1γ

′
1 + · · · + qk−1γ

′
k−1 = sk,lkpk − τk = qk.

Multiply each side by pk · · · ph to obtain

δ0γ
′
0 + δ1γ

′
1 · · · δk−1γ

′
k−1 = ψk.

As γ′i ≥ 0, for all i, the result follows and

ψk ∈ semi-group{δ0, . . . , δk−1}.

4. The semi-group conditions for one point at infinity

In section 3 the main assumption underlying the proof of the Abhyankar-Moh semi-
group theorem (Theorem 1.1) is that, for f ∈ C[x, y], the curve defined by with
f(x, y) = 0 is an irreducible algebraic curve in the complex plane C

2 with “one place
at infinity.” Alternatively the minimal link at infinity is of the following form

. . .
p1

q1

p2

q2 qh

ph
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There are two key consequences of this assumption that are used to prove Theorem 1.1:

(i) f is monic in y so that we can find approximate roots of f , and

(ii) the Newton polygons of f each have one key line segment and give just one
Newton pair corresponding to one branch in the splice diagram.

This leads to the intriguing question: can we find descriptions of the linking numbers
for curves in other cases? The answer is that we can indeed find partial descriptions
in two cases. In particular, in this section we give a description for the case of one
point at infinity, but more than one branch at the hth node.

In this situation, at some node, say, the hth node the cabling operation consists
of adding l parallel (ph, qh) cables, l ≥ 1. The splice diagram is

. . .
p1

q1

p2

q2 qh

ph

l branches (l 1)

bra
nch

deg
ree

d1

branch degree d
l

..

. . 
.

. . .

either with l = 1 and p1, . . . , ph ≥ 2 or with l ≥ 2, p1, . . . , ph−1 ≥ 2, and ph ≥ 1. The
above splice diagram is minimal except unless l ≥ 2 and ph = 1.

Note that the branch degree is found as follows. Let v be a node in Γ and select
a number of edges adjoining v. Let w1, . . . , wr be the arrowheads in that part of the
splice diagram which lie along and beyond the selected edges. Then the branch degree
is

∑r
i=1 l(v, wi) where l(v, wi) is the product of the edge weights adjacent to but not

on the path from v to wi.
Let

∑l
i=1 di = d. Name the vertices in the diagram above as follows. Starting

from the root vertex and moving towards the branching vertex:

• vertices with one adjoining edge are u0, u1, . . . , uh

• vertices with three or more adjoining edges are v1, v2, . . . , vh

Let Sui and Svi denote the virtual components of the link corresponding to the nodes
{ui}h

i=0 and {vj}h
j=1 respectively. Then name the linking numbers of the virtual
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components with L, the link at infinity, by

δ0 = lu0 = link(Su0 , L) = p1p2 · · · phd,

δ1 = lu1 = link(Su1 , L) = q1p2p3 · · · phd,

δ2 = lu2 = link(Su2 , L) = q2p3p4 · · · phd,

...
δh = luh

= link(Suh
, L) = qhd,

and
ψ1 = lv1 = link(Sv1 , L) = q1p1p2 · · · phd,

ψ2 = lv2 = link(Sv2 , L) = q2p2p3 · · · phd,

...
ψh = lvh

= link(Svh
, L) = qhphd.

Theorem 1.2. Let f ∈ C[x, y] be an irreducible polynomial that defines a curve
f(x, y) = 0 with one point at infinity. Then, using the above notation we have

(i) For i = 1, . . . , h− 1,

ψi ∈ semi-group{δ0, δ1, . . . , δi−1}
and

(ii) there exists r ∈ Z such that 1 ≤ r ≤ l such that

rψh ∈ semi-group{δ0, δ1, . . . , δh−1}.

The following lemma is used in the proof of this theorem.

Lemma 4.1. Let w ∈ C[z] have exactly l distinct roots, with l > 1 and assume
w(z) = zn + an−1z

n−1 + · · · + a0. Then at least one of an−1, an−2, . . . , an−l �= 0.

Proof. Assume that

w(z) =
n∏

i=1

(z − bi) =
l∏

j=1

(z − cj)dj

where b1, b2, . . . , bn are the roots of w repeated according to multiplicity and c1, . . . ,
cl are the l distinct roots. We prove the result by contradiction. Assume

an−1 = an−2 = · · · = an−l = 0.

Now an−1 = −σ1, . . . , an−l = (−1)lσl where σt is the tth symmetric function in b1,
. . . , bn,

σt =
∑

i1<i2<···<it

bi1bi2 · · · bit
.
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Let

St =
n∑

i=1

bti.

Then σt and St are linked by Newton’s formulae as follows:

St − σ1St−1 + σ2St−2 − · · · + (−1)t−1σt−1S1 + (−1)tS0σt = 0

for t = 1, 2, . . .. Given S0 = t �= 0 for t ≥ 1,

σ1 = · · · = σl if and only if S1 = · · · = Sl = 0.

Now St =
∑n

i=1 b
t
i =

∑l
j=1 djc

t
j so that as σt = 0 for t = 1, 2, . . . , l,

l∑
j=1

djc
t
j = 0 for t = 1, . . . , l.

These equations are linear in dj . Therefore
⎡
⎢⎢⎢⎣
c1 c2 · · · cl
c21 c22 · · · c2l
...

...
cl1 cl2 · · · cll

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
d1

d2

...
dl

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0
0
...
0

⎤
⎥⎥⎥⎦ .

As none of the dj = 0 for j = 1, . . . , l, the coefficient matrix has zero determinant.
Hence ∣∣∣∣∣∣∣∣∣

c1 c2 · · · cl
c21 c22 · · · c2l
...

...
cl1 cl2 · · · cll

∣∣∣∣∣∣∣∣∣
= c1c2 · · · cl

∣∣∣∣∣∣∣∣∣

1 1 · · · 1
c1 c2 · · · cl
...

...
cl−1
1 cl−1

2 · · · cl−1
l

∣∣∣∣∣∣∣∣∣
= c1c2 · · · cl · (Vandermonde determinant)

= c1c2 · · · cl
∏
i<j

(ci − cj)

= 0.

As we have exactly l distinct factors, ci �= cj for i �= j we must have cj = 0 for some j.
Without loss of generality assume cl = 0.

Divide w by znl to obtain w. Then

w(z) = zn−l + an−1z
n−l−1 + · · · + al = πl−1

j=1(z − cj)nj

with an−1 = · · · = an−l+1 = 0. By the same reasoning as above we get cj = 0 for
some j < l. But then cj = cl which contradicts our assumption that we have exactly
l factors.
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Proof of Theorem 1.2. The proof of (i) is identical to that of Theorem 1.1 because of
the following:

(i) As f is monic in y we can find the first h − 1 approximate roots of f , g0, g1,
. . . , gh−1, as before. That is, as f ∈ C[x, y] is monic in y and degy(f) =
p1p2 · · · pk · · · phd we put g0 = x and for k = 1, 2, . . . , h− 1 there exists a unique
polynomial gk (monic in y) such that

f = gpk···phd
k + ζk

where degy(ζk) < p1p2 · · · pk−1. Here gk is the (pk · · · phd)th approximate root
of f . Then

ζk =
∑

γ0...γk

aγ0...γk
gγ0
0 gγ1

1 · · · gγk

k

where g0 = x and g1, g2, . . . , gk−1 are the (p1p2 · · · phd)th, (p2 · · · phd)th, . . . ,
(pk−1 · · · phd)th approximate roots of f respectively. In addition, 0 ≤ γ0, 0 ≤
γ1 < p1, . . . , 0 ≤ γk−1 < pk−1, 0 ≤ γk < pk · · · phd− 1.

(ii) No two of the corner points of NPk(gpk···phd
k ) and NPk(aγ0...γk

gγ0
0 gγ1

1 · · · gγk

k )
coincide.

(iii) At each of the first h− 1 stages of finding the cabling pairs for the component
of the link at infinity at y = 0, there just one key line segment in NPk(f) that
gives just one cabling pair.

Given this we see that all the results of the technical lemmas in section 3.5 and the
corresponding results in section 3.6 will carry over for f .

To prove (ii) we first note that if l = 1 then Theorem 1.2 is exactly Theorem 1.1.
So assume that l ≥ 2. We start with the case for no redundant cables at the hth

stage. Consider the Newton polygon at stage h. For ph ≥ 2 it is of the form

key line
segment
of NPh(f)

qhd

(ph−1qh−1phd, phd)

h

h

rest of NPh(f)
contained above
and to left of
shown line
segment
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However it is possible that for ph = 1 there may be more than one line segment
corresponding to the branches at this node. The boundary of NPh(f) will still include
that part of the line segment marked on the following diagram:

line segment
in boundary
of NP h(f)

qhd

(ph−1qh−1phd, phd)

βh

αh

rest of NPh(f)
contained above
and to left of
shown line
segment

1

Therefore for ph ≥ 1 there is a line segment of slope ph/τh. Thus we can express fh

in the form

fh =
l∏

i=1

bh(yph

h − tph

h,ix
−τh

h )di +
∑

αhph−βhqh<qhd

bαhβh
xαh

h yβh

h

for some bh �= 0, bαhβh
∈ C, where tph

h,i �= tph

h,j for i �= j. Consider the expansion of the
terms in fh corresponding to the line segment of slope ph/τh:

l∏
i=1

bh(yph

h − tph

h,ix
−τh

h )di = bh

d∑
r=0

crx
qh−1ph−1phd−rτh

h yphd−rph

h .

Denote these terms by fh,seg. Note that c0 = 1. As there are l branches, fh,seg must
have exactly l distinct factors. Thus from Lemma 4.1, one of c1 · · · cl �= 0. Thus there
must be at least one key point in fh,seg for r = 1, 2, . . . , l. Following the same reasoning
as we used in Lemma 3.26, we conclude that there exists some aγ′

0...γ′
h
g

γ′
0

0 · · · gγ′
h

h with
non-zero coefficient such that

(p1 · · · ph−1γ
′
0 + q1p2 · · · ph−1γ

′
1 + · · · + qh−1γ

′
h−1 + qh−1ph−1γ

′
h, γ

′
h)

= (qh−1ph−1phd− rτh, phd− rph)

for some r ∈ {1, 2, . . . , l}. As γ′h = phd− rph,

p1 · · · ph−1γ
′
0 + q1p2 · · · ph−1γ

′
1 + · · · + qh−1γ

′
h−1 + qh−1ph−1(phd− rph)

= qh−1ph−1phd− rτh
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Hence

p1 · · · ph−1γ
′
0 + q1p2 · · · ph−1γ

′
1 + · · · + qh−1γ

′
h−1 = qh−1ph−1rph − rτh = rqh.

Multiplying both sides by phd gives the required result.
The argument for the case of redundant cables is the similar to that used in

section 3.6 except that we obtain

γ′h = phd− rph

and

p1 · · · ph−1γ
′
0 + q1p2 · · · ph−1γ

′
1 + · · · + qh−1γ

′
h−1 + sh,lhγ

′
h = sh,lhphd− rτh.

key line
segment
of NPh(f)

qhd

(sh,lh
phd, phd)

βh

αh

rest of
NPh(f)

Therefore

p1 · · · ph−1γ
′
0 + q1p2 · · · ph−1γ

′
1 + · · · + qh−1γ

′
h−1 + sh,lh(phd− rph)

= sh,lhphd− rτk

and

p1 · · · ph−1γ
′
0 + q1p2 · · · ph−1γ

′
1 + · · · + qh−1γ

′
k−1 = sh,lhrph − rτh = rqh.

Multiply each side by pk · · · ph to obtain

δ0γ
′
0 + δ1γ

′
1 · · · δh−1γ

′
h−1 = rψk.

As γ′i ≥ 0, for all i, the result follows and

rψh ∈ semi-group{δ0, . . . , δk−1}

for some r ∈ {1, 2, . . . , l}.
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5. The case with more points at infinity

Theorem 5.1. Assume Let f ∈ C[x, y] be an irreducible polynomial that defines a
curve f(x, y) = 0 satisfying the following conditions:

• The splice diagram is

p1

q1

p2

q2 qh

ph

. . . total branch
 degree m

branch
 degree d

so that the polynomial has either one (m = 0) or two (m > 0) points at infinity.

• the section shown with cabling pairs (p1, q1), . . . , (ph, qh) occurs on the branch
corresponding to the point at infinity y = 0,

• f = ρ+ xmξ with ρ, ξ ∈ C[x, y] so that x−mf ∈ C[x−1, x, y] is monic in y ,

• degy(f) = degy(ξ) = p1p2 · · · phd for some d ∈ C and

• degy(ρ) < degy(ξ) − p1p2 · · · ph−1 = p1p2 · · · phd− p1p2 · · · ph−1, degx(ρ) < m.

Then, for j = 1, 2, . . . , h,

mp1p2 · · · phd+ ψj ∈ semi-group{p1p2 · · · phd, q1p2p3 · · · phd,

. . . , qj−1pjpj+1 · · · phd} ∪ {0}

The Abhyankar-Moh semi-group conditions are the case m = 0 and d = 1.
The condition on the y-degree of ρ ensures, for gk the (pk · · · ph)th root of x−mf ,

that xmgpk···phd
k is a polynomial and that NP(xmgpk···phd

k ) lies inside NP(f) for k =
1, . . . , h. It is in fact sufficient that ζk = f − xmgpk···phd

k is such that degy(ζk) <
p1 · · · phd− p1 · · · pk−1 for all k. Given the above we have degx(f) = q1p2 · · · phd+m
and q1 < p1, and that NP(f) is as follows:
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β

α
m

p1p2p3...phd

m+q1p2p3...phd

The Newton polygons are contained
within the shaded regions as indicated.

p1p2p3...phd−p1p2p3...ph−1

NP(ξ)

NP(xmρ)

NP(f) ∪ ∪

Key line segment
 of NP(f)

NP(xmρ)

NP(ξ)

The link at infinity has two parts, that part that is found at y = 0 and that at
x = 0. The branch under consideration corresponds to y = 0. Let Ly be the union
of the components of the link at infinity at y = 0. We then name the vertices in
the diagram corresponding to the branch y = 0 in the same way as in section 4. We
again let Sui

and Svi
denote the virtual components of the link corresponding to the

nodes {ui}h
i=0 and {vj}h

j=1 respectively. We name the linking numbers of the virtual
components with Ly by

δ0 = lu0 = link(Su0 , Ly) = p1p2 · · · phd

δ1 = lu1 = link(Su1 , Ly) = q1p2p3 · · · phd

δ2 = lu2 = link(Su2 , Ly) = q2p3p4 · · · phd

...
δh = luh

= link(Suh
, Ly) = qhd

and

ψ1 = lv1 = link(Sv1 , Ly) = q1p1p2 · · · phd

ψ2 = lv2 = link(Sv2 , Ly) = q2p2p3 · · · phd

...
ψh = lvh

= link(Svh
, Ly) = qhphd

If m ≥ 1, the curve has two points at infinity and the link at infinity has two or
more components. The points at infinity for a curve f(x, y) = 0 are the points of
intersection of the closure of f(x, y) = 0 in CP

2 with the line at infinity CP
1.

In the case that qk−1 ≤ 0 so that qk < 0, the above semi-group conditions do not
restrict the value of qk in any further way.

Let g = x−mf = x−mρ+ ξ. We note the following:

Revista Matemática Complutense
2007: vol. 20, num. 1, pags. 139–206 202



Penelope G. Wightwick Semi-group conditions for affine algebraic plane curves

(i) As g is monic in y we can find approximate roots of g, g0, g1, . . . , gh, as before.
The condition degy(ρ) < p1p2 · · · phd− p1p2 · · · ph−1 means that g1, . . . , gh are
the approximate roots of ξ so that xmgpk···phd

k , k = 1, . . . , h are all polynomials.
Then

g = gpk···phd
k + ζk

where ζk ∈ C[x, x−1, y] with degx(ζk) ≥ −m and degy(ζk) < p1 · · · phd −
p1 · · · pk−1. As before

ζk =
∑

aγ0...γk
gγ0
0 · · · gγk

k

where 0 ≤ γ1 < p1, . . . , 0 ≤ γk−1 < pk−1, 0 ≤ γk < pk · · · phd− 1. However, γ0

is no longer a non-negative integer. It now satisfies the condition γ0 ≥ −m.

(ii) The uniqueness of the corner points of the terms of g still holds as the Lemmas
3.22 and 3.23 did not depend upon γ0 and γ′0 or any qi being positive.

(iii) At each of the first h stages of finding the cabling pairs for the component of
link at infinity at y = 0, there is a key line segment in NPk(g) and this gives
just one branch in the splice diagram.

Given this we see that all the results of the technical lemmas in section 3.5 and the
corresponding results in section 3.6 will carry over for g.

As the kth Newton polygon of x is a point on the αk-axis, the effect of multiplying
g by xm is to translate each Newton polygon to the right by a multiple of m. In
addition, we see that the equations used to find the first h Newton pairs of f and g
will be the same except of a factor xckm for some constant ck at each stage. Thus the
first h Newton pairs of f and g will be identical.

Proof of Theorem 5.1. Using the same logic as in the proof of Theorem 1.1 we again
find that the result is clear for k = 1 as

ψ1 = q1p1 · · · phd

and
δ0 = p1 · · · phd

so that q1 ≥ 0,
mp1 · · · phd+ ψ1 ∈ semi-group{δ0} ∪ {0}.

From the above discussion we note that the assumptions used in the proof of Theo-
rem 1.1 hold for g. Where there are no redundant Newton pairs these are:

(i) that the terms of g with non-zero coefficients have Newton polygons with corner
points occurring at (αk, βk) where

αk = p1 · · · pk−1γ0 + q1p2 · · · pk−1γ1 + · · · + qk−1γk−1 + qk−1pk−1γk,

βk = γk,
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(ii) that there is some term in g

aγ′
0...γ′

k
g

γ′
0

0 · · · gγ′
k

k

aγ′
0...γ′

k
�= 0 whose Newton polygon NPk(aγ′

0...γ′
k
g

γ′
0

0 g
γ′
1

1 · · · gγ′
k

k ) has corner point
at the key point on the boundary of NPk(g), (αk, βk) with

αk = qk−1pk−1pk · · · phd− τk,

βk = pk · · · phd− pk,

where qk = qk−1pk−1pk − τk.

We then have
γ′k = pk · · · phd− pk

and

p1 · · · pk−1γ
′
0 + q1p2 · · · pk−1γ

′
1 + · · · + qk−1γ

′
k−1 + qk−1pk−1γ

′
k

= qk−1pk−1pk · · · phd− τk.

Therefore

p1 · · · pk−1γ
′
0 + q1p2 · · · pk−1γ

′
1 + · · · + qk−1γ

′
k−1 + qk−1pk−1(pk · · · phd− pk)

= qk−1pk−1pk · · · phd− τk

and thus

p1 · · · pk−1γ
′
0 + q1p2 · · · pk−1γ

′
1 + · · · + qk−1γ

′
k−1 = qk−1pk−1pk − τk = qk.

Multiply each side by pk · · · phd to obtain

δ0γ
′
0 + δ1γ

′
1 · · · δk−1γ

′
k−1 = ψk.

We have γ′i ≥ 0, for i = 1, . . . , k and γ0 ≥ −m. To ensure that δ0 has a non-negative
coefficient add mδ0 to each side to obtain

δ0(m+ γ′0) + δ1γ
′
1 · · · δk−1γ

′
k−1 = δ0m+ ψk

which is the required result as δ0 = p1 · · · phd. Note, it is possible that gcd(pk, qk) = 1
while gcd(pk,mp1 · · · pk−1 + qk) �= 1 so that we may have mp1 · · · pk−1 + qk = 0. Thus

mp1 · · · phd+ ψk ∈ semi-group{δ0, . . . , δk−1} ∪ {0}.
To prove Theorem 5.1 in the case where there are redundant Newton pairs one can
use the same techniques as in section 3.6.
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