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ON THE STABILITY INDEX OF MINIMAL AND CONSTANT
MEAN CURVATURE HYPERSURFACES IN SPHERES

LUIS J. ALÍAS

Abstract. The study of minimal and, more generally, constant mean cur-
vature hypersurfaces in Riemannian space forms is a classical topic in differ-
ential geometry. As is well known, minimal hypersurfaces are critical points
of the variational problem of minimizing area. Similarly, hypersurfaces with
constant mean curvature are also solutions to that variational problem, when
restricted to volume-preserving variations. In this paper we review about the
stability index of both minimal and constant mean curvature hypersurfaces
in Euclidean spheres, including some recent progress by the author, jointly
with some of his collaborators. One of our main objectives on writing this
paper has been to make it comprehensible for a wide audience, trying to be
as self-contained as possible.

1. Stability and index of minimal hypersurfaces

Let us consider ψ : Σn → S
n+1 an orientable hypersurface immersed into the

unit Euclidean sphere S
n+1. We will denote by A the shape operator of Σ with

respect to a globally defined normal unit vector fieldN . That is, A : X (Σ) → X (Σ)
is the endomorphism determined by

AX = −∇o
XN = −∇XN, X ∈ X (Σ),

where ∇o and ∇ denote, respectively, the Levi-Civita connections on R
n+2 and

S
n+1. As is well known, A defines a symmetric endomorphism on X (Σ) whose

eigenvalues κ1, . . . , κn are usually referred to as the principal curvatures of the
hypersurface. The mean curvature of Σ is then defined as

H =
1
n

tr(A) =
1
n

(κ1 + · · · + κn).

Throughout this paper, we will assume that Σ is compact. Every smooth func-
tion f ∈ C∞(Σ) induces a normal variation ψt : Σ → S

n+1 of the original immersion
ψ, given by

ψt(p) = Expψ(p)(tf(p)N(p)) = cos (tf(p))ψ(p) + sin (tf(p))N(p),

where Exp denotes the exponential map in S
n+1. Since Σ is compact and ψ0 = ψ

is an immersion, there exists ε > 0 such that every ψt is also an immersion, for
|t| < ε. Then we can consider the area function A : (−ε, ε) → R which assigns to
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each t the n-dimensional area of Σ with respect to the metric induced on Σ by the
immersion ψt. That is,

A(t) = Area(Σt) =
∫

Σ

dΣt,

where Σt stands for the manifold Σ endowed with the metric induced by ψt from
the Euclidean metric on S

n+1, and dΣt is the n-dimensional area element of that
metric on Σ. The first variation formula for the area [16, Chapter I, Theorem 4]
establishes that

δfA =
dA
dt

(0) = −n
∫

Σ

fHdΣ. (1.1)

As a consequence, Σ is a minimal hypersurface (that is, H = 0 on Σ) if and
only if δfA = 0 for every smooth function f ∈ C∞(Σ). In other words, minimal
hypersurfaces are characterized as critical points of the area functional.

The stability operator of this variational problem is given by the second varia-
tion formula for the area [16, Chapter I, Theorem 32], which in our case is written
as follows

δ2fA =
d2A
dt2

(0) = −
∫

Σ

(f∆f + (|A|2 + n)f2)dΣ = −
∫

Σ

fJfdΣ. (1.2)

Here J = ∆ + |A|2 + n, where ∆ stands for the Laplacian operator of Σ and
|A|2 = tr(A2) is the square of the norm of the shape operator. The operator
J : C∞(Σ) → C∞(Σ) is called the Jacobi (or stability) operator of the minimal
hypersurface Σ. The Jacobi operator J belongs to a class of operators which are
usually referred to as Schrödinger operators, that is, operators of the form ∆ + q,
where q is any continuous function on Σ. As is well known, the spectrum of J

Spec(J) = {λ1 < λ2 < λ3 < · · · }
consists of an increasing sequence of eigenvalues λk with finite multiplicities mk

and such that limk→∞ λk = +∞. Moreover, the first eigenvalue is simple (m1 = 1)
and it satisfies the following min-max characterization

λ1 = min
{− ∫Σ fJfdΣ∫

Σ
f2dΣ

: f ∈ C∞(Σ), f �= 0
}
. (1.3)

Observe that with our criterion, a real number λ is an eigenvalue of J if and only
if Jf + λf = 0 for some smooth function f ∈ C∞(Σ), f �= 0.

The Jacobi operator induces the quadratic form Q : C∞(Σ) → R acting on the
space of smooth functions on Σ by

Q(f) = −
∫

Σ

fJfdΣ,

and the index of a minimal hypersurface Σ, denoted by Ind(Σ), is defined as the
maximum dimension of any subspace V of C∞(Σ) on which Q is negative definite.
That is,

Ind(Σ) = max{dimV : V � C∞(Σ), Q(f) < 0 for every f ∈ V }.
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Equivalently, Ind(Σ) is the number of negative eigenvalues of J (counted with
multiplicity), which is necessarily finite and it is given by

Ind(Σ) =
∑
λk<0

mk <∞.

A minimal hypersurface would be said to be stable if Q(f) � 0 for every f ∈
C∞(Σ). Equivalently, in terms of the index, stability would mean that Ind(Σ) = 0.

Intuitively, Ind(Σ) measures the number of independent directions in which
the hypersurface fails to minimize area. To see it, observe that if Q(f) < 0 for
some f ∈ C∞(Σ), then δ2fA < 0 and therefore Area(Σ) > Area(Σt) for small
values of t �= 0, in the normal variation of Σ induced by f . That means that the
minimal hypersurface Σ, while a critical point of the area functional, is not a local
minimum. For minimal hypersurfaces in S

n+1 this is always the case. In fact,
taking the constant function f = 1 one has

Q(1) = −
∫

Σ

(|A|2 + n)dΣ = −n Area(Σ) −
∫

Σ

|A|2dΣ � −n Area(Σ) < 0. (1.4)

In particular, every compact minimal hypersurface in S
n+1 is unstable.

2. Minimal hypersurfaces with low index

We have just seen that there exists no compact stable minimal hypersurface in
S
n+1. Equivalently, Ind(Σ) � 1 for every compact minimal hypersurface in the

sphere. In [22, Theorem 5.1.1], Simons characterized the totally geodesic equators
S
n ⊂ S

n+1 as the only compact minimal hypersurfaces in S
n+1 with Ind(Σ) = 1.

Later on, Urbano [23] when n = 2, and El Soufi [11] for general n (see also [20,
Lemma 3.1]), proved that if Σ is not a totally geodesic equator, then not only must
be Ind(Σ) > 1 but in fact it must hold

Ind(Σ) � n+ 3.

Therefore, we have the following result.

Theorem 1. Let Σn be a compact orientable minimal hypersurface immersed into
the Euclidean sphere S

n+1. Then
(i) either Ind(Σ) = 1 (and Σ is a totally geodesic equator S

n ⊂ S
n+1),

(ii) or Ind(Σ) � n+ 3.

On the other hand, apart from the totally geodesic equators, which are obtained
as intersections of S

n+1 with linear hyperplanes of R
n+2, the easiest minimal hy-

persurfaces in S
n+1 are the minimal Clifford tori. They are obtained by con-

sidering the standard immersions S
k(
√
k/n) ↪→ R

k+1 and S
n−k(

√
(n− k)/n) ↪→

R
n−k+1, for a given integer k ∈ {1, . . . , n − 1}, and taking the product immer-

sion S
k(
√
k/n) × S

n−k(
√

(n− k)/n) ↪→ S
n+1 ⊂ R

n+2. As we will see in the next
section, all minimal Clifford tori have Ind(Σ) = n + 3. For that reason, it has
been conjectured for a long time that minimal Clifford tori are the only compact
minimal hypersurfaces in S

n+1 with Ind(Σ) = n+ 3, changing Theorem 1 into the
following conjecture.
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Conjecture 2. Let Σn be a compact orientable minimal hypersurface immersed
into the Euclidean sphere S

n+1. Then
(i) either Ind(Σ) = 1 (and Σ is a totally geodesic equator S

n ⊂ S
n+1),

(ii) or Ind(Σ) � n+ 3, with equality if and only if Σ is a minimal Clifford torus
S
k(
√
k/n) × S

n−k(
√

(n− k)/n) ⊂ S
n+1.

In [23], Urbano showed that the conjecture is true when n = 2. See also next
section for some other partial answers to Conjecture 2 in the general n-dimensional
case.

On the other hand, using also the constant function f = 1 as a test function in
(1.3) to estimate λ1, from (1.4) one finds that

λ1 � Q(1)
Area(Σ)

� −n− 1
Area(Σ)

∫
Σ

|A|2dΣ � −n. (2.1)

Moreover, equality λ1 = −n holds if and only if |A| = 0 on Σ, that is, if and only
if Σ is a totally geodesic equator S

n ⊂ S
n+1. In [22, Lemma 6.1.7] Simons proved

that when Σ is not a totally geodesic equator, then not only must be λ1 < −n but
in fact it must hold

λ1 � −2n.
Later on, Wu [24] was able to characterize the case in which equality λ1 = −2n
holds, by showing that equality holds if and only if Σ is a minimal Clifford torus.
More recently, Perdomo [21] has considered again this problem, giving a new
proof of that spectral characterization of minimal Clifford tori by the first stability
eigenvalue. Summing up, we have the following result.

Theorem 3. Let Σn be a compact orientable minimal hypersurface immersed into
the Euclidean sphere S

n+1, and let λ1 stand for the first eigenvalue of its Jacobi
operator. Then

(i) either λ1 = −n (and Σ is a totally geodesic equator S
n ⊂ S

n+1),
(ii) or λ1 � −2n, with equality if and only if Σ is a minimal Clifford torus

S
k(
√
k/n) × S

n−k(
√

(n− k)/n) ⊂ S
n+1.

3. Proof of Theorem 1 and some partial answers to Conjecture 2

Before giving the proof of Theorem 1, we will fix some notation and establish
some basic formulae which will be useful throughout this paper. Let us consider
ψ : Σn → S

n+1 an orientable hypersurface immersed into the unit Euclidean sphere
S
n+1, with normal unit vector field N . If ∇ denotes the Levi-Civita connection

on Σ, then the Gauss and Weingarten formulae for the immersion ψ are given by

∇o
XY = ∇XY − 〈X,Y 〉ψ = ∇XY + 〈AX, Y 〉N − 〈X,Y 〉ψ, (3.1)

and
AX = −∇o

XN = −∇XN, (3.2)
for every tangent vector fields X,Y ∈ X (Σ).

As is well known, the curvature tensor R of the hypersurface Σ is described in
terms of A by the Gauss equation of Σ, which can be written as

R(X,Y )Z = 〈X,Z〉Y − 〈Y, Z〉X + 〈AX,Z〉AY − 〈AY,Z〉AX, (3.3)
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for X,Y, Z ∈ X (Σ). Observe that our criterion for the definition of the curvature
is

R(X,Y )Z = ∇[X,Y ]Z − [∇X ,∇Y ]Z.
As a consequence of (3.3), the Ricci curvature of Σ is given by

Ric(X,Y ) = (n− 1)〈X,Y 〉 + nH〈AX, Y 〉 − 〈AX,AY 〉. (3.4)

It follows from here that the scalar curvature of every minimal hypersurface in
S
n+1 satisfies

S = trace(Ric) = n(n− 1) − |A|2 � n(n− 1), (3.5)
with equality only at points where Σ is totally geodesic. As a consequence, the
only minimal hypersurfaces in S

n+1 which are isometric to a unit round sphere
are the totally geodesic equators. On the other hand, the Codazzi equation of Σ
is given by

∇A(X,Y ) = ∇A(Y,X) (3.6)
for every tangent vector fields X,Y ∈ X (Σ), where ∇A denotes the covariant
differential of A,

∇A(X,Y ) = (∇Y A)X = ∇Y (AX) −A(∇YX), X, Y ∈ X (Σ).

For a fixed arbitrary vector v ∈ R
n+2, we will consider the functions �v = 〈ψ, v〉

and fv = 〈N, v〉 defined on Σ. Observe that �v and fv are, respectively, the
coordinates of the immersion ψ and the Gauss map N . A standard computation,
using Gauss (3.1) and Weingarten (3.2) formulae, shows that the gradient and the
hessian of the functions �v and fv are given by

∇�v = v�, (3.7)
∇2�v(X,Y ) = −�v〈X,Y 〉 + fv〈AX, Y 〉, (3.8)

and

∇fv = −A(v�), (3.9)
∇2fv(X,Y ) = −〈∇A(v�, X), Y 〉 + �v〈AX, Y 〉 − fv〈AX,AY 〉, (3.10)

for every tangent vector fields X,Y ∈ X (Σ). Here v� ∈ X (Σ) denotes the tangen-
tial component of v along the immersion ψ, that is,

v = v� + fvN + �vψ = ∇�v + fvN + �vψ. (3.11)

Equation (3.8) directly yields

∆�v = tr(∇2�v) = −n�v + nHfv. (3.12)

On the other hand, using Codazzi equation (3.6) in (3.10) we also get

∆fv = tr(∇2fv) = −tr(∇v�A) + nH�v − |A|2fv (3.13)
= −n〈v�,∇H〉 + nH�v − |A|2fv.

Here we are using the fact that trace commutes with the covariant derivative,
which yields

tr(∇v�A) = ∇v�(trA) = n〈v�,∇H〉.
Now we are ready to prove Theorem 1.

Rev. Un. Mat. Argentina, Vol 47-2



44 LUIS J. ALÍAS

Proof of Theorem 1. We already know from our previous discussions that Ind(Σ) �
1 for every compact minimal hypersurface in S

n+1. Moreover, if Σ is a totally geo-
desic equator in S

n+1, then the Jacobi operator reduces to J = ∆ + n, where ∆ is
the Laplacian operator on the unit sphere Σ = S

n. In particular, the eigenvalues
of J are given by λi = µi−n, where µi denotes the i-th eigenvalue of the Laplacian
on S

n, with the same multiplicity. Then, λ1 = −n with multiplicity 1 and λ2 = 0.
In particular, Ind(Σ) = 1 for a totally geodesic equator of the sphere.

Therefore, it remains to show that, if Σ is not a totally geodesic equator, then
Ind(Σ) � n + 3. When Σ is not totally geodesic, we already know from the
estimate (2.1) that λ1 < −n with multiplicity m1 = 1. Therefore, we will prove
that Ind(Σ) � n + 3 by showing that −n is also another negative eigenvalue of
J with multiplicity at least n + 2. Since H = 0, equation (3.13) implies that
∆fv = −|A|2fv, and then

Jfv − nfv = 0
for every v ∈ R

n+2. Thus, whenever fv �= 0, the functions fv are eigenfunctions
of J with negative eigenvalue −n. We claim that if Σ is not totally geodesic in
S
n+1, then the dimension of the linear subspace V = {fv : v ∈ R

n+2} is n+ 2. If
our claim is true, then the multiplicity of −n as an eigenvalue of J will be at least
n+ 2 and this will finish the proof of the theorem.

To show our claim, we will follow the ideas of Urbano in [23] for the case n = 2.
Obviously, dimV � n+2. If dimV < n+2, then there exists a unit vector v ∈ R

n+2

such that fv = 0 on Σ. From (3.8), that implies that ∇2�v = −�v〈, 〉. Moreover,
by (3.11) we also have

1 = |∇�v|2 + f2
v + �2v = |∇�v|2 + �2v,

which in particular implies that the function �v cannot be constant on Σ. Then
a classical result by Obata [18, Theorem A] implies that Σ is isometric to a unit
round sphere. But we have already seen as a consequence of Gauss equation (3.3)
that the only minimal hypersurfaces in S

n+1 which are isometric to a unit round
sphere are the totally geodesic equators. Thus, if Σ is not totally geodesic we have
dimV = n + 2, as claimed. We also refer the reader to [20, Lemma 3.1] for an
alternative proof of our claim, using a more geometric argument.

Let us consider now a minimal Clifford torus S
k(
√
k/n) × S

n−k(
√

(n− k)/n)
in S

n+1. At a point (x, y) ∈ S
k(
√
k/n) × S

n−k(
√

(n− k)/n), the vector field

N(x, y) =

(√
n− k

k
x,−

√
k

n− k
y

)

defines a normal unit vector at the point (x, y). With respect to this orientation,
its principal curvatures are given by

κ1 = · · · = κk = −
√
n− k

k
, κk+1 = · · · = κn =

√
k

n− k
.

Then, every minimal Clifford torus has |A|2 = n. In particular, its Jacobi operator
reduces to J = ∆ + 2n, where ∆ is the Laplacian on the product manifold Σ =
S
k(
√
k/n)×S

n−k(
√

(n− k)/n), and the eigenvalues of J are given by λi = µi−2n,
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where µi are the eigenvalues of ∆. Therefore, the index of Σ reduces to the number
of eigenvalues of ∆ (counted with multiplicity) which are strictly less than 2n.

To compute it, simply recall that if α is an eigenvalue of the Laplacian on
a Riemannian manifold M with multiplicity mα and β is an eigenvalue of the
Laplacian on a Riemannian manifold N with multiplicity mβ , then µ = α+β is an
eigenvalue of the Laplacian on the product manifoldM×N , and the multiplicity of
µ is the sum of the products mαmβ for all the possible values of α and β satisfying
µ = α+β [8]. In our case, the eigenvalues of the Laplacian on S

k(
√
k/n) are given

by

αi =
n(i− 1)(k + i− 2)

k
, i = 1, 2, 3, . . . ,

with multiplicities
mα1 = 1, ,mα2 = k + 1,

and

mαi =
(
k + i− 1
i− 1

)
−
(
k + i− 3
i− 3

)
, i = 3, 4, . . . ,

and the eigenvalues of the Laplacian on S
n−k(

√
(n− k)/n) are given by

βj =
n(j − 1)(n− k + j − 2)

n− k
, j = 1, 2, 3, . . . ,

with multiplicities
mβ1 = 1, ,mβ2 = n− k + 1,

and

mβj =
(
n− k + j − 1

j − 1

)
−
(
n− k + j − 3

j − 3

)
, j = 3, 4, . . . .

It easily follows from here that µ1 = 0 with multiplicity 1, µ2 = α1+β2 = α2+β1 =
n with multiplicity n+ 2 and µ3 = α2 + β2 = 2n. Therefore, all minimal Clifford
tori in S

n+1 have Ind(Σ) = n+ 3, which supports Conjecture 2.
In [23] Urbano obtained the following characterization of minimal Clifford tori

in S
3, solving Conjecture 2 when n = 2.

Theorem 4. Let Σ2 be a compact orientable minimal surface immersed into S
3,

which is not a totally geodesic equator. Then Ind(Σ) � 5, with equality if and only
if Σ2 is a minimal Clifford torus S

1(
√

1/2) × S
1(
√

1/2) ⊂ S
3.

Later on, Guadalupe, Brasil Jr. and Delgado [14] showed that the conjecture is
true for every dimension n, under the additional hypothesis that Σ has constant
scalar curvature, obtaining the following result.

Theorem 5. Let Σn be a compact orientable minimal hypersurface immersed into
S
n+1, which is not a totally geodesic equator. Assume that Σ has constant scalar

curvature. Then Ind(Σ) � n + 3, with equality if and only if Σn is a minimal
Clifford torus S

k(
√
k/n) × S

n−k(
√

(n− k)/n) ⊂ S
n+1.

More recently, Perdomo [20] has showed that the conjecture is also true for
every dimension n with an additional assumption about the symmetries of Σ,
and, in particular, the conjecture is true for minimal hypersurfaces with antipodal
symmetry.
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4. Proof of Theorem 3

The proof of Theorem 3 makes use of a celebrated formula for the Laplacian of
the function |A|2 on Σ, which was established by Simons in [22]. Specifically, for
the case of minimal hypersurfaces in S

n+1, Simons formula reads as follows,

1
2
∆|A|2 = |∇A|2 + (n− |A|2)|A|2. (4.1)

To give a proof of (4.1), let us introduce the following standard notation. Let
T1, T2 : X (Σ) → X (Σ) be two self-adjoint operators. Then

〈T1, T2〉 = tr(T1 ◦ T2) =
n∑
i=1

〈T1Ei, T2Ei〉

and

〈∇T1,∇T2〉 =
n∑

i,j=1

〈∇T1(Ei, Ej),∇T2(Ei, Ej)〉,

where {E1, . . . , En} is a local orthonormal frame on Σ. Recall that, in our notation,

∇Ti(X,Y ) = (∇Y Ti)X = ∇Y (TiX) − Ti(∇YX)

for X,Y ∈ X (Σ). On the other hand, the rough Laplacian of an operator T :
X (Σ) → X (Σ) is defined as the operator ∆T : X (Σ) → X (Σ) given by

∆T (X) = tr(∇2T (X, ·, ·)) =
n∑
i=1

∇2T (X,Ei, Ei).

Recall again that in our notation, ∇2T (X,Y, Z) = (∇Z∇T )(X,Y ).
Consider now Σ an orientable hypersurface immersed in S

n+1, which in principle
we do not assume to be minimal. A standard tensor computation implies

1
2
∆|A|2 =

1
2
∆〈A,A〉 = |∇A|2 + 〈A,∆A〉. (4.2)

By the Codazzi equation (3.6), we know that ∇A is symmetric and, hence, ∇2A
is also symmetric in its two first variables,

∇2A(X,Y, Z) = ∇2A(Y,X,Z), X, Y, Z ∈ X (Σ).

Regarding to the symmetries of ∇2A in the other variables, it is not difficult to
see that

∇2A(X,Y, Z) = ∇2A(X,Z, Y ) −R(Z, Y )AX +A(R(Z, Y )X).

Thus, using the Gauss equation (3.3) we conclude from here that

∆A(X) =
n∑
i=1

(∇2A(Ei, Ei, X) −R(Ei, X)AEi +A(R(Ei, X)Ei)
)

(4.3)

= tr(∇X(∇A)) − nHX + (n− |A|2)AX + nHA2X

= n∇X(∇H) − nHX + (n− |A|2)AX + nHA2X,
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where we have used the facts that trace commutes with ∇X and that tr(∇A) =
∇H . In particular, if Σ is a minimal hypersurface in S

n+1 we conclude that

∆A = (n− |A|2)A,
which jointly with (4.2) implies (4.1).

As a first application of Simons formula (4.1), we have the following result.

Theorem 6. Let Σ be a compact orientable minimal hypersurface immersed into
the Euclidean sphere S

n+1, and assume that |A| � √
n on Σ. Then

(i) either |A| = 0 (and Σ is a totally geodesic equator S
n ⊂ S

n+1),
(ii) or |A| =

√
n and Σ is a minimal Clifford torus.

Part (i) and the sharp bound given in (ii) are due to Simons [22, Corollary
5.3.2]. On the other hand, the characterization of minimal Clifford tori given in
(ii), which is local, was obtained independent and simultaneously by Chern, do
Carmo and Kobayashi [10] and Lawson [15].

Proof of Theorem 6. Integrating (4.1) on Σ, and using Stokes’ theorem and the
hypothesis |A|2 � n, we obtain that

0 �
∫

Σ

(n− |A|2)|A|2dΣ � −
∫

Σ

|∇A|2dΣ � 0.

Therefore |∇A|2 = 0 on Σ, and either |A| = 0 (and Σ is totally geodesic) or
|A| =

√
n. This proves part (i) of the theorem and the first statement of part (ii).

If |A| =
√
n, then a local argument using the fact that ∇A = 0 implies that Σ has

exactly two constant principal curvatures

∓
√
n− k

k
and ±

√
k

n− k

with multiplicities k � 1 and n−k � 1, respectively (for the details, see [10] or the
proof of [15, Lemma 1]). In other words, Σ is a minimal isoparametric hypersurface
of S

n+1 with two distinct principal curvatures, and from a classical result by Cartan
[9], Σ must be a minimal Clifford tori. Actually, in [9] Cartan showed that an
isoparametric hypersurface of S

n+1 with two distinct principal curvatures must be
an open piece of a standard product S

k(r)×S
n−k(

√
1 − r2) ⊂ S

n+1 with 0 < r < 1,
but Σ being minimal it must be r =

√
k/n.

The proof of Theorem 3 below makes use also of the following auxiliary result,
which can be found in [7] (see also [24, Lemma 1]).

Lemma 7. Let Σn be a Riemannian manifold, and consider T : X (Σ) → X (Σ)
a symmetric tensor on Σ such that tr(T ) = 0 and its covariant differential ∇T is
symmetric. Then

|∇|T |2|2 � 4n
n+ 2

|T |2|∇T |2.
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Proof of Theorem 3. We already know from (2.1) that λ1 � −n with equality if
and only if Σ is a totally geodesic equator. Then, assume that Σ is not totally ge-
odesic and consider, for every ε > 0, the positive smooth function fε =

√
ε+ |A|2.

We will use fε as a test function to estimate λ1 in (1.3). Observe that

∆fε =
1

2
√
ε+ |A|2 ∆|A|2 − 1

4(ε+ |A|2)3/2 |∇|A|2|2.

Therefore, using Simons formula (4.1) we obtain

fε∆fε = (n− |A|2)|A|2 + |∇A|2 − 1
4(ε+ |A|2) |∇|A|2|2.

On the other hand, Lemma 7 applied to A yields

|∇A|2 − 1
4(ε+ |A|2) |∇|A|2|2 � 2

n+ 2
|∇A|2,

so that

fε∆fε � (n− |A|2)|A|2 +
2

n+ 2
|∇A|2.

Then,

−fεJfε = −fε∆fε − (n+ |A|2)f2
ε � −2n|A|2 − 2

n+ 2
|∇A|2 − ε(n+ |A|2).

Therefore, using fε as a test function in (1.3), we get

λ1

∫
Σ

f2
ε dΣ � −

∫
Σ

fεJfεdΣ (4.4)

� −2n
∫

Σ

|A|2dΣ − 2
n+ 2

∫
Σ

|∇A|2dΣ − ε

∫
Σ

(n+ |A|2)dΣ.

Since Σ is not totally geodesic, then

lim
ε→0

∫
Σ

f2
ε dΣ =

∫
Σ

|A|2dΣ > 0.

Now, letting ε→ 0 in (4.4) we conclude from here that

λ1 � −2n− 2
n+ 2

∫
Σ
|∇A|2dΣ∫

Σ |A|2dΣ � −2n.

Moreover, if λ1 = −2n then |∇A|2 = 0 on Σ, and Lemma 7 implies that |A|2
is a positive constant. Thus J = ∆ + |A|2 + n, where |A|2 + n is a constant,
and the first eigenvalue of J is simply the constant −(|A|2 + n) = λ1 = −2n.
Therefore, |A|2 = n and by Theorem 6 we conclude that Σ must be a minimal
Clifford torus.

In [21], Perdomo gave another proof of the characterization of minimal Clifford
tori by the equality λ1 = −2n. His proof is based on a maximum principle, and it
works as follows. Let us assume that λ1 = −2n. In particular, by (2.1) we know
that Σ is not totally geodesic. Let U = {p ∈ Σ : |A|(p) > 0} be the (non-empty)
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open subset of non-geodesic points of Σ. The function |A| is smooth on U . Writing
|A| =

√|A|2 and using Simons formula (4.1), we obtain that

∆|A| =
∆|A|2
2|A| − |∇|A|2|2

4|A|3 = |A|(n− |A|2) +
1
|A|

(
|∇A|2 − |∇|A|2|2

4|A|2
)

(4.5)

on U . By Lemma 7 we also have

|∇A|2 − |∇|A|2|2
4|A|2 � 2

n+ 2
|∇A|2.

Therefore, using this into (4.5) we obtain

∆|A| � |A|(n− |A|2) +
2

n+ 2
|∇A|2
|A|2 � |A|(n− |A|2) (4.6)

on U . Moreover, if equality ∆|A| = |A|(n − |A|2) holds at a point p ∈ U , then
∇A(p) = 0.

As is well known, the first eigenvalue λ1 = −2n is simple, and its eigenspace
is generated by a positive smooth function 
 ∈ C∞(Σ). Then J
 = 2n
 or,
equivalently,

∆
 = (n− |A|2)
.
Observe that

∆
−1 = −
−2∆
+ 2
−3|∇
|2 = −(n− |A|2)
−1 + 2
−3|∇
|2. (4.7)

Consider the smooth function f defined on U by f = |A|
−1. A straightforward
computation using (4.6) and (4.7) yields

∆f = −|A|
−1(n− |A|2) + 
−1∆|A| − 2
−1〈∇f,∇
〉 � −2
−1〈∇f,∇
〉. (4.8)

Summing up,

Lf � 0 on U , (4.9)

where L is the differential operator on U given by Lf = ∆f + 2
−1〈∇f,∇
〉. Let
p0 ∈ U be a point where the function f attains its (positive) maximum on Σ,
and let Ω ⊂ U be a region around p0 on which f is greater than some positive
constant. Since the maximum of f in Ω is attained in the interior of Ω, by (4.9)
and the maximum principle applied to L we deduce that f is constant on Ω. Since
Σ is connected, we conclude that f is a positive constant on the whole Σ = U .
Therefore, equality trivially holds in (4.9). That means that the inequality in
(4.8) must be an equality, but this happens if and only if equality happens in
(4.6), which implies that ∇A = 0 on Σ. Then, by Lemma 7 we know that |A| is
a positive constant, and since ∆|A| = 0 = |A|(n− |A|2), we obtain that |A|2 = n.
Then Theorem 6 implies that Σ must be a minimal Clifford torus. This finishes
Perdomo’s proof.
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5. Stability and index of constant mean curvature hypersurfaces

Let ψ : Σn → S
n+1 be a compact orientable hypersurface immersed into the unit

Euclidean sphere. As another consequence of the first variation formula for the
area (1.1), we have that Σ has constant mean curvature (not necessarily zero) if and
only if δfA = 0 for every smooth function f ∈ C∞(Σ) satisfying the additional
condition

∫
Σ
fdΣ = 0. To see it, assume that δfA = 0 for every f ∈ C∞(Σ)

satisfying
∫
Σ fdΣ = 0, and write H = H0 + (H −H0), where

H0 =
1

Area(Σ)

∫
Σ

HdΣ.

Since
∫
Σ(H −H0)dΣ = 0, then

δH−H0A = −n
∫

Σ

(H −H0)HdΣ = −n
∫

Σ

(H −H0)2dΣ = 0,

but this implies that H = H0 is constant on Σ.
Geometrically, the additional condition

∫
Σ fdΣ = 0 means that the variations

under consideration preserve a certain volume function. In fact, if ψt is the normal
variation induced by a smooth function f ∈ C∞(Σ), then the volume function is
the function V : (−ε, ε) → R defined by

V(t) =
∫

[0,t]×Σ

Ψ∗(dV ),

where dV denotes the (n+1)-dimensional volume element of S
n+1 and Ψ : (−ε, ε)×

Σ → S
n+1 is the variation of ψ, Ψ(t, p) = ψt(p). Then, the first variation of V is

given by

δfV =
dV
dt

(0) =
∫

Σ

fdΣ.

We refer the reader to [5, 6] for the details. A variation is said to be volume-
preserving if V(t) = V(0) = 0 for all t. As shown by Barbosa, do Carmo and
Eschenburg in [6, Lemma 2.2], given a smooth function f ∈ C∞(Σ) with

∫
Σ fdΣ =

0, there exists a volume-preserving normal variation whose variation vector field
is fN . As a consequence, Σ has constant mean curvature (not necessarily zero)
if and only if δA = 0 for every volume-preserving variation of Σ. In other words,
constant mean curvature hypersurfaces are characterized as critical points of the
area functional when restricted to volume-preserving variations.

As in the case of minimal hypersurfaces, the stability operator of this variational
problem is given by the second variation formula of the area (1.2), and similarly
the corresponding quadratic form is also given by

Q(f) = −
∫

Σ

fJfdΣ,

with Jacobi operator J = ∆+|A|2+n. However, in contrast to the case of minimal
hypersurfaces, in the case of hypersurfaces with constant mean curvature one can
consider two different eigenvalue problems: the usual Dirichlet problem, associated
with the quadratic form Q acting on the whole space of smooth functions on Σ,
and the so called twisted Dirichlet problem, associated with the same quadratic
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form Q, but restricted to the subspace of smooth functions f ∈ C∞(Σ) satisfying
the additional condition

∫
M ΣfdΣ = 0.

Similarly, there are two different notions of stability and index, the strong sta-
bility and strong index, denoted by Ind(Σ) and associated to the usual Dirichlet
problem, and the weak stability and weak index, denoted by IndT (Σ) and associ-
ated to the twisted Dirichlet problem. Thus, the strong index is simply

Ind(Σ) = max{dimV : V � C∞(Σ), Q(f) < 0 for every f ∈ V },
and Σ is called strongly stable if and only if Ind(Σ) = 0. On the other hand, the
weak index is

IndT (Σ) = max{dimV : V � C∞
T (Σ), Q(f) < 0 for every f ∈ V },

where
C∞
T (Σ) = {f ∈ C∞(Σ) :

∫
Σ fdΣ = 0},

and Σ is called weakly stable if and only if IndT (Σ) = 0. From a geometrical point
of view, the weak index is more natural than the strong index. However, from an
analytical point of view, the strong index is more natural and easier to use.

In [4], Barbosa and Bérard studied in depth the twisted Dirichlet problem, com-
paring the eigenvalues of this problem with the eigenvalues of the usual Dirichlet
problem. For instance, it easily follows from the min-max principle that both
spectra are interwined by

λ1 < λT1 � λ2 � λT2 � · · · , (5.1)

where
Spec(J) = {λ1 < λ2 < λ3 < · · · }

is the usual spectrum of J and

SpecT (J) = {λT1 < λT2 < λT3 < · · · }
is its twisted spectrum.

When dealing with constant mean curvature hypersurfaces, instead of the sec-
ond fundamental form A, it is more convenient to work with the so called traceless
second fundamental form, which is given by φ = A − HI, where I denotes the
identity operator on X (Σ). Observe that

tr(φ) = 0 and |φ|2 = |A|2 − nH2 � 0,

with equality if and only if Σ is totally umbilical. For that reason φ is also called
the total umbilicity tensor of Σ. In terms of φ, the Jacobi operator is given by

J = ∆ + |φ|2 + n(1 +H2).

Using again the constant function f = 1 as a test function for estimating Ind(Σ)
one has

Q(1) = −
∫

Σ

(|φ|2 + n(1 +H2))dΣ = −n(1 +H2)Area(Σ) −
∫

Σ

|φ|2dΣ
� −n(1 +H2)Area(Σ) < 0.
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In particular, Ind(Σ) � 1 for every constant mean curvature hypersurface in S
n+1,

which means that there is no strongly stable constant mean curvature hypersurface
in S

n+1. It also follows from here that

λ1 � Q(1)
Area(Σ)

� −n(1 +H2) − 1
Area(Σ)

∫
Σ

|φ|2dΣ � −n(1 +H2), (5.2)

with equality λ1 = −n(1 +H2) if and only if Σ is a totally umbilical round sphere
S
n(r) ⊂ S

n+1. Observe that, in general, λ1 < 0 contributes to Ind(Σ) but not
to IndT (Σ) because its eigenspace is generated by a positive smooth function

 ∈ C∞(Σ) which does not satisfy the additional condition

∫
Σ

dΣ = 0. On the

other hand, in [13, Theorem 2.1], El Soufi and Ilias derived a sharp upper bound
for the second eigenvalue of a Scrödinger operator of the form ∆ + q of a compact
submanifold Σn of a Riemannian space form, in terms of the total mean curvature
of Σ and the mean value of the potential q. In particular, for the Jacobi operator
of a constant mean curvature hypersurface in S

n+1, their estimate yields

λ2 � − 1
Area(Σ)

∫
Σ

|φ|2dΣ � 0, (5.3)

with equality λ2 = 0 if and only if Σ is totally umbilical. See also [12] for an-
other interesting bound for the second eigenvalue of a Scrödinger operator, and its
applications to the study of minimal and constant mean curvature hypersurfaces.

6. Weakly stable constant mean curvature hypersurfaces

We have just shown that there is no compact strongly stable constant mean
curvature hypersurface in S

n+1. In contrast to this, Barbosa, do Carmo and
Eschenburg [6, Theorem 1.2] characterized the totally umbilical round spheres
S
n(r) ⊂ S

n+1 as the only compact weakly stable constant mean curvature hyper-
surfaces in S

n+1.

Theorem 8. Let Σn be a compact orientable constant mean curvature hypersurface
immersed into the unit Euclidean sphere S

n+1. Then Σ is weakly stable if and only
if Σ is a totally umbilical round sphere S

n(r) ⊂ S
n+1.

Proof. If Σ is a totally umbilical round sphere S
n(r) in S

n+1 with radius 0 < r < 1,
then 1/r2 = 1 +H2 and the Jacobi operator reduces to J = ∆ + n/r2. Therefore,
the eigenvalues of J are given by λi = µi−n/r2, where µi is the i-th eigenvalue of
the Laplacian operator on S

n(r), with the same multiplicity. In particular, λ1 =
−n/r2 < 0 with multiplicity 1 and its associated eigenfunctions are the constant
functions. Therefore, since all the other eigenfunctions of J (for the usual Dirichlet
problem) are orthogonal to the constant functions, they do satisfy the additional
condition

∫
Σ fdΣ = 0. Thus, in this case we have λTi = λi+1 = µi+1 − n/r2 for

every i � 1. Since µ2 = n/r2, it follows from here that λT1 = 0 and Σ is weakly
stable.

Conversely, assume that Σ is a compact orientable hypersurface with constant
mean curvature in S

n+1 which is weakly stable. This means that

Q(f) � 0

Rev. Un. Mat. Argentina, Vol 47-2



INDEX OF MINIMAL AND CONSTANT MEAN CURVATURE HYPERSURFACES 53

for every smooth function f ∈ C∞(Σ) with
∫
Σ
fdΣ = 0. As in the proof of

Theorem 1, we will work with the functions �v and fv, where v ∈ R
n+2 is a fixed

arbitrary vector. Since H is constant, writing |A|2 = nH2 + |φ|2 equation (3.13)
becomes

∆fv = nH�v − |A|2fv = −nH(Hfv − �v) − |φ|2fv. (6.1)

Let us consider the function gv = Hfv − �v. From (3.12) we have that ngv = ∆�v,
so that gv trivially satisfies the condition

∫
Σ
gvdΣ = 0. Using (3.12) and (6.1), we

easily get
∆gv = −n(1 +H2)gv −H |φ|2fv,

and then
Jgv = −|φ|2�v.

Therefore, we have that

Q(gv) = −
∫

Σ

gvJgvdΣ = H

∫
Σ

|φ|2fv�vdΣ −
∫

Σ

|φ|2�2vdΣ � 0

for every fixed arbitrary vector v ∈ R
n+2. Let us choose v = ei as an element of

the standard orthonormal basis of R
n+2, ei = (0, . . . , 0,

i
1, 0 . . . , 0). Then

0 �
n+2∑
i=1

Q(gei) = H

∫
Σ

|φ|2
n+2∑
i=1

fei�eidΣ −
∫

Σ

|φ|2
n+2∑
i=1

�2ei
dΣ = −

∫
Σ

|φ|2dΣ � 0,

because of
n+2∑
i=1

fei�ei = 〈N,ψ〉 = 0 and
n+2∑
i=1

�2ei
= 〈ψ, ψ〉 = 1.

But this implies that |φ|2 = 0 on Σ, and it must be totally umbilical.

It is worth pointing out that Theorem 8 can be seen also as a consequence of
the estimate (5.3), jointly with the interwining (5.1) of the two spectra of J . In
fact, if Σ is weakly stable, then we have

0 � λT1 � λ2 � − 1
Area(Σ)

∫
Σ

|φ|2dΣ � 0,

which implies again that |φ|2 = 0 and Σ must be totally umbilical.

7. Constant mean curvature hypersurfaces with low index

Apart from the totally umbilical spheres, the easiest constant mean curvature
hypersurfaces in S

n+1 are the constant mean curvature Clifford tori. They are ob-
tained by considering the standard immersions S

k(r) ↪→ R
k+1 and S

n−k(
√

1 − r2) ↪→
R
n−k+1, for a given radius 0 < r < 1 and integer k ∈ {1, . . . , n − 1}, and taking

the product immersion S
k(r) × S

n−k(
√

1 − r2) ↪→ S
n+1 ⊂ R

n+2. Its principal
curvatures are given by

κ1 = · · · = κk = −
√

1 − r2

r
, κk+1 = · · · = κn =

r√
1 − r2

,
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and its constant mean curvature H = H(r) is given by

nH(r) =
nr2 − k

r
√

1 − r2
.

In particular, H(r) = 0 precisely when r =
√
k/n, which corresponds to the

minimal Clifford torus.
For the constant mean curvature Clifford tori, one has

|A|2 + n = k/r2 + (n− k)/(1 − r2)

and the Jacobi operator reduces to J = ∆ + k/r2 + (n − k)/(1 − r2), where ∆
is the Laplacian operator on the product manifold S

k(r) × S
n−k(

√
1 − r2). In

particular, the eigenvalues of J are given by λi = µi − (k/r2 + (n − k)/(1 − r2)),
where µi are the eigenvalues of ∆, and they have the same multiplicity. Thus, λ1 =
−(k/r2+(n−k)/(1−r2)) < 0 with multiplicity 1 and its associated eigenfunctions
are the constant functions. Moreover, since all the rest of eigenfunctions of J (for
the usual Dirichlet problem) are orthogonal to the constant functions, they do
satisfy the additional condition

∫
Σ
fdΣ = 0. Thus, similarly to the case of totally

umbilical round spheres, we have λTi = λi+1 = µi+1 − (k/r2 + (n − k)/(1 − r2))
for every i � 1, and IndT (Σ) reduces to the number of positive eigenvalues of
the Laplacian operator (counted with multiplicity) which are strictly less than
k/r2 +(n− k)/(1− r2). This yields that IndT (Σ) � n+2 for every constant mean
curvature Clifford torus, and IndT (Σ) = n + 2 precisely when k/(n + 2) � r2 �
(k+2)/(n+2) (for the details, see [3, Section 3]). Observe that, in particular, this
happens when r2 = k/n, so that, the minimal Clifford tori satisfy IndT (Σ) = n+2
when regarded as constant mean curvature hypersurfaces.

Motivated by this value of IndT (Σ), in [3] Aĺıas, Brasil and Perdomo have
recently obtained the following result, which extends Theorem 1 (under the ad-
ditional hypothesis of constant scalar curvature) and Theorem 5 to the case of
constant mean curvature hypersurfaces.

Theorem 9. Let Σn be a compact orientable hypersurface immersed into the Eu-
clidean sphere S

n+1 with constant mean curvature. Assume that Σ has constant
scalar curvature. Then

(i) either IndT (Σ) = 0 (and Σ is a totally umbilic sphere in S
n+1), or

(ii) IndT (Σ) � n + 2, with equality if and only if Σ is a constant mean curva-
ture Clifford torus S

k(r) × S
n−k(

√
1 − r2) with radius

√
k/(n+ 2) � r �√

(k + 2)/(n+ 2).

As observed in [3], the value of the index of the constant mean curvature Clifford
tori S

k(r) × S
n−k(

√
1 − r2) converges to infinity as r converges either to 0 or 1.

For that reason, in contrast to the case of minimal Clifford tori, it is not possible,
in general, to find a characterization of all constant mean curvature Clifford tori
in terms of their index.

Proof. We already know from Theorem 8 that IndT (Σ) = 0 for the totally umbil-
ical round spheres, whereas IndT (Σ) � 1 for the rest of compact constant mean
curvature hypersurfaces in S

n+1, without any additional hypothesis. Then, first
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we need to show that, if the scalar curvature of Σ is constant (or equivalently, |A|2
is constant; see equation (3.5)), then IndT (Σ) � n+ 2 for every compact constant
mean curvature hypersurface in S

n+1 which is not totally umbilical. That is, we
need to find a subspace V of C∞

T (Σ) with dimV � n + 2 on which Q is negative
definite.

As in the proof of Theorem 8, we will consider the functions �v and fv, where
v ∈ R

n+2 is a fixed arbitrary vector. When H = 0, we can take V = {fv : v ∈
R
n+2}. In fact, since H = 0 and |A|2 = |φ|2 is a positive constant, then (6.1)

implies that the functions fv are eigenfunctions of J with negative eigenvalue −n
and that they also satisfy the condition

∫
Σ fvdΣ = 0. Moreover, we have also seen

in the proof of Theorem 1 that, when Σ is minimal and not totally geodesic, then
dimV = n+ 2.

Therefore, in what follows we assume that H is a non-zero constant. In that
case, we take V = U− ⊕ U+ where

U− = {�v − α−fv : v ∈ R
n+2} and U+ = {�v − α+fv : v ∈ R

n+2},
and α± are the two different real roots of the quadratic equation

nHα2 + (n− |A|2)α− nH = 0.

That is,

α± =
|A|2 − n±√

D

2nH
, where D = (|A|2 − n)2 + 4n2H2 > 0.

Using (3.12) and (6.1), it is not difficult to see that Jf+λ±f = 0 for every f ∈ U±,
where

λ− =
−(n+ |A|2) −√

D

2
< λ+ =

−(n+ |A|2) +
√
D

2
< 0,

and that they also satisfy the condition
∫
Σ fdΣ = 0. Therefore

IndT (Σ) � dimV = dimU− + dimU+.

It remains to estimate dimU− + dimU+. Taking into account that U± = imϕ±,
where ϕ± : R

n+2 → C∞(Σ) is the linear map given by ϕ±(v) = �v − α±fv, we
deduce that

dimU± = n+ 2 − dim kerϕ±.
On the other hand, using that kerϕ− ∩ kerϕ+ = {0} we also have

dim kerϕ− + dim kerϕ+ = dim(kerϕ− ⊕ kerϕ+) � n+ 2,

which implies

dimU− + dimU+ = 2(n+ 2) − (dim kerϕ− + dim kerϕ+) � n+ 2,

and therefore IndT (Σ) � n + 2. We refer the reader to [3, Section 4] for further
details about this proof.

Moreover, if IndT (Σ) = n+ 2 then dim(kerϕ− ⊕ kerϕ+) = n+ 2 which means
that R

n+2 splits as direct sum of the two subspaces kerϕ− and kerϕ+. Then, at
any point p ∈ Σ the tangent space TpΣ splits also as a direct sum of two subspaces

TpΣ = TpΣ ∩ R
n+2 = TpΣ− ⊕ TpΣ+,
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where TpΣ− = TpΣ∩kerϕ− and TpΣ+ = TpΣ∩kerϕ+. Using that Σ is not totally
umbilical, and equations (3.7) and (3.9), we can see that, at each point p ∈ Σ, TpΣ−

and TpΣ+ are subspaces of principal directions of TpΣ with constant principal
curvatures −1/α− and −1/α+, respectively (see [3, Section 4] for the details).
As a consequence, Σ is a compact isoparametric hypersurface of S

n+1 with two
distinct principal curvatures, and from the well known rigidity result by Cartan
[9] we conclude that Σ is a standard product of the form S

k(r) × S
n−k(

√
1 − r2)

with radius 0 < r < 1. Finally, from our previous discussion about the values of
IndT (Σ) for those hypersurfaces, we conclude that it must be

√
k/(n+ 2) � r �√

(k + 2)/(n+ 2).

8. A sharp estimate for the first eigenvalue of the Jacobi operator

As we already know from (5.2), the first eigenvalue of the Jacobi operator of a
compact hypersurface Σn with constant mean curvature H in S

n+1 satisfies

λ1 � −n(1 +H2),

with equality if and only if Σ is a totally umbilical round sphere. As an extension
of Theorem 3 to the case of constant mean curvature, Aĺıas, Barros and Brasil in
[2] have recently proved that when Σ is not totally umbilical, then not only must
be λ1 < −n(1 +H2) but it fact it must hold

λ1 � −2n(1 +H2) +
n(n− 2)√
n(n− 1)

|H |max
Σ

|φ|,

where |φ| =
√|A|2 − nH2 is the norm of the total umbilicity tensor of Σ. More-

over, they were also able to characterize the case where equality holds, obtaining
the following extension of Theorem 1.

Theorem 10. Let Σn be a compact orientable hypersurface immersed into the
Euclidean sphere S

n+1 with constant mean curvature H, and let λ1 stand for the
first eigenvalue of its Jacobi operator. Then

(i) either λ1 = −n(1 +H2) (and Σ is a totally umbilic sphere in S
n+1), or

(ii) λ1 � −2n(1 +H2) + n(n−2)√
n(n−1)

|H |maxΣ |φ|, with equality if and only if

(a) H = 0 and Σ is a minimal Clifford torus S
k(
√
k/n)×S

n−k(
√

(n− k)/n),
with k = 1, . . . , n− 1;

(b) H �= 0, n = 2, and Σ2 is a constant mean curvature Clifford torus
S

1(r) × S
1(
√

1 − r2) with 0 < r < 1, r �=√1/2;
(c) H �= 0, n � 3, and Σn is a constant mean curvature Clifford torus

S
n−1(r) × S

1(
√

1 − r2) with 0 < r <
√

(n− 1)/n.

For the proof of Theorem 10, we will need the following result due to Alencar
and do Carmo, which extends Theorem 6 to the case of constant mean curvature
hypersurfaces.

Theorem 11. Let Σn be a compact orientable hypersurface immersed into the
Euclidean sphere S

n+1 with constant mean curvature H, and assume that |φ| � αH ,
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where

αH =
√
n

2
√
n− 1

(√
n2H2 + 4(n− 1) − (n− 2)|H |

)
is the positive root of the polynomial

PH(x) = x2 +
n(n− 2)√
n(n− 1)

|H |x− n(1 +H2). (8.1)

Then

(i) either |φ| = 0 (and Σ is a totally umbilic sphere in S
n+1), or

(ii) |φ| = αH and
(a) H = 0 and Σ is a minimal Clifford torus S

k(
√
k/n)×S

n−k(
√

(n− k)/n),
with k = 1, . . . , n− 1;

(b) H �= 0, n = 2, and Σ2 is a constant mean curvature Clifford torus
S

1(r) × S
1(
√

1 − r2) with 0 < r < 1, r �= √1/2;
(c) H �= 0, n � 3, and Σn is a constant mean curvature Clifford torus

S
n−1(r) × S

1(
√

1 − r2) with 0 < r <
√

(n− 1)/n.

The proofs of Theorem 10 and Theorem 11 make use of an extension of Simons
formula (4.1) for the case of hypersurfaces with constant mean curvature, which is
due to Nomizu and Smyth [17]. To see it, consider φ = A−HI the total umbilicity
tensor and recall that |φ|2 = |A|2 − nH2. Since we are assuming now that H is
constant, we have that ∇φ = ∇A and ∆φ = ∆A, and (4.2) can be written in
terms of φ as follows

1
2
∆|φ|2 =

1
2
∆|A|2 = |∇φ|2 + 〈φ,∆φ〉 +H〈I,∆φ〉. (8.2)

Moreover, by (4.3) we also have

∆φ = ∆A = nHA2 + (n− |A|2)A− nHI

= nHφ2 + (n(1 +H2) − |φ|2)φ −H |φ|2I.
Then, taking into account that tr(φ) = 0, (8.2) becomes

1
2
∆|φ|2 = |∇φ|2 + (n(1 +H2) − |φ|2)|φ|2 + nHtr(φ3). (8.3)

As a first application of equation (8.3), we may give the proof of Theorem 11.
For the proof, we will also need the following auxiliary result, known as Okumura
lemma, which can be found in [19] and [1, Lemma 2.6].

Lemma 12. Let a1, . . . , an be real numbers such that
∑n

i=1 ai = 0. Then

− n− 2√
n(n− 1)

(
n∑
i=1

a2
i )

3/2 �
n∑
i=1

a3
i � n− 2√

n(n− 1)
(
n∑
i=1

a2
i )

3/2.

Moreover, equality holds in the right-hand (respectively, left-hand) side if and only
if (n− 1) of the ai’s are nonpositive (respectively, nonnegative) and equal.
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Proof of Theorem 11. Since tr(φ) = 0, we may use Lemma 12 to estimate tr(φ3)
as follows

|tr(φ3)| � n− 2√
n(n− 1)

|φ|3,

and then

nHtr(φ3) � −n|H ||tr(φ3)| � − n(n− 2)√
n(n− 1)

|H ||φ|3.

Using this in (8.3), we find

1
2
∆|φ|2 � |∇φ|2 + (n(1 +H2) − |φ|2)|φ|2 − n(n− 2)√

n(n− 1)
|H ||φ|3 (8.4)

= |∇φ|2 − |φ|2PH(|φ|),
where PH is given by (8.1). That is,

0 � |∇φ|2 � 1
2
∆|φ|2 + |φ|2PH(|φ|).

Integrating this inequality on Σ, and using Stokes’ theorem and the hypothesis
|φ| � αH , we find that

0 �
∫

Σ

|∇φ|2dΣ �
∫

Σ

|φ|2PH(|φ|)dΣ � 0,

because of PH(x) � 0 when x ∈ [0, αH ]. Therefore, |∇φ| = |∇A| = 0 on Σ,
and either |φ| = 0 (and Σ is totally umbilical) or |φ| = αH . This proves part
(i) of Theorem 11 and the first statement of part (ii). If H = 0, then |φ| = |A|,
α0 =

√
n and part (ii)(a) just follows from (ii) in Theorem 6. If H �= 0 and

|φ| = αH , then a local argument using the facts that ∇A = 0 and that equality
holds in the right-hand side of Lemma 12 implies that Σ has exactly two constant
principal curvatures, with multiplicities (n − 1) and 1. Then, by Cartan’s result
on isoparametric hypersurfaces of the sphere [9] we conclude that Σ must be a
constant mean curvature Clifford torus of the form S

n−1(r) × S
1(
√

1 − r2) with
0 < r < 1 and r �= √

(n− 1)/n, since we are assuming H �= 0. Finally,to identify
which constant mean curvature Clifford tori do appear, a direct computation shows
that when n = 2 we have |φ|2 = α2

H for all of them, but when n � 3 we have

|φ|2 =
n

4(n− 1)

(√
n2H2 + 4(n− 1) − (n− 2)|H |

)2

= α2
H

when r <
√

(n− 1)/n, and

|φ|2 =
n

4(n− 1)

(√
n2H2 + 4(n− 1) + (n− 2)|H |

)2

> α2
H

when r >
√

(n− 1)/n (for the details see [1, p. 1227] or [2, p. 878])

Now we are ready to prove Theorem 10.

Proof of Theorem 10. We already know that λ1 � −n(1 + H2) with equality if
and only if Σ is totally umbilical, which proves part (i). Then we may assume
that Σ is not totally umbilical and consider, for every ε > 0, the positive smooth
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function fε =
√
ε+ |φ|2. As in the proof of Theorem 3, we will use fε as a test

function to estimate λ1 in (1.3). We observe that

fε∆fε =
1
2
∆|φ|2 − 1

4(ε+ |φ|2) |∇|φ|2|2,

which using (8.4) yields

fε∆fε � |∇φ|2 − 1
4(ε+ |φ|2) |∇|φ|2|2 − |φ|2PH(|φ|). (8.5)

From Lemma 7 applied to φ, we also have

|∇φ|2 − 1
4(ε+ |φ|2) |∇|φ|2|2 � 2

n+ 2
|∇φ|2,

which jointly with (8.5) gives

fε∆fε � 2
n+ 2

|∇φ|2 − |φ|2PH(|φ|).
Then,

−fεJfε � |φ|2PH(|φ|) − 2
n+ 2

|∇φ|2 − (ε+ |φ|2)(|φ|2 + n(1 +H2)).

Therefore, using fε as a test function in (1.3), we get

λ1

∫
Σ

f2
ε dΣ �

∫
Σ

|φ|2PH(|φ|)dΣ − 2
n+ 2

∫
Σ

|∇φ|2dΣ (8.6)

−
∫

Σ

(ε+ |φ|2)(|φ|2 + n(1 +H2))dΣ.

Since Σ is not totally umbilical, then

lim
ε→0

∫
Σ

f2
ε dΣ =

∫
Σ

|φ|2dΣ > 0,

and letting ε→ 0 in (8.6) we conclude that

λ1 � −2n(1 +H2) +
n(n− 2)√
n(n− 1)

|H |
∫
Σ
|φ|3dΣ∫

Σ
|φ|2dΣ − 2

n+ 2

∫
Σ
|∇φ|2dΣ∫

Σ
|φ|2dΣ

� −2n(1 +H2) +
n(n− 2)√
n(n− 1)

|H |max
Σ

|φ|.

This proves the first statement of part (ii). Moreover, if

λ1 = −2n(1 +H2) +
n(n− 2)√
n(n− 1)

|H |max
Σ

|φ|,

then ∇φ = 0 on Σ and by Lemma 7 we know that |φ|2 is a positive constant. Thus
J = ∆ + (|φ|2 + n(1 +H2)), where |φ|2 + n(1 + H2) is a constant, and the first
eigenvalue of J is simply the constant

−(|φ|2 + n(1 +H2)) = λ1 = −2n(1 +H2) +
n(n− 2)√
n(n− 1)

|H ||φ|.

That is, PH(|φ|) = 0 and |φ| = αH , and by Theorem 11 we know that it must
hold either (a), (b) or (c). Conversely, we already know from Theorem 3 that
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λ1 = −2n for all minimal Clifford tori in S
n+1, and it is not difficult to see that

λ1 = −2n(1 +H2) + n(n−2)√
n(n−1)

|H ||φ| for the constant mean curvature Clifford tori

in (b) and (c). See [2] for the details.

Finally, it is worth pointing out that Perdomo’s technique in [21] also works
here to characterize the equality case. For the details about this claim, see [2,
Section 4].
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