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Abstract

The properties of the bi-Hamiltonian structures of the harmonic oscillator are
studied using the geometric theory of symmetries as an approach. Two superinte-

grable systems related with the harmonic oscillator are also analyzed.
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1 Introduction

It is well known that there is a close relation between integrability and the existence of
alternatives structures and also that integrable systems are systems endowed with a great
number of symmetries. The purpose of this lecture is to present a brief survey of some
properties relating the existence of additional structures with the theory of dynamical

symmetries in the particular case of the two-dimensional harmonic oscillator.

2 Non-symplectic symmetries

In differential geometric terms, the dynamics of a time-independent Hamiltonian sys-
tem is determined by a vector field on the 2n—dimensional cotangent bundle 7*@Q of a n—
dimensional manifold Q). Cotangent bundles are manifolds endowed, in a natural or canon-
ical way, with a symplectic structure wy that, in coordinates {(g;,p;); j =1,2,...,n}, is
given by

wo =dg; Ndp;, wo=—dby, 0y=pjdg
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(we write all the indices as subscripts and we use the summation convention on the
repeated index). Given a differentiable function F' = F(q, p), the vector field X defined
as the solution of the equation

i(Xp)wy =dF

is called the Hamiltonian vector field of the function /. There are two important prop-
erties:

(i) The Hamiltonian vector field of a given function is well defined without ambiguities.
This uniqueness is a consequence of the symplectic character of the two—form wy.

(ii) Suppose that we are given a Hamiltonian H = H(q, p). Then the dynamics is given
by the Hamiltonian vector field I'y; of the Hamiltonian function. That is, i(I'y) wy = dH.

At this point we recall that a (infinitesimal) dynamical symmetry of a Hamiltonian
system (T*Q,wo, H) is a vector field Y such that it satisfies [Y, '] = 0. On the other
hand it is known that, in some very particular cases, the Hamiltonian systems can ad-
mit dynamical but non-symplectic symmetries (for a classification of the symmetries in

geometric terms see [1] and [2]). In this case we have the following property.

Proposition 1 Suppose there is a vector field Y that is a dynamical symmetry of U'y but

does not preserve the symplectic two-form
Ey Wy = Wy 7& 0.

Then (i) the dynamical vector field Ty is bi-Hamiltonian, and (ii) the function Y (H) is

the new Hamiltonian, and therefore it is a constant of motion.

Proof: For a proof of this proposition see [3]—[8], and references therein. A similar property
is studied in [9, 10] for the case of Poisson manifolds. A sketch of the proof of this
statement is as follows: The vector field Y does not preserve wy and, as it is a non-
canonical transformation, it determines a new 2-form wy = Lywy (Ly denotes de Lie
derivative with respect to Y'). As Y is a symmetry, [Y,I'g] = 0, then Ly oir,, = ir, oLy,

and, consequently,
iFH Wy = iFHﬁywo = Ey@'pro = ,Cy(dH) = d(YH) .

Therefore, the 2-form wy is admissible for the dynamical vector field 'y, i.e. Lp,wy =0,
which is weakly bi-Hamiltonian with respect to the original symplectic 2-form wy and the
new structure wy. Of course the particular form of wy depends on Y and, in some cases,
it can be just a constant multiple of wy (trivial bi-Hamiltonian system). In some other
cases wy may be a degenerate 2-form with a nontrivial kernel. In any case, the vector

field I'y is a dynamical system solution of the following two equations
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Therefore the function Hy = Y (H), that must be a constant of motion, can be considered
as a new Hamiltonian for I'j.

In the next two sections we will consider the particular case of the harmonic oscillator.
We will analyze the existence of some bi-Hamiltonian structures and we will prove that
they can be considered as associated to non-symplectic symmetries. For these properties,

and some other related results, see [4]-[8] and [11] and references therein.

3 The harmonic oscillator
The Hamiltonian of the two-dimensional harmonic oscillator

1 1
H = §(pfﬁeri)+§w2(31:2+y2),

can be rewriten as follows
1 * *
H= (K. K + K, K;)

where K, and K, are the two complex fuctions given by
K, =p,+1iwz, K, =p, +iwy.
Let us denote by Y, and Y, the Hamiltonian vector fields of the functions K, and K,
i(Yy) wo = dK, , i(Yy) wo = dK, ,

with coordinate expressions

and by Z the following vector field
Z=K,)Y,.

Then Z is neither locally-Hamiltonian with respect to wy

Lywo = d(K, i(Y;)wo) = dK; NdK, #0
nor a infinitesimal symmetry of the Hamiltonian

LrH=K,i(Y,)dH = —iwK,K; #0.
Concerning the Lie bracket of Z with the dynamical vector field 'y, it is given by

7. T) = K} [Yo ) — Tu(K) Y,

but as
Yo, Tyl=—-iwY, and Ly(K,) = -1 wk,,
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we arrive to

[Z,Ty]=0.

Hence, Z is a dynamical but non-symplectic (non-canonical) symmetry of I'y.

Thus, if we denote by €2 the complex 2-form defined as

Q=dKNdK,; = Q1 +1i€y,
where the two real 2-forms, 1 = Re(Q2) and 2y = Im(Q2), take the form
Oy = dxNdy + dp, Adp,, , Qy = dxNdp, + dyN\dp,, .
then we have the following bi-Hamiltonian structure
Z(FH)Ql = —wdlg, Z(FH)QQ :de4,
where the functions I3 = Im(K, K;) and I, = Re(K,K) are two constants of the motion
given by
Iy=apy —ype, o= pwp, +w’ey.

4 Two superintegrable potencials

Fris, Mandrosov et al [12] studied the Euclidean n = 2 systems which admit separa-
bility in two different coordinate systems, and obtained four families V., » = a, b, ¢, d, of
superintegrable potentials with constants of motion linear or quadratic in the momenta.
In fact, if we call superseparable to a system that admits Hamilton-Jacobi separation of
variables (Schrodinger in the quantum case) in more than one coordinate system, then
quadratic superintegrability (superintegrability with linear or quadratic constants of mo-
tion) can be considered as a property arising from superseparability. The two first families,

V, and V,, were directly related with the Harmonic oscillator
1
Vo = (5)102(952 +y?) + 2T
1 k
V, = (5) w?(42® + y*) + ko + y%
and can be considered as the more general deformations of the 1:1 and 2:1 oscillators (ks,

ks, representing the intensity of the deformation) preserving quadratic superintegrability

(the three-dimensional generalizations of these potentials have been studied in [13]).

4.1 Potential V,

The potential V,, is superintegrable with three quadratic constants of motion, I¢,

r=1,2,3. Since V,, = 0, the two first constants of motion are I = Hy, and I3 = H.

x?

Concerning I¢, it takes the following form
1 Y2 T\2
I3 = (= — yp2)? + ko ks(—)”.
5= (5)(@py —ypa)” + ka(0)" + 3(y)
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The function I§ arises from a symplectic symmetry. This symmetry is geometrically

represented by the Hamiltonian vector field X of the function I§
(XS )wo =dIy, X§(H,) =0.
We can write the vector field X§ as follows
X3 =Y, +Y,

with Y, and Y/ given by

v, = L2022
Op, Or  Ox Op,
yr - 59 0l 9
“ Opy Oy Oy Op,
It can be proved that
Yo, Ty =0, Y/ Ty =0.

So we have the following proposition

Proposition 2 The symplectic symmetry Xg§ can be decomposed as a sum of two different
“dynamical but non-symplectic symmetries” in such a way that the following properties

are satisfied
(i) Ly,wo =wa #0, (ii) Yo(Ha) = Hy = I, (iii) Tp(If) = 0.
The vector filed Y,, that turns out to be the (z, p,)-dependent part of X¢, is given by

0 0
Y, = (y*p. — zyp,) P Uy (y’pe — zyp,) .

xT

The new symplectic form and the new Hamiltonian, now denoted by w, and Hy:, become

koy
Pl
+ (2ypy — xpy) dyNdp, + zy dp,Adp,

a 2kaypy  2kzap,
Hy = pipy +w(yps — apy)ey + — 3 = .

k
Wa = pPapydeAdy+ 4(— + ;f) deNdy + (yp, — 2xp,) dxNdp,

and the bi-Hamiltonian structure for H* =T + V' is given by
i(TY)wo =dH*, and i(T'Yy)w, = dHy .

4.2 Potential V,

The potential V, is superintegrable with three quadratic constants of motion, Iff, r=

1,2,3,
I = H,
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I = HY,
1
I3 = (wpy = yps) pa + w2’y + (§)k2$2 - 27{53(%).

The function I3 arises from a symplectic symmetry. This symmetry is geometrically

represented by the Hamiltonian vector field X? of the function 7%
i(XD)wo =dIl,  Xb(H,)=0.
We can write the vector field X! as follows
XP=Yi+Y]

with Y, and Y} given by
ort o a1, 9

y, — 3% Y3 Y
b Op, Ox  Ox Op,
yr - 939 93 9
’ dp, 0y Oy Op,
It can be proved that
[YEMFH]_Oa D/;)/aFH]:O

So we have
(i) Ly,wo=wy #0, (id) Yyo(Hy) = Hy =12, (iii) T (1}) = 0.

The vector filed Y, is given by

0 0
Yy = (y°px — 2ypy) P Ty (y*pe — 2ypy) o

x

The new symplectic form and the new Hamiltonian, now denoted by w;, and H?, become
5 2k3
wp, = —2wy+ ?) dxAdy + 2p, deNdp, + p, dyNdp, — y dpyAdp,
HY = pxpz + <y7 —w*y)p, + (dwx + ky)yp,
and the bi-Hamiltonian structure for H® = T 4 V? is given by

i(TY)wo =dH", and i(TY)w, = dHY .
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