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ABSTRACT

The purpose of this paper is to relate several generalizations of the notion of
the Heegaard splitting of a closed 3-manifold to compact, orientable 3-manifolds
with nonempty boundary.
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1. Introduction

Throughout this paper we work in the piecewise-linear category, consisting of simpli-
cial complexes and piecewise-linear maps.

We call a compact, connected, orientable 3-manifold M with nonempty bound-
ary ∂M a bordered 3-manifold. A bordered 3-manifold H is said to be a handlebody
of genus g iff H is the disk-sum (i.e., the boundary connected-sum) of g copies of
the solid-torus D2 × S1 (see Gross [3], Swarup [16], etc.). A handlebody of genus g
is characterized as a regular neighborhood N(P ; R3) of a connected 1-polyhedron P
with Euler characteristic χ(P ) = 1−g in the 3-dimensional Euclidean space R

3 and as
an irreducible bordered 3-manifold M with connected boundary whose fundamental
group π1(M) is a free group of rank g (see Ochiai [10]).

It is well-known that a closed (i.e., compact, without boundary), connected, ori-
entable 3-manifold M is decomposed into two homeomorphic handlebodies; that is,
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Proposition 1.1 (Heegaard Splittings; see Seifert-Threlfall [14], etc.).

(i) For every closed, connected, orientable 3-manifold M , there exist handlebodies
H1 and H2 in M such that

(a) H1
∼= H2, that is, genus(H1) = genus(H2) = g,

(b) M = H1 ∪H2, and

(c) H1 ∩H2 = ∂H1 ∩ ∂H2 = ∂H1 = ∂H2 = F , the Heegaard surface.

(ii) For every bordered 3-manifold M , there exist a handlebody H1 and a disjoint
union of 2-handles (i.e., 3-balls) H2 = h1 ∪ · · · ∪ hs such that

(a) genus(H1) = g,

(b) M = H1 ∪H2, and

(c) each hi attached to H1 at ∂H1 = F , the Heegaard surface.

We call such a (M ;H1,H2;F ) a Heegaard splitting (or H-splitting) for M of
genus g, and call the minimum genus of such splittings for M the Heegaard genus
(or H-genus) of M and denote it by Hg(M).

For an H-splitting for a closed orientable 3-manifold, Haken [4] proved the following
fundamental theorem (see Hempel [5], Jaco [6], and also Ochiai [11]):

Proposition 1.2 (Haken [4]). If a closed orientable 3-manifold M with a given
Heegaard splitting (M ;H1,H2;F ) contains an essential 2-sphere, then M contains a
2-sphere which meets F in a single circle.

SinceH2 of an H-splitting for a bordered 3-manifoldM is a disjoint union of 3-balls
and so ∂H2 �= F , a Haken type theorem cannot be formulated for a H-splitting for M .
Casson-Gordon [1] introduced the concept of compression bodies as a generalization
of handlebodies, and for a bordered 3-manifold they defined a new Heegaard splitting
using compression bodies, and formulated and proved a generalization of Haken’s
theorem.

On the other hand, in 1970 Downing [2] proved that every bordered 3-manifold
can be decomposed into two homeomorphic handlebodies, and Roeling[13] discussed
on these decompositions for bordered 3-manifolds with connected boundary. The
purpose of the paper is to report the Downing’s results [2] and Roeling’s results [13]
in slightly modified and generalized forms, and formulate a Haken type theorem for
these decompositions in the way of Casson-Gordon [1].

2. Handlebody-splittings for bordered 3-manifolds

For a bordered 3-manifold M , let ∂M = B1 ∪ B2 ∪ · · · ∪ Bm, here Bi is a connected
component for i = 1, 2, . . . ,m, and let gi = genus(Bi).

Revista Matemática Complutense
2007: vol. 20, num. 1, pags. 123–137 124



Shin’ichi Suzuki Handlebody splittings of compact 3-manifolds with boundary

Theorem 2.1 (Downing [2]). For every bordered 3-manifold M , there exist handle-
bodies H1 and H2 in M which satisfy the following:

(i) H1
∼= H2, that is, genus(H1) = genus(H2) = g,

(ii) M = H1 ∪H2,

(iii) H1 ∩H2 = ∂H1 ∩ ∂H2 = F0 is a connected surface, the splitting-surface,

(iv) Hj ∩ Bi = ∂Hj ∩ Bi = Kji is a disk with gi holes, and K1i
∼= K2i ( j = 1, 2,

i = 1, 2, . . . ,m),

(v) the homomorphism induced from the inclusion

ι : π1(Kji;xi) → π1(Hj ;xi), xi ∈ ∂Kji ( j = 1, 2, i = 1, 2, . . . ,m)

is injective.

We call such a (M ;H1,H2;F0) a Downing splitting (or D-splitting) for M of
genus g, and call the minimum genus of such splittings for M the Downing genus (or
D-genus) of M and denote it by Dg(M). By the way, Roeling [13] has pointed out
that π1(Kji;xi) in Theorem 2.1 (v) injects not only into π1(Hj ;xi) but also onto a
free factor of π1(Hj ;xi), when the boundary ∂M is connected. In fact, it holds the
following:

Theorem 2.2. For every bordered 3-manifold M , there exists a D-splitting
(M ;H1,H2;F0) which satisfies the following:

(v) the homomorphism induced from the inclusion

ι : π1(Kji;xi) → π1(Hj ;xi), xi ∈ ∂K1i = ∂K2i ( j = 1, 2, i = 1, 2, . . . ,m)

is injective, and every image ιπ1(Kji;xi) is a free factor of the free group
π1(Hj ;xi) of rank g ,

(vi) there exists a tree T in F0 connecting x1, x2, . . . , xm such that the homomor-
phism induced from inclusion

ι : π1(Kj1 ∪ · · · ∪Kjm ∪ T ;x) → π1(Hj ;x), x ∈ T ( j = 1, 2)

is injective, and the image is a free factor of π1(Hj ;x).

By Zieschang [18, §3, Satz 2 and Korrollar], the above conditions (v) and (vi) are
equivalent to the following geometric condition:

Theorem 2.3. For every bordered 3-manifold M , there exists a D-splitting
(M ;H1,H2;F0) which satisfies the following (see figure 1):
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Dj11 Dj21

Kj1 Kj2 Kjm

Dj1g1 Djm1 Ej1

Hj

Ejg’Djm2Djmgm

Figure 1

(vi*) there exist systems of meridian-disks Dji = {Dji1, . . . , Djigi} ( j = 1, 2,
i = 1, 2, . . . ,m) and Ej = {Ej1, . . . , Ejg′}, where g′ = g − (g1 + · · · + gm)
of Hj satisfying the following:

(a) Dj1 ∪ · · · ∪ Djm ∪ Ej forms a complete system of meridian-disks of Hj ,
(b) Djik ∩ (Kj1 ∪ · · · ∪Kjm) = ∂Djik ∩Kji consists of a single simple arc, and

Ejk ∩Kji = ∅ ( j = 1, 2, i = 1, 2, . . . ,m, k = 1, 2 . . . , gi), and
(c) Cl(Kji −N(Dji1 ∪ · · · ∪Djigi ;Hj)) is a disk ( j = 1, 2).

According to Roeling [13], we call a D-splitting for M satisfying the conditions (v)
and (vi) in Theorem 2.2 or the condition (vi*) in Theorem 2.3 a special Downing split-
ting (or SD-splitting) for M of genus g, and call the minimum genus of such splittings
for M the special Downing genus (or SD-genus) of M and denote it by SDg(M).

It will be noticed that for a closed, connected, orientable 3-manifold, the three
splittings, an H-splitting, a D-splitting and an SD-splitting, are considered as the
same one.

In order to prove Theorems 2.1 and 2.2, we need a lemma which is a generalization
of Lemma 1 of Downing [2]. In proving the lemma, the notation and definitions of
Downing [2] will be helpful. If g is a nonnegative integer, let Y (g) be the set of all
points (x, y) in the plane R

2 which satisfy

x ∈ {0, 1, . . . , g} and − 1 ≤ y ≤ 1

or
0 ≤ x ≤ g and |y| = 1.

We put

X(g) = {(x, y) ∈ Y (g) | y ≥ 0},
∂X(g) = {(x, 0) ∈ X(g)},
Z(g) = {(x, y) ∈ R2 | 0 ≤ x ≤ g, 0 ≤ y ≤ 1}.

Let H be a handlebody with X a copy of X(g) embedded as a PL subspace of H. X is
said to be proper in H if X ∩ ∂H = ∂X, and X is said to be unknotted if X is proper
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in H and the embedding of X(g) can be extended to an embedding of Z(g). Let
X1 ∪ · · · ∪Xm be a copy of X(g1)∪ · · · ∪X(gm) properly embedded as a PL subspace
of H. We say that X1∪· · ·∪Xm is unknotted if the embedding of X(g1)∪· · ·∪X(gm)
can be extended to an embedding of Z(g1) ∪ · · · ∪ Z(gm).

Lemma 2.4 (Downing [2]). Let M ′ be a closed, connected orientable 3-manifold, and
(M ′;W1,W2;F ) be an H-splitting for M ′. Let S be a 1-dimensional spine of W1.
We suppose that Y1 ∪ · · · ∪Ym is a copy of Y (g1)∪ · · · ∪Y (gm) embedded in S. Then
there exists an ambient isotopy {ηt} of M ′ satisfying the following:

η1(Y1 ∪ · · · ∪ Ym) ∩Wj = Xj1 ∪ · · · ∪Xjmis a copy of X(g1) ∪ · · · ∪X(gm)
which is proper and unknotted in Wj for j = 1, 2.

Proof. The case m = 1 is Lemma 1 of Downing [2], and the proof of the case m ≥ 2,
which is omitted here, is the same as that of the case m = 1.

Proof of Theorems 2.1 and 2.2. The proof of Theorems 2.1 and 2.2 is almost similar
to that of Theorem 1 of Downing [2] except for obvious modifications, but for future
reference, we record it here.

Let Vi be a handlebody of genus gi (i = 1, 2, . . . ,m). We sew Vi into the
boundary component Bi of M to form a closed, connected, orientable 3-manifold
M ′ = M ∪ V1 ∪ · · · ∪ Vm. Let Yi be a copy of Y (gi) which is embedded as a 1-
dimensional spine of Vi and we triangulate M ′ so that Y1 ∪ · · · ∪ Ym is contained in
the 1-skeleton S.

Let W1 = N(S;M ′), a regular neighborhood of S in M ′, and let W2 =
Cl(M ′ − W1;M ′). Then these form an H-splitting (M ′;W1,W2;F ) for M ′, where
F = ∂W1 = ∂W2. By Lemma 2.4, there exists an ambient isotopy {ηt} of M ′ so that

η1(Y1 ∪ · · · ∪ Ym) ∩Wj = Xj1 ∪ · · · ∪Xjm is a copy of X(g1) ∪ · · · ∪X(gm)
which is proper and unknotted in Wj (j = 1, 2). (*)

We put

N = N(η1(Y1 ∪ · · · ∪ Ym);M ′),
N1 = N(X11 ∪ · · · ∪X1m;W1), N2 = N(X21 ∪ · · · ∪X2m;W2).

Then, N = N1 ∪ N2, and Cl(M ′ − N) is homeomorphic to M because {ηt} is an
ambient isotopy. From the unknotted condition (*),

H1 = Cl(W1 −N1), H2 = Cl(W2 −N2)

are homeomorphic handlebodies decomposing Cl(M ′ − N) = M , and it is easily
checked that this splitting satisfies the conditions (ii)–(vi) in Theorems 2.1 and 2.2,
completing the proof.
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Proof of Theorem 2.3. Let ∂Kji = Jji0 ∪ Jji1 ∪ Jji2 ∪ · · · ∪ Jjigi
, and we assume xi ∈

Jji0, j = 1, 2, i = 1, 2, . . . ,m. Now, we can choose points xjik ∈ Jjik (k = 1, 2, . . . , gi)
and mutually disjoint simple proper arcs djik in Kji which span xi and xik so that
Jji1∪dji1∪Jji2∪dji2∪· · ·∪Jjigi

∪djigi
is a strong deformation retract of Kji. Then,

from the conditions (v) and (vi) in Theorem 2.2, the system of simple loops
m⋃

i=1

{Jji1, Jji2, . . . , Jjigi
}

satisfies the condition of Satz 2 in Zieschang [18, §3], and we have the required
systems of meridian-disks Dji = {Dji1, · · · , Djigi

} (j = 1, 2, i = 1, 2, . . . ,m) and
Ej = {Ej1, · · · , Ejg′}, where g′ = g − (g1 + · · · + gm) of Hj of the condition (vi*) in
Theorem 2.3.

It is easy to check that the condition (vi*) implies the conditions (v) and (vi) in
Theorem 2.2, and we complete the proof.

3. Genera of bordered 3-manifolds

From the definitions and the proofs of Theorems 2.1 and 2.2, we know:

Proposition 3.1. For every bordered 3-manifold M , it holds the following:

(i) SDg(M) ≥ Dg(M).

(ii) SDg(M) ≥ g1 + · · · + gm = the total genus of ∂M .

The following two theorems were proved by Roeling [13] when m = 1, and the
proofs of the general case are almost the same as that of m = 1 under the condi-
tion (vi*).

Theorem 3.2 (Roeling [13, Theorem 1]). If a bordered 3-manifold M has an SD-
splitting (M ;H1,H2;F0) of genus g , then M has an H-splitting of genus g.

Proof. To make our notation consistent with Roeling [13], we will use the following
notation in this proof and the proof of Theorem 3.4. If D is a disk, then N(D)
will denote a space homeomorphic to D × [−1, 1] where D corresponds to D × {0}.
We denote the 2-handles h1, . . . , hs by N(D1), . . . , N(Ds), where Dk is a disk for
each k, N(Dk) ∩N(Dh) = ∅ if k �= h, and N(Dk) ∩H1 = ∂Dk ∩ ∂H1 corresponds to
∂Dk × [−1, 1] in N(Dk).

From the condition (vi*), we can choose a complete system of meridian-disks

D21 ∪ · · · ∪ D2m ∪ E2

of H2 also satisfying the conditions (b) and (c). Then,

Cl
(
H2 −

m⋃
i=1

N(D2i1 ∪ · · · ∪D2igi
;H2)

)
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is a handlebody of genus g′ = g − (g1 + · · · + gm), and

X = Cl
(
H2 −

m⋃
i=1

N(D2i1 ∪ · · · ∪D2igi
) −N(E21 ∪ · · · ∪E2g′)

)

is a ball. We choose a system of properly embedded disks D′ = {D′
1, . . . , D

′
m−1} of H2

so that D′ is disjoint from the complete system of meridian-disks and

Y = Cl(X −N(D′
1 ∪ · · · ∪D′

m−1))

consists of m− 1 balls. Now,

H∗
1 = H1 ∪

m⋃
i=1

(N(D2i1) ∪ · · · ∪N(D2igi))

is a handlebody of genus g by the condition (b). Now we conclude that

M ∼= H∗
1 ∪N(E21) ∪ · · · ∪N(E2g′) ∪N(D′

1) ∪ · · · ∪N(D′
m−1),

because each ball of Y meets this in a disk on their common boundary.

Corollary 3.3. For every bordered 3-manifold M , it holds that

Hg(M) ≤ SDg(M).

Theorem 3.4 (Roeling [13, Theorem 2]). If a bordered 3-manifold M has an
H-splitting (M ;H1,H2;F ) of genus g, then M has a D-splitting of genus g .

Proof. If m = 1, the result has been proved in Roeling [12, Theorem 2], so we assume
m ≥ 2. We suppose that H2 = N(D1) ∪ · · · ∪N(Ds). Then,

Cl
(
∂H1 −

s⋃
k=1

N(Dk)
)

consists of m connected orientable surfaces, say, S1, . . . , Sm, where

Si = Bi ∩ Cl
(
∂H1 −

s⋃
k=1

N(Dk)
)
.

Here, Bi is a connected component of ∂M . Let αk ∪ βk = ∂Dk × {−1} ∪ ∂Dk × {1}
be simple closed curves for k = 1, . . . , s. Then, 2-handles can be classified into two
types as follows:

(type I) αk and βk are contained in some Si, or
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α1

δ1δ2

γ1 γ2

γ4γ3

β1 α2

α3
β2

β3

S1 S2

N(D1)

Figure 2

(type II) αk is contained in a Si and βk is contained in a Sj with i �= j.

We can choose m − 1 handles, say, N(D1) = D1 × [−1, 1], . . . , N(Dm−1) =
Dm−1 × [−1, 1], so that

S = S1 ∪ · · · ∪ Sm ∪ ∂D1 × [−1, 1] ∪ · · · ∪ ∂Dm−1 × [−1, 1]

is connected, because ∂H1 = F is connected.
Now we choose simple, properly embedded, pairwise disjoint arcs γm, γm+1, . . . , γs

in S so that

(i) each γk joins αk to βk,

(ii) if the 2-handle N(Dk) is of type I, and αk and βk are contained in Si, then
γk ⊂ Si, and if N(Dk) is of type II, then γk crosses some of ∂D1, . . . , ∂Dm−1

transversally, and

(iii) T ′ = Cl
(
S−⋃s

k=mN(γk;S)
)

is connected orientable surface of genus g−s+m−1.
See figure 2.

Now, we can check that

χ(S) = 2 − 2g, χ(T ′) = 2 − 2g + (s−m+ 1).

As indicated in figure 2, we choose properly embedded, pairwise disjoint simple
arcs δ1, δ2, . . . , δs−m in T ′ so that

(iv) each δk joins some γj to γr (j �= r),

(v) T = Cl(T ′ − ⋃s−m
k=1 N(δk;T ′)) is connected.

Then, we know that
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(vi) S∗
i = Cl(Si −

⋃s
k=1N(γk;Si) − ⋃s−m

k=1 N(δk;Si)) is a disk with gi holes for
i = 1, · · · ,m.

(vii) the inclusion induced homomorphism μ∗ : π1(S∗
i ) → π1(Si) is an injection.

[type I]: We assume that the inclusion induced homomorphism

νi : π1(S∗
i ) → π1(H1)

is not injective for some i ∈ {1, . . . ,m}. Then, νiμ∗ : π1(S∗
i ) → π1(H1) is not injective.

We find by Dehn’s lemma (see [5, 6]) a simple closed curve J in S∗
i that does not

contract in S∗
i but bounds a disk E in H1. Cutting along E, either we separate M

into manifolds M1 and M2 with H-splittings of genuses g(1) > 0 and g(2) > 0 so
that g(1) + g(2) = g, or we remove an 1-handle from M to get a manifold M1 with
an H-splitting of genus g − 1. Hence, by induction on g and the fact the theorem is
trivial if g = 1, we are finished.

[type II]: We assume that the inclusion induced homomorphism

νi : π1(S∗
i ) → π1(H1)

is an injection for every i = 1, . . . ,m. Then, νiμ∗ : π1(S∗
i ) → π1(H1) is an injection.

Let

H∗
2 =

( s⋃
k=1

N(Dk)
)
∪

( s⋃
k=m

N(γk;H1)
)
∪

(s−m⋃
k=1

N(δk;H1)
)
,

where
[( s⋃

k=m

N(γk;H1)
)
∪

(s−m⋃
k=1

N(δk;H1)
)]

∩Si =
( s⋃

k=m

N(γk;Si)
)
∪

(s−m⋃
k=1

N(δk;Si)
)
.

Let H∗
1 = Cl(H1 − H∗

2 ). Then, H∗
1 and H∗

2 are handlebodies of genus g and
M = H∗

1 ∪ H∗
2 . Since the pair (H∗

1 ,H
∗
1 ∩ Bi) is homeomorphic to (H1, S

∗
i ), we

have that π1(H∗
1 ∩Bi) injects to π1(H∗

1 ). On the other hand, from our construction,
we know that

H∗
2 ∩Bi =

( s⋃
k=1

(Dk × {−1, 1})
)
∪

( s⋃
k=m

N(γk;Si)
)
∪

(s−m⋃
k=1

N(δk;Si)
)

is a disk with gi holes for every i = 1, . . . ,m, and the inclusion induced homomorphism
π1(H∗

2 ∩ Bi) → π1(H∗
2 ) is injective. Hence, M has a D-splitting of genus g. This

completes the proof.

Corollary 3.5. For every bordered 3-manifold M , it holds that

Dg(M) ≤ Hg(M) ≤ SDg(M).
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Closed 3-manifolds of H-genus 0 are characterized as the 3-dimensional sphere S
3.

Corresponding to this fact, it holds the following:

Proposition 3.6. Let M be a bordered 3-manifold with m boundary components.

SDg(M) = 0 ⇐⇒ Hg(M) = 0

⇐⇒ M = S
3 with m holes

⇐⇒ M is the connected sum of m copies of the 3-ball D3.

Two H-splittings (M ;H1,H2;F ) and (M ;H ′
1,H

′
2;F

′) for a 3-manifold M are said
to be equivalent, if there exists a homeomorphism ψ : M → M with ψ(F ) = F ′. Let
(M ;H1,H2;F ) be an H-splitting for M of genus g, and let (S3;U1, U2;T 2) be an H-
splitting for the 3-sphere S

3 of genus 1. Remove a 3-ball from M and a 3-ball from S
3,

choosing these 3-balls so that they meet the respective Heegaard surfaces in disks.
Then, if we use these 3-balls to form the connected sum M#S

3 ∼= M of M and S
3, we

shall obtain a new H-splitting for M with Heegaard surface F#T 2 of genus g+1, and
we denote this splitting by (M ;H1,H2;F )#(S3;U1, U2;T 2). This process is called sta-
bilizing; it may be iterated to obtain H-splittings (M ;H1,H2;F )#n(S3;U1, U2;T 2) of
any genus g+n > g. Two H-splittings (M ;H1,H2;F ) and (M ;H ′

1,H
′
2;F

′) are said to
be stably equivalent, if there exist integers n, n′ with h = g+n = g′+n′ so that the sta-
bilizations (M ;H1,H2;F )#n(S3;U1, U2;T 2) and (M ;H ′

1,H
′
2;F

′)#n′(S3;U1, U2;T 2)
of genus h are equivalent as H-splittings. The following is known as the stabilization
theorem:

Proposition 3.7 (Reidemeister [12], Singer [15]). Arbitrary H-splittings for a 3-
manifold M are stably equivalent.

Similarly, we define, on D-splittings for a bordered 3-manifold, equivalence and
stable equivalence relations. Two D-splittings (M ;H1,H2;F0) and (M ;H ′

1,H
′
2;F

′
0)

for a bordered 3-manifoldM are said to be equivalent, if there exists a homeomorphism
ψ : M → M with ψ(F0) = F ′

0. Let (D3;A) be a pair of the 3-ball D
3 and a properly

embedded, boundary parallel annulus A in D
3, see figure 3. The boundary ∂A divides

∂D
3 into two disks, say, D+, D−, and an annulus, say, A0. We choose a diskD2

0 ⊂ ∂D
3

so that D2
0 ∩ D+ is a disk, D2

0 ∩ D− is a disk, and D2
0 ∩ A0 is also a disk. Let

(M ;H1,H2;F0) be a D-splitting for a bordered 3-manifold M , and we choose a disk
D2 ⊂ ∂M so that D2 ∩ ∂H1 is two disks and D2 ∩ ∂H2 is a disk (or D2 ∩ ∂H2 is two
disks and D2 ∩ ∂H1 is a disk). Then, if we use these disks D2 ⊂ ∂M and D2

0 ⊂ ∂D
3

to form the disk-sum M�D
3 ∼= M of M and D

3, we shall obtain a new D-splitting
for M with the splitting-surface F0∪A of genus g(F0)+1, and we denote this splitting
by (M ;H1,H2;F0)�(D3;A). This process is called stabilization; it may be iterated
to obtain D-splittings (M ;H1,H2;F0)�n(D3;A) of any genus g(F0) + n.

It will be noticed that

(i) (M ;H1,H2;F0)�(D3;A) depends on a disk D2 ⊂ ∂M ,
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(ii) (M ;H1,H2;F0)#(S3;U1, U2;T 2) is equivalent to some (M ;H1,H2;F0)�(D3;A);
however (M ;H1,H2;F0)�(D3;A) is not always equivalent to any (M ;H1,H2;F0)
#(S3;U1, U2;T 2).

Two D-splittings (M ;H1,H2;F0) and (M ;H ′
1,H

′
2;F

′
0) are said to be stably equiva-

lent, if there exist integers n, n′ with h = g(F0) + n = g(F ′
0) + n′ and stabilizations

(M ;H1,H2;F0)�n(D3;A) and (M ;H ′
1,H

′
2;F

′
0)�n′(D3;A) so that these stabilizations

are equivalent.
The following is a corollary to Theorem 3.4 and Proposition 3.6:

Corollary 3.8. Arbitrary D-splittings for a bordered 3-manifold M are stably equiv-
alent.

4. Haken Type Theorem (1)

A 2-sphere in a 3-manifold M is essential if it does not bound a 3-ball in M. A
3-manifold M is irreducible if it contains no essential 2-sphere.

The following corresponds to the Haken Theorem 1.2.
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Theorem 4.1. Let (M ;H1,H2;F0) be an SD-splitting for a bordered 3-manifold M .
If there exists an essential 2-sphere in M , then there exists an essential 2-sphere Σ
in M such that Σ ∩ F0 consists of a single loop.

Proof. We will give a mild generalization of this theorem in Theorem 4.3 below, and
so we will not include a proof of Theorem 4.1, but simply refer the reader to Jaco’s
account of Haken’s proof [4, chapter II] or the proof of Theorem 4.3 below.

Corollary 4.2. Suppose that a bordered 3-manifold M has a decomposition

M = M1# · · ·#Mu

as a connected sum. Then it holds that

SDg(M) = SDg(M1) + · · · + SDg(Mu).

Let F0 be a compact orientable surface, and let J1 and J2 be proper 1-dimensional
submanifolds in F0. We shall say that J1 and J2 are in reduced position, if J1 ∩ J2

consists of a finite number of points in which J1 and J2 cross one another, and there
is no disk on F0 whose boundary consists of an arc in J1 and an arc in J2 .

Let M be a bordered 3-manifold and let (M ;H1,H2;F0) be an SD-splitting for M .
We call the complete systems of meridian-disks D1 of H1 and D2 of H2 which satisfy
the condition (vi*) a special complete systems of meridian-disks. These special com-
plete systems of meridian-disks D1 of H1 and D2 of H2 are said to be irreducible if
J1 = D1 ∩ F0 and J2 = D2 ∩ F0 are in reduced position in F0.

Theorem 4.3. Let (M ;H1,H2;F0) be an SD-splitting for a bordered 3-manifold M ,
and let Dj = {Dj1, . . . , Djg} be a special complete system of meridian-disks of Hj

( j = 1, 2), and we suppose that D1 and D2 are irreducible. Let Σ be a disjoint
union of essential 2-spheres in M . Then there exist a disjoint union of essential
2-spheres Σ∗ and a complete system of meridian-disks D∗

2 of H2 such that

(i) Σ∗ is obtained from Σ by ambient 1-surgery and isotopy,

(ii) each component of Σ∗ meets F0 in a single loop,

(iii) D1 ∩Σ∗ = ∅, D∗
2 ∩Σ∗ = ∅ , and D∗

2 ∩ (Fj1 ∪ · · · ∪Fjm) = D2 ∩ (Fj1 ∪ · · · ∪Fjm),
where Fji is the planar surface ∂Hj ∩Bi, Bi a connected component of ∂M .

Proof. We choose a 1-dimensional spine S2i of the planar surface F2i so that S2i con-
sists of simple loops based at the point xi and each loop intersected with D2 at a
single point (i = 1, 2, . . . ,m). Then we can choose a 1-dimensional spine S2 of H2 so
that S2∩D2i consists of a single point (i = 1, 2, . . . ,m) and S2∩∂H2 = S21∪· · ·∪S2m.
We may suppose that S2 intersects transversally with Σ at a finite number of points.
Since H2 is a regular neighborhood of S2 , we may assume that Σ intersects with H2

at a finite number of disks, say, σ1, · · · , σn.
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Let Σ0 = Cl(Σ − (σ1 ∪ · · · ∪ σn); Σ). Then Σ0 ∩ (D11 ∪ · · · ∪ D1g) consists of a
finite number of simple loops and proper arcs. Since H1 is irreducible, we can remove
all simple loops by cut-and-paste, and so we may assume that Σ0 ∩ (D11 ∪ · · · ∪D1g)
consists of a finite number of proper arcs, say, α1, . . . , αk. Since Σ0 ∩ F1i = ∅ for
i = 1, 2, . . . ,m, we can choose an innermost arc, say, α1, on one of D11, . . . , D1g, say,
D11, if Σ0 ∩ (D11 ∪ · · · ∪D1g) �= ∅. Let Δ ⊂ D11 be the disk cut off by α1 so that

Δ ∩ Σ0 = ∂Δ ∩ Σ0 = α1, Δ ∩ (F11 ∪ · · · ∪ F1m) = ∅.
Now, we may apply the same argument as that of Jaco [6, II7–II9]; that is, we can

deform Σ along Δ (by isotopy of type A) so that the new Σ∗ does not meet at α1.
By the repetition of the procedure, we can get rid of all intersections α1, . . . , αk of
Σ∗ ∩ D1. Now, it is easy to see that the new Σ∗ satisfies the conditions (i) and (ii),
and the condition D1 ∩ Σ∗ = ∅ from (iii).

Since H2 ∩Σ∗ consists of a finite number of disks and Σ∗ ∩ (F21 ∪ · · · ∪ F2m) = ∅,
we can choose, if necessary, a complete system of meridian-disks D∗

2 of H2 so that D∗
2

satisfies the other conditions in (iii), completing the proof.

5. Haken type theorem (2)

A proper disk in a bordered 3-manifold M is said to be essential if it does not cut
off a 3-ball from M . Using essential disks, Gross[3] and Swarup [16] have formulated
another prime decomposition theorem under disk-sum (i.e., boundary connected sum)
for a bordered 3-manifold.

Now the following question immediately comes to mind:

Question and Example 5.1. Let (M ;H1,H2;F0) be an SD-splitting for a bordered
3-manifold M . If there exists an essential proper disk in M , then does there exist an
essential proper disk Δ in M such that Δ ∩ F0 consists of a single arc?

The answer is NO in general. The following counterexample is due to Dr. Kanji
Morimoto. Let K be a simple loop on the boundary S1×S1 of the solid torus D2×S1

such that K ∩D2 = K ∩ ∂D2 consists of two crossing points, where D2 is a standard
meridian-disk of D2 × S1. Let J ⊂ D2 be a simple proper arc joining the two points.
Let H1 = N(K ∪ J ;D2 × S1), and H2 = Cl(D2 × S1 −H1;D2 × S1). Then we have
an SD-splitting (D2 × S1;H1,H2;F0) for D2 × S1 of genus 2, where F0 is the surface
Cl(∂H1 ∩ Int(D2 × S1);D2 × S1). The meridian-disk D2 is an essential proper disk
in D2 × S1 which is unique up to ambient isotopy of D2 × S1, and D2 ∩ F0 consists
of two arcs. It will be noticed that D2 × S1 has an SD-splitting of genus 1, and the
above splitting is of genus 2.

Proposition 5.2. Let (M ;H1,H2;F0) be an SD-splitting for a bordered 3-manifold M .
If there exists an essential 2-sphere in M which is not boundary parallel, then there
exists an essential proper disk Δ in M such that Δ ∩ F0 consists of a single arc.
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Proof. By Theorem 4.1 (or 4.3), we have an essential 2-sphere Σ in M such that
Σ∩F0 consists of a single loop. Using this Σ, we can easily obtain a required essential
disk Δ.

The following lemma corresponds to Theorem 4.3.

Lemma 5.3. Let (M ;H1,H2;F0) be an SD-splitting for an irreducible bordered 3-
manifold M . If there exists an essential proper disk in M , then there exist an es-
sential proper disk Δ in M and a special complete system of meridian-disks Dj =
{Dj1, . . . , Djg} of Hj ( j = 1, 2) satisfying the following:

(i) Δ ∩ F0 consists of a finite number of proper arcs,

(ii) Δ ∩Hj consists of a finite number of proper disks, and each component is es-
sential in Hj ( j = 1, 2), and

(iii) Δ ∩D2 = ∅.
Proof. We choose a 1-dimensional spine S2 of H2 in the same way as that of the proof
of Theorem 4.3. Then, we may consider H2 as a regular neighborhood of S2.

Let � be an essential proper disk in M . We may assume that � intersects with S2

transversally in a finite number of points, and so �∩H2 consists of a finite number of
proper disks, which are regular neighborhoods of �∩S2 in �. Now �∩F0 consists of
a finite number of proper arcs and loops. We can remove the loops in the same way
as in the proof of Theorem 4.3 (see Jaco [6]), and let Δ be the new disk. It is easy
to see that Δ satisfies the conditions (i) and (ii). If we cut H2 along Δ then we have
some handlebodies, and so we can choose a complete system of meridian-disks D2

of H2 with the condition (iii). This completes the proof.

Using this Lemma, we can prove the following:

Proposition 5.4. Let (M ;H1,H2;F0) be an SD-splitting for an irreducible bordered
3-manifold M with connected boundary B of genus g. If there exists an essential
proper disk in M and SDg(M) = g, then there exists an essential proper disk Δ
in M such that Δ ∩ F0 consists of a single arc.

Proof. Let Δ ⊂M be an essential proper disk, and Dj be a special complete system of
meridian-disks of Hj (j = 1, 2) that satisfy the conditions of Lemma 5.3. We cut Hj

along Dj ; we have a 3-ball D3
j . On the boundary ∂D3

j , Fj1 appears as a disk from
the condition (vi*)-(b). Using Δ we construct the required disk by the condition (iii).
The proof is not so hard but fairly complicated, and we omit it here.

As a corollary to this Proposition, we have the following characterization of han-
dlebodies by SD-splittings.
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Corollary 5.5. Let M be an irreducible bordered 3-manifold with connected bound-
ary B of genus g, and we suppose that M contains an essential proper disk. Then it
holds that

SDg(M) = g ⇐⇒ M is a handlebody of genus g.
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