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INTEGRABILITY OF F-STRUCTURES ON GENERALIZED

FLAG MANIFOLDS

SOFÍA PINZÓN∗

Abstract. Here we consider a generalized flag manifold F = U/K, and a

differential structure F which satisfy F
3 +F = 0; these structures are called

f -structures. Such structure F determines in the tangent bundle of F some

ad(K)−invariant distributions. Since flag manifolds are homogeneous reduc-

tive spaces, they certainly have combinatorial properties that allow us to

make some easy calculations about integrability conditions for F itself and

the distributions that it determines on F. An special case corresponds to

the case U = U(n), the unitary group, this is the geometrical classical flag

manifold and in fact tools coming from graph theory are very useful.

1. Introduction

A tensor field F of type (1,1) on a Riemannian manifold is called an f -structure

if F3 + F =, and almost complex if F2 = −I. Obviously, an almost complex

structure is also an f -structure. Integrability of almost complex structures is

equivalent to the associate Nijenhuis tensor being null. In [7] Ishihara and Yano

present an analogous theorem in the case of f -structures. We use their results to

study integrability conditions when one generalized flags manifold are consider.

Let G be a semisimple Lie group. A generalized flag manifold with Lie group

G is a reductive homogeneous space F = G/C(S) where C(S) is a centralizer of

a torus. This manifold can be expressed as a F = U/K, where U is the compact

connected form of G and K = C(S) ∩ U. This manifold and its tangent space

Tb(F) = q, have a characterization in terms of the corresponding root system

terms. We will consider along this paper a generalized flag manifold together

with an invariant metric Λ and an U -invariant f -structure F , meaning that F
commute with the adjoint action of U. Ww will denote by F the complexification

of this f -structure, which is diagonalizable with eigenvalues i, 0,−i and eigenspaces

q+
Θ, q0

Θ, q−Θ. In analogy with the almost complex case we will distinguish between
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100 SOFÍA PINZÓN

vectors of types (1, 0, 0), (0, 1, 0) or (0, 0, 1) corresponding to the eigenvalues of

0, i,−i respectively.

The integrability of F , the distributions that it determines in q and the proper-

ties of that distributions are our central topic. We characterize in root terms and

in graph theoretical terms the integrability conditions.

In particular, we get that the only integrable f -structure, different from the null

structure, in the maximal classical flag manifold is the structure which corresponds

to the integrable almost complex structure, that is, in graph theoretic terms which

corresponds to the canonical tournament.

Theorem A necessary and sufficient condition for F to be integrable is that

N ≡ 0. Therefore F is integrable if in q there are not exist triples of type

{0, 3, 0}, {2, 1, 0}, {1, 1, 1} or {1, 2, 0}. In F(n) this condition is equivalent to the

associated digraph avoiding the subdigraphs (2), (3), (4), (5) or (6) in figure 2,

that is, the digraph associated to F must be isomorphic to the null digraph or the

canonical tournament.

The Theorem above will appear like Theorem 8.8 and with this result we gen-

eralized a Theorem from Burstall [4] given in the context of almost complex struc-

tures where he shows that one almost complex structure is integrable if and only if

its associated tournament is isomorphic to the canonical tournament, that is, the

tournament which does not have three-cycles in root terms it avoids {0,3,0}-triples.

2. Preliminaries

In this section we shall briefly review some general concepts involving gener-

alized flag manifold and some operators and structures which we will use in all

this paper. First we need to present a survey about some operators in differential

geometry, then we will calculate them specifically on generalized flag manifolds,

to this topic we used, specially Props I.3.2, I.3.4, I.3.5 in [8].

2.1. Operators on a general differential manifold.

• Lie derivative. This is the resulting derivative when a tensor field or a

differential form is differentiated with respect to a vector field.

1) Lie derivative on tensor fields: LieXY = [X, Y ].

2) Lie derivative on tensors: On tensors K of type (1,r) we get

(LieXK)(Y1, . . . , Yr) = [X, K(Y1, . . . , Yr)]−
r
∑

i=1

K(Y1, . . . , [X, Yi] . . . , Yr). (1)
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INTEGRABILITY OF F-STRUCTURES 101

3) Lie derivative on forms: If ω is an r-form, then

(LieXω)(Y1, . . . , Yr) = Xω(Y1, . . . , Yr)−
r
∑

i=1

w(Y1, . . . , [X, Yi] . . . , Yr). (2)

• The riemannian invariant connection. Each Riemannian manifold ad-

mits a unique metric connection with vanishing torsion, called the Rie-

mannian connection or Levi-Civita connection, and it satisfies T (X, Y ) =

[X, Y ]−∇XY +∇Y X = 0 and Xg(Y, Z) = g(∇XY, Z) + g(Y,∇XZ), where

g is the metric on the manifold and T is the torsion tensor [8].

1) The covariant derivative on tensors. Given a tensor field K of

type (r, s), the covariant differential∇K of K is a tensor field of type (r, s+1)

defined as follows. (∇K)(X1, . . . , Xs; Y ) = (∇Y K)(X1, . . . , Xs).

2) The covariant derivative on forms. If ω is an r-form, then

(∇ω)((X1, . . . , Xr), Y ) = Y ω(X1, . . . , Xs)−
r
∑

i=1

ω(X1, . . . ,∇Y Xi, . . . , Xr).

• Exterior derivative on forms. Exterior differentiation d can be charac-

terize as follow:

– d is a degree-increasing R-linear mapping, that is if ω is a p form, dω is

a p + 1-form;

– signed derivation w.r.t. the wedge product, that is, if ω is a p-form and

θ is a q-form, then d(ω ∧ θ) = dω ∧ θ + (−1)pω ∧ dθ;

– d2 = 0.

– For 0-forms d is defined by 〈df, X〉 = Xf.

d extends to r-forms coefficient-wise, using basis expansions, resulting in

(r + 1)dω(X0, X1, . . . , Xr) =

r
∑

i=0

(−1)iXi(ω(X0, X1, . . . , X̂i, . . . , Xr)) +

∑

0≤i<j≤r

(−1)i+jω([Xi, Xj], X0, . . . , X̂i, . . . , X̂j , . . . , Xr).

Here X̂i means that you not consider that component. On functions the

1-form df is defined by df(Y ) = Y f. Otherwise we get

dω(X) = −
∑

±(∇ω)(X̂, Xi). (3)

On 1-forms we get

2dω(X, Y ) = X(ω(Y ))− Y ω(X)− ω([X, Y ]). (4)
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102 SOFÍA PINZÓN

On 2-forms,

3dω(X, Y, Z) = Cyclic {Xω(Y, Z)− ω([X, Y ], Z)} (5)

where Cyclic is the cyclic symmetrization operator w.r.t. the vector fields

involved. See [8] Prop. I.3.11. By duality we get 〈∇f,∇g〉 = 〈df, dg〉.

3. Generalized Flag Manifold

A generalized flag manifold is and homogeneous space of the form G/K =

G/C(S), where G is a semisimple compact Lie group and C(S) is the centralizer

of some torus S in G. If the torus S is maximal, say T, then F = G/T is called a

maximal (full) flag manifold, if S is not maximal, G/C(S) is called a partial flag

manifold. Lets us describe generalized flag manifolds associated with the Lie group

G in terms of the root systems associated with the corresponding semisimple Lie

algebra g.

Assume g complex and let h be a Cartan subalgebra of g; denote by Π and Π+

the root system and the positive root system , respectively, (of g with respect to

h) and

g = h⊕
∑

α∈Π

its root decomposition, where gα = {X ∈ g : [H, X ] = α(H)X, ∀H ∈ h},
α ∈ Π, is the one-dimensional complex root space corresponding to α. As Π is the

generator of h∗ (the dual of h), we have the elements Hα, defined by α(·) = 〈Hα, ·〉.
Denote by hR the subspace of h generated over R by Hα, α ∈ Π. Choose now

Σ = {α1, . . . , αl} ⊂ Π+ a simple root system, take Θ ⊂ Σ and denote by 〈Θ〉 the

set of roots generated by Θ. Each subset 〈Θ〉± = 〈Θ〉 ∩Π± splits g as follows

g = h⊕
∑

α∈〈Θ〉+

gα ⊕
∑

α∈〈Θ〉+

g−α ⊕
∑

β∈Π+\〈Θ〉+

gβ ⊕
∑

β∈Π+\〈Θ〉+

g−β . (6)

Fix a Weyl basis of g, that is, a set of vectors {Xα ∈ g | α ∈ Π} which satisfies

[Xα, X−α] = Hα or equivalently 〈Xα, X−α〉 = 1, since [Xα, X−α] = 〈Xα, X−α〉Hα

and [Xα, Xβ] = mα,βXα+β with mα,β ∈ R, mα,β = m−α,−β and mα,β = 0 if

α + β /∈ Π.

Let now

pΘ = h⊕
∑

α∈〈Θ〉+

gα ⊕
∑

α∈〈Θ〉+

g−α ⊕
∑

β∈Π+\〈Θ〉+

gβ . (7)

pΘ is the parabolic subalgebra determined by Θ in g. Then equation ((6)) becomes

g = pΘ ⊕
∑

β∈Π+\〈Θ〉+

g−β. (8)
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INTEGRABILITY OF F-STRUCTURES 103

Then the generalized flag manifold FΘ associated to {g, Θ} corresponds to the

homogeneous space FΘ = G/PΘ, where PΘ is the normalizer of pΘ in G.

Denote by u a real compact form of g, and by U ⊂ G the connected subgroup

associated to u. Assume u the real subspace generated by ihR, Aα, Sα, with α ∈
Π \Θ, where Aα = Xα −X−α and Sα = i(Xα + X−α). Let KΘ = PΘ ∩ U, which,

by construction, is the centralizer of a torus. U acts in a transitively way on FΘ,

and we can write FΘ = U/KΘ. If Θ = ∅, FΘ = F correspondes to the maximal

flag manifold F, otherwise it corresponds to a partial flag manifold.

The generalized flag manifold FΘ = U/KΘ is a reductive homogeneous space.

In fact let uβ = u ∩ (gβ ⊕ g−β), β ∈ Π \ 〈Θ〉 and

qΘ =
∑

β∈Π\〈Θ〉

uβ . Then,

(i) u = tΘ ⊕ qΘ, tΘ ∩ qΘ = ∅;
(ii) Ad(KΘ)qΘ ⊂ qΘ, that is, [tΘ, qΘ] ⊂ qΘ,

and FΘ satisfies the condition to be a a reductive homogeneous space (see [8]).

Denote by b the origin of FΘ = U/KΘ. We identify with qΘ = Tb(FΘ). This

identification is given by X ∈ qΘ → Xb ∈ Tb(FΘ), that is, by evaluation of X ∈ qΘ

in b like a vector field in Tb(FΘ). The tangent space to FΘ in b is, naturally,

identify with qΘ = u ⊖ t =
∑

β∈Π\〈Θ〉

uβ generated by Aα, Sα, α ∈ Π \ 〈Θ〉, where

Aα = Xα−X−α and Sα = i(Xα+X−α). In the same way, the complexified tangent

space of FΘ is identified with qC

Θ = g⊖ h = ⊕α∈Π\〈Θ〉gα.

One special case of flag manifold corresponds to the geometrical or classical flag

manifold, in this case U = U(n) the unitary group and C(S) has to be conjugate

to some subgroup S(Un1
×Un2

× ...×Unk
), with n1, n2, ..., nk positive integers and

n1 + n2 + ... + nk = n. If mi = n1 + ... + ni, the homogeneous space SUn/S(Un1
×

...×Unk
) can be identified with the set of “partial flags” F (m1, ..., mk), that is, the

manifold of the flags {0} = E0 ⊂ Em1
⊂ ... ⊂ Emk−1

⊂ Emk
= Cn, where Ei is an

i-dimensional subspace of Cn. The flag manifold corresponding to the case nr = 1

for all 1 ≤ r ≤ k will be denoted by F(n), the space of “full flags” or maximal flags

in Cn. Each flag consists of the sequence {0} = E0 ⊂ E1 ⊂ ... ⊂ En−1 ⊂ En = Cn.

In particular, the vectors Ejk, j 6= k y Ejj − Ekk, j < k, is a Weyl basis for

sl(n, C), and h is the subalgebra of diagonal matrices in sl(n, C), Θ = ∅, then

TbF = q ⊂ su(n) is spanned by Ajk = Ejk − Ekj and Sjk = i(Ejk + Ekj), where

Ejk is the usual canonical basis in gl(n, C).

Example 1.1: Consider

F(4) = U(4)/(U(1)× U(1)× U(1)× U(1)) = U(4)/T,
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104 SOFÍA PINZÓN

q = T (F(4))(b) =





























0 a b c

−ā 0 d e

−b̄ −d̄ 0 f

−c̄ −ē −f̄ 0











: a, b, c, d, e, f ∈ C



















,

here,

A34 =











0 0 0 0

0 0 0 0

0 0 0 1

0 0 −1 0











, S34 =











0 0 0 0

0 0 0 0

0 0 0 i

0 0 i 0











: i =
√
−1.

For an interesting and complete review about homogeneous spaces we recommend

[1].

4. Invariant Metrics

A U -invariant Riemannian metric ds2
Λ in FΘ is completely determined by its

values in b, that is, by an inner product (·, ·) in qΘ, invariant under the associated

action of KΘ ([3]). Any inner product in qΘ, invariant under the associated action

of KΘ, has the form (X, Y )ΛΘ = −〈ΛΘ ◦X, Y 〉, with ΛΘ : qΘ → qΘ definite with

respect to the Cartan-Killing form and ◦ is the Hadamard product or term by term

product [3]. The inner product (·, ·)ΛΘ admits a natural extension to a bilinear

symmetric form on qΘ
C. We use the same notation (·, ·)ΛΘ for this form, as well

as for the correspondent complexified form ΛΘ. KΘ-invariance of (·, ·)ΛΘ amounts

to the Weyl basis being a complex basis of eigenvectors for the action of ΛΘ, in

other words in qC

Θ we have

ΛΘXα = λΘ
αXα, (9)

with λΘ
α = λΘ

−α > 0. for α ∈ Π \ 〈Θ〉
for the real space qΘ, the elements of the canonical base Aα, Sα, with α ∈

Π \ 〈Θ〉, are eigenvectors for the same eigenvalue λΘ
α. We denote by ds2

ΛΘ the U -

invariant metric associated with ΛΘ. In what follows we will use ΛΘ as synonymous

of ds2
ΛΘ .

5. Invariant f-estructures

K. Yano [20] in 1961 introduced f -structure for general manifolds; here we

shall be interested in invariant structures. An U -invariant f -structure in FΘ is

completely determined by an endomorphism FΘ : qΘ → qΘ, satisfying (FΘ)3 +

FΘ = 0, which commutes with the adjoint action of KΘ. We also denote by

FΘ its complexification FΘ : qC

Θ → qC

Θ which is diagonalizable with eigenvalues

i, 0,−i, and denote by q+
Θ, q0

Θ, q−Θ the corresponding eigenspaces. Then we have
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INTEGRABILITY OF F-STRUCTURES 105

qC

Θ = q+
Θ + q0

Θ + q−Θ with q+
Θ = q−Θ. The U -invariance of FΘ guarantees that

FΘ(gα) ⊆ gα for all α ∈ Π \ 〈Θ〉, with equality when FΘ is an invariant almost

complex structure (see [17]). Thus FΘ is determined uniquely by the values

εΘ
α ∈ {0,±1}, α ∈ Π \ 〈Θ〉, defined by FΘ(Xα) = iεΘ

α Xα. These values satisfy

εΘ
−α = −εΘ

α , therefore FΘ is defined by its values in Π+ \ 〈Θ〉+. In the sequel

we allow some abuse of notation and identify the invariant f -structure FΘ on FΘ

with {εΘ
α : α ∈ Π\ 〈Θ〉}. In our invariant context if the f -structure is an invariant

almost complex structure this amounts to εΘ
α 6= 0 for all α ∈ Π \ 〈Θ〉.

In what follows we shall simplify notation by suppressing the subscript Θ in the

context of partial flag manifolds.

Denote by p and l the complementary projections onto the spaces q0 and q++q−

denoted as p and l, respectively and defined as follow

I = −F2, p = F2 + I. (10)

Since F is an f -structure we have

l + p = 1, l2 = l, p2 = p, lp = pl = 0, (11)

where I denote the identity. In other words l and p are complementary projec-

tion operators in q.

Consider an f -estructure F and l, p like below. Then:

F l = lF = F , Fp = pF = 0, F2l = −l,

that is, F act in q+ + q− like an almost complex structure and in q0 like the null

operator.

We are interested in studying integrability conditions for F , the distributions

q0 and q+ + q−. For this purpose, we need the Nijenhuis tensor which describes

the torsion of F . It is given by

N(X, Y ) = 2([F(X),F(Y )]−F([F(X), Y ])−F([X,F(Y )])− L([X, Y ]).

Using Weyl basis properties we get

1/2N(Xα, Xβ) = [F(Xα),F(Xβ)]−F([F(Xα), Xβ ])+

−F([Xα,F(Xβ)])− L([Xα, Xβ ]

= (−εαεβ + εαεα+β + εβεα+β + ε2
α+β)[Xα, Xβ].

Because l + p = 1,

N(Xα, Xβ) = lN(lXα, lXβ) + pN(lXα, lXβ)+

+N(lXα, pXβ) + N(pXα, lXβ) + N(pXα, pXβ).
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106 SOFÍA PINZÓN

With some simple calculations and using, again, Weyl basis properties we ob-

tain this other identities:

lN(lXα, lXβ) = εαεβεα+β(εα + εβ − εα+β − εαεβεα+β)[Xα, Xβ ]; (12)

pN(lXα, lXβ) = p[FXα,FXβ ] = εαεβ(ε2
α+β − 1)[Xα, Xβ ]; (13)

N(lXα, lXβ) = F{l(LiepXβ
F)lXα}; (14)

N(pXα, pXβ) = lN(pXα, pXβ) = (εαε2
β − ε2

α − ε2
β + 1)ε2

α+β[Xα, Xβ ]. (15)

6. Forms on F

• Riemannian Connection. Since FΘ is a naturally reductive homogeneous

space its Riemannian connection is given by

2∇XY = [X, Y ]qΘ
+ 2U(X, Y ), (16)

where U is a symmetric bilinear application U : qΘ × qΘ → qΘ defined by

2ΛΘ(U(X, Y ), Z) = ΛΘ(X, [Y, Z]qΘ
) + ΛΘ([Z, X ]qΘ

, Y ),

for all X, Y, Z ∈ qΘ.

Then the concrete action of the Riemannian connection on the elements of the

Weyl basis is given by:

Proposition 6.1. For (FΘ, ΛΘ) let α, β, α+β ∈ Π\〈Θ〉, and Xα, Xβ , Xα+β ∈ qΘ,

elements in the Weyl base. Then

∇Xα
Xβ = mα,β

λΘ
α+β + λΘ

β − λΘ
α

2λΘ
α+β

Xα+β. (17)

•Kähler form. σ(Xα, Xβ) = (Xα,F(Xβ))Λ = −〈 Λ(Xα),F(Xβ) 〉,

σ(Xα, Xβ) =

{

iεαλα β = −α, εα 6= 0,

0 otherwise.

for all α, β ∈ Π′.

• Derivative in the connection.

(d∇F)(Xα, Xβ) = ∇Xα
FXβ −∇Xβ

FXα −F [Xα, Xβ]

= i
(λα−λβ)(εα−εβ)+λα+β(εα+εβ−2εα+β)

2(λα+β) [Xα, Xβ ].

• Lie derivative:

(LieXβ
F)Xα = F [Xα, Xβ ]− [FXα, Xβ ]

= i(εα+β − εβ)[Xα, Xβ ].
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INTEGRABILITY OF F-STRUCTURES 107

7. Graph theoretic description of (F(n),F , Λ)

On F(n) invariant f -structures are in 1:1 correspondence with digraphs G =

(V, E). The correspondence is given by associating with the f -structure F(Ejk) =

iεjkEjk a digraph G whose vertices are {1, · · · , n} and whose arrows are given by

the following rules: For j < k

j → k ⇐⇒ εjk = 1,

j ← k ⇐⇒ εjk = −1,

j 6↔ k ⇐⇒ εjk = 0.

Similarly, through the matrix Λ = {λjk} we may identify an invariant metric ds2

on (F(n),F) with a positive weighting on the edge set E of the digraph.

Example 7.1. Again in F(4) let the f -structure











0 a b c

−ā 0 d e

−b̄ −d̄ 0 f

−c̄ −ē −f̄ 0











7−→











0 ia −ib −ic

−iā 0 0 ie

ib̄ 0 0 0

ic̄ −iē 0 0











Figure 1. Digraph associated to the f -structure in Example 7.1.

There exists a complete classification for invariant f -structures on F(n) (see

[5]). Here we present, up to isomorphism, the invariant f -structures in the case

F(3), this graphs are the most relevant in our present work.
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108 SOFÍA PINZÓN

Figure 2. Isomorphism classes for n = 3

We are now ready to present our characterization of integrability in graph the-

oretical terms (classical case) or in root terms (general case).

8. Integrability via projections

In this section we will use all the formulas given before to establish integrability

conditions for F and for the associated distributions q0 and q+ + q−.

First, we will call the root triple {α, β, γ} with α, β, γ ∈ Π whenever α+β+γ =

0, {α, β, γ} is called a zero-sum triple. Given an invariant f -structure F , each

root assumes a sign in {0,±1}.
Roots triples may then be classified by their sign characteristic, which is a

triple (p, q, r) (p + q + r = 3) where p corresponds to the quantity of roots in

triple who has 0 like its eigenvalue, q corresponds to the quantity of roots in

triple who has i like its eigenvalue and r corresponds to the quantity of roots in

triple who has −i like its eigenvalue. There are six possible sign characteristics:

(3, 0, 0), {2, 1, 0} = {(2, 1, 0), (2, 0, 1)}, {1, 2, 0} = {(1, 2, 0), (1, 0, 2)}, (1, 1, 1),

{0, 2, 1} = {(0, 2, 1), (0, 1, 2)}, {0, 3, 0} = {(0, 3, 0), (0, 0, 3)}.
By the Frobenious Theorem we know that a distribution is integrable if and

only if it is involutive. Thus q0 is integrable if and only if l[pXα, pXβ ] = 0, that

is,

l[pXα, pXβ] = (ε2
α − 1)(ε2

β − 1)ε2
α+β[Xα, Xβ ] = 0. (18)

Theorem 8.1. A necessary and sufficient condition for the distribution q0 to be

integrable is that in q does not admit triples of type {2, 1, 0}. In case of F(n) this
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condition is equivalent to the associated digraph avoiding the subdigraph (2) in

Figure 2.

Proof. By equation (18) q0 is not integrable in case where (ε2
α−1)(ε2

β−1)ε2
α+β 6=

0. This can only occur when the triple α, β, α + β is a {2, 1, 0}-triple. In the clas-

sical case, this corresponds the configuration (2) in Figure 2.

Now q+ + q− is integrable if and only if p[lXα, lXβ] = 0 but

p[lXα, lXβ] = (F2 + 1)[−F2Xα,−F2Xβ ] (19)

= ε2
αε2

β(F2 + 1)[Xα, Xβ ] (20)

= ε2
αε2

β(1 − ε2
α+β)[Xα, Xβ]. (21)

Thus we have the following.

Theorem 8.2. A necessary and sufficient condition for distribution q+ +q− to be

integrable is that in q does not amit triples of type {1, 2, 0} and {1, 1, 1}. In case of

F(n) this condition is equivalent to the associated digraph avoiding the subdigraph

(3),(4) and (5) in Figure 2.

Proof. By equation (21) q+ + q− is not integrable in case ε2
αε2

β(1 − ε2
α+β) 6= 0.

This can only occur when the triple α, β, α + β is a {1, 2, 0}-triple or a {1, 1, 1}-
triple. In the classical case, this corresponds to configurations (3), (4) and (5) in

Figure 2.

When q0 and q+ + q− are integrable, the structure of the submanifolds defined

by these distributions and its properties is of interest. We hope to be able to

report on this structure in a future communication.

Looking for the integrability of F we need another definition from [7].

Definition 8.3. Assume q+ +q− integrable and let X ′ be an arbitrary vector field

which is tangent to an integrable manifold of q+ + q−. It is defined F ′X ′ = FX ′.

Then F ′ is an almost-complex structure on each integral manifold of q+ + q−. F
is called partially integrable if both, q+ + q− and F ′ are integrable.

Theorem 8.4. A necessary and sufficient condition for F be partially integrable

is that one of the following equivalent conditions be satisfied:

N(lXα, lXβ) = 0, or N(FXα,FXβ) = 0.

Using Weyl basis properties the Theorem 8.4 is equivalent to the following.

Theorem 8.5. A necessary and sufficient condition for F to be partially integrable

is that in q does not admit triples of type {0,3,0}, {1,2,0} and {1, 1, 1}. In the
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case of F(n) this condition is equivalent to the associated digraph avoiding the

subdigraph (3), (4), (5) and (6) in Figure 2.

Proof. By Theorem 8.4 is enough to see the conditions N(LXα, LXβ) = 0. Doing

the respective calculations we have

N(LXα, LXβ) = εαεβ(−1− εβεα+β − εαεα+β + εαεβε2
α+β)[Xα, Xβ].

Then F is not integrable in case εαεβ(−1 − εβεα+β − εαεα+β + εαεβε2
α+β) 6= 0,

this can only occur when the triples are the type in the Theorem. In the classical

case this corresponds to configurations (3), (4), (5) and (6) in Figure 2.

When q0 and q+ + q− are both integrables, it is possible to choose a local

coordinates system such that the operators l and p can be supposed to have the

components of the form:

l =

(

Ir 0

0 0

)

, p =

(

0 0

0 In−r

)

,

where n is the dimension of the manifold, r is the rank of F and 1s means the

s-identity matrix. This coordinate system is called “adapted.” Since F satisfy

F l = lF = F and Fp = pF = 0 then in an adapted coordinate system, we can

express F in the following way:

F =

(

Fr 0

0 0

)

.

But LiepXα
F = 0 means that the components of F are independent of the

coordinates, thus in the next theorem we are interested on this condition in root

terms.

Theorem 8.6. Suppose that q0 and q+ + q− are both integrable and that an

adapted coordinate system has been chosen. A necessary and sufficient condition

for the local components of F to be functions independent of the coordinates is that

N(lXα, pXβ) = 0, in combinatorial terms a necessary and sufficient condition is

that in q does not admit triples of type {1, 1, 1}. In case of F(n) this condition is

equivalent to the associated digraph avoiding the subdigraphs (4) and (5) in Figure

2.

Proof. By equation (14) we have the first affirmation and with some calculus we

have

N(lXα, pXβ) = εαεα+β(1− εβ
2)(εαεα+β − 1)[Xα, Xβ].

Thus N(lXα, pXβ) will be different from zero in case εαεα+β(1−εβ
2)(εαεα+β−

1) 6= 0.
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This can only occur when the triple is {1, 1, 1}-triple. In the classical case this

corresponds to configurations mentioned in the theorem.

When F is an almost complex structure integrability is associated with the

existence of canonical coordinate systems, which allows us to consider the manifold

as a complex manifold as well is known, integrability is equivalent to N ≡ 0. The

following definition in the context of general differential manifolds appears in [7].

Here we present it in the case of flag manifolds.

Definition 8.7. The f -structure F , is called integrable if it satisfies the following

three conditions:

(i) F is partially integrable.

(ii) q0 is integrable.

(iii) The components of F are independent of the coordinates.

With Definition 8.7, we arrive at a general integrability theorem for f -structures.

Theorem 8.8. A necessary and sufficient condition for F to be integrable is

that N ≡ 0. Therefore F is integrable if in q does not admit triples of type

{0, 3, 0}, {2, 1, 0}, {1, 1, 1} and {1, 2, 0}. In F(n) this condition is equivalent to the

associated digraph avoiding the subdigraphs (2), (3), (4), (5) and (6) in figure

2, that is, the associated digraph to F must be isomorphic to the null digraph or

canonical tournament.

Proof. It is immediate by Definition 8.7 and Theorems 8.1, 8.6 and 8.5.

Theorem 8.8 is a generalization of the results obtained by Burstall [4] in the

case of almost complex structures for classical maximal flag manifolds.

At this point we would like to point out an important connection between

integrability and complex structures. It is well known that for a general almost

complex structure J on a differential manifold is parallel, namely d∇J = 0 if

the manifold with that structure is Kähler. That is, parallelism means that J is

integrable and the manifold is Kähler.

Now a manifold with an f -structure F will be called Kähler if d∇F = 0.

Observe that in the case of generalized flag manifolds integrability condition is

stronger than Kähler condition, for example, in F(3) the invariant f -structures to

the digraphs (4) and (5) are Kähler but not integrable.
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