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Abstract

The properties of the bi-Hamiltonian structures of the harmonic oscillator are

studied using the geometric theory of symmetries as an approach. Two superinte-

grable systems related with the harmonic oscillator are also analyzed.
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1 Introduction

It is well known that there is a close relation between integrability and the existence of

alternatives structures and also that integrable systems are systems endowed with a great

number of symmetries. The purpose of this lecture is to present a brief survey of some

properties relating the existence of additional structures with the theory of dynamical

symmetries in the particular case of the two-dimensional harmonic oscillator.

2 Non-symplectic symmetries

In differential geometric terms, the dynamics of a time-independent Hamiltonian sys-

tem is determined by a vector field on the 2n–dimensional cotangent bundle T ∗Q of a n–

dimensional manifold Q. Cotangent bundles are manifolds endowed, in a natural or canon-

ical way, with a symplectic structure ω0 that, in coordinates {(qj, pj) ; j = 1, 2, . . . , n}, is

given by

ω0 = dqj ∧ dpj , ω0 = − dθ0 , θ0 = pj dqj
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(we write all the indices as subscripts and we use the summation convention on the

repeated index). Given a differentiable function F = F (q, p), the vector field XF defined

as the solution of the equation

i(XF ) ω0 = dF

is called the Hamiltonian vector field of the function F . There are two important prop-

erties:

(i) The Hamiltonian vector field of a given function is well defined without ambiguities.

This uniqueness is a consequence of the symplectic character of the two–form ω0.

(ii) Suppose that we are given a Hamiltonian H = H(q, p). Then the dynamics is given

by the Hamiltonian vector field ΓH of the Hamiltonian function. That is, i(ΓH) ω0 = dH.

At this point we recall that a (infinitesimal) dynamical symmetry of a Hamiltonian

system (T ∗Q, ω0, H) is a vector field Y such that it satisfies [Y, ΓH ] = 0. On the other

hand it is known that, in some very particular cases, the Hamiltonian systems can ad-

mit dynamical but non-symplectic symmetries (for a classification of the symmetries in

geometric terms see [1] and [2]). In this case we have the following property.

Proposition 1 Suppose there is a vector field Y that is a dynamical symmetry of ΓH but

does not preserve the symplectic two-form

LY ω0 = ωY 6= 0.

Then (i) the dynamical vector field ΓH is bi-Hamiltonian, and (ii) the function Y (H) is

the new Hamiltonian, and therefore it is a constant of motion.

Proof: For a proof of this proposition see [3]–[8], and references therein. A similar property

is studied in [9, 10] for the case of Poisson manifolds. A sketch of the proof of this

statement is as follows: The vector field Y does not preserve ω0 and, as it is a non-

canonical transformation, it determines a new 2-form ωY = LY ω0 (LY denotes de Lie

derivative with respect to Y ). As Y is a symmetry, [Y, ΓH ] = 0, then LY ◦ iΓH
= iΓH

◦LY ,

and, consequently,

iΓH
ωY = iΓH

LY ω0 = LY iΓH
ω0 = LY (dH) = d(Y H) .

Therefore, the 2-form ωY is admissible for the dynamical vector field ΓH , i.e. LΓH
ωY = 0,

which is weakly bi-Hamiltonian with respect to the original symplectic 2-form ω0 and the

new structure ωY . Of course the particular form of ωY depends on Y and, in some cases,

it can be just a constant multiple of ω0 (trivial bi-Hamiltonian system). In some other

cases ωY may be a degenerate 2-form with a nontrivial kernel. In any case, the vector

field ΓH is a dynamical system solution of the following two equations

i(ΓH) ω0 = dH and i(ΓH) ωY = d[Y (H)] .
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Therefore the function HY = Y (H), that must be a constant of motion, can be considered

as a new Hamiltonian for ΓH .

In the next two sections we will consider the particular case of the harmonic oscillator.

We will analyze the existence of some bi-Hamiltonian structures and we will prove that

they can be considered as associated to non-symplectic symmetries. For these properties,

and some other related results, see [4]–[8] and [11] and references therein.

3 The harmonic oscillator

The Hamiltonian of the two-dimensional harmonic oscillator

H =
1

2
(p2

x + p2
y) +

1

2
w2(x2 + y2) ,

can be rewriten as follows

H =
1

2

(
Kx K∗

x + Ky K∗
y

)
,

where Kx and Ky are the two complex fuctions given by

Kx = px + i wx , Ky = py + i wy .

Let us denote by Yx and Yy the Hamiltonian vector fields of the functions Kx and Ky

i(Yx) ω0 = dKx , i(Yy) ω0 = dKy ,

with coordinate expressions

Yx =
∂

∂x
− i w

∂

∂px

, Yy =
∂

∂y
− i w

∂

∂py

,

and by Z the following vector field

Z = K∗
y Yx .

Then Z is neither locally-Hamiltonian with respect to ω0

LZω0 = d(K∗
y i(Yx) ω0) = dK∗

y ∧ dKx 6= 0

nor a infinitesimal symmetry of the Hamiltonian

LZ H = K∗
y i(Yx) dH = −i w KxK

∗
y 6= 0 .

Concerning the Lie bracket of Z with the dynamical vector field ΓH , it is given by

[Z, ΓH ] = K∗
y [Yx, ΓH ]− ΓH(K∗

y ) Yx

but as

[Yx, ΓH ] = −i w Yx and ΓH(K∗
y ) = −i wK∗

y ,
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we arrive to

[Z, ΓH ] = 0 .

Hence, Z is a dynamical but non-symplectic (non-canonical) symmetry of ΓH .

Thus, if we denote by Ω the complex 2-form defined as

Ω = dKx∧dK∗
y = Ω1 + i Ω2 ,

where the two real 2-forms, Ω1 = Re(Ω) and Ω2 = Im(Ω), take the form

Ω1 = dx∧dy + dpx∧dpy , Ω2 = dx∧dpy + dy∧dpx .

then we have the following bi-Hamiltonian structure

i(ΓH)Ω1 = −w dI3 , i(ΓH)Ω2 = w dI4 ,

where the functions I3 = Im(KxK
∗
y ) and I4 = Re(KxK

∗
y ) are two constants of the motion

given by

I3 = xpy − ypx , I4 = pxpy + w2 xy .

4 Two superintegrable potencials

Fris, Mandrosov et al [12] studied the Euclidean n = 2 systems which admit separa-

bility in two different coordinate systems, and obtained four families Vr, r = a, b, c, d, of

superintegrable potentials with constants of motion linear or quadratic in the momenta.

In fact, if we call superseparable to a system that admits Hamilton-Jacobi separation of

variables (Schrödinger in the quantum case) in more than one coordinate system, then

quadratic superintegrability (superintegrability with linear or quadratic constants of mo-

tion) can be considered as a property arising from superseparability. The two first families,

Va and Vb, were directly related with the Harmonic oscillator

Va = (
1

2
) w2(x2 + y2) +

k2

x2
+

k3

y2

Vb = (
1

2
) w2(4x2 + y2) + k2x +

k3

y2

and can be considered as the more general deformations of the 1:1 and 2:1 oscillators (k2,

k3, representing the intensity of the deformation) preserving quadratic superintegrability

(the three-dimensional generalizations of these potentials have been studied in [13]).

4.1 Potential Va

The potential Va, is superintegrable with three quadratic constants of motion, Ia
r ,

r = 1, 2, 3. Since Vxy = 0, the two first constants of motion are Ia
1 = Ha

x , and Ia
2 = Ha

y .

Concerning Ia
3 , it takes the following form

Ia
3 = (

1

2
)(xpy − ypx)

2 + k2(
y

x
)2 + k3(

x

y
)2 .
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The function Ia
3 arises from a symplectic symmetry. This symmetry is geometrically

represented by the Hamiltonian vector field Xa
3 of the function Ia

3

i(Xa
3 ) ω0 = dIa

3 , Xa
3 (Ha) = 0 .

We can write the vector field Xa
3 as follows

Xa
3 = Ya + Y ′

a

with Ya and Y ′
a given by

Ya =
∂Ia

3

∂px

∂

∂x
− ∂Ia

3

∂x

∂

∂px

Y ′
a =

∂Ia
3

∂py

∂

∂y
− ∂Ia

3

∂y

∂

∂py

It can be proved that

[Ya, ΓH ] = 0 , [Y ′
a, ΓH ] = 0 .

So we have the following proposition

Proposition 2 The symplectic symmetry Xa
3 can be decomposed as a sum of two different

“dynamical but non-symplectic symmetries” in such a way that the following properties

are satisfied

(i) LYa ω0 = ωa 6= 0 , (ii) Ya(Ha) = Ha
Y = Ia

4 , (iii) ΓH(Ia
4 ) = 0 .

The vector filed Ya, that turns out to be the (x, px)–dependent part of Xa
3 , is given by

Ya = (y2px − xypy)
∂

∂x
+ ΓH(y2px − xypy)

∂

∂px

The new symplectic form and the new Hamiltonian, now denoted by ωa and Ha
Y , become

ωa = pxpy dx∧dy + 4 (
k2y

x3
+

k3x

y3
) dx∧dy + (ypx − 2xpy) dx∧dpy

+ (2ypx − xpy) dy∧dpx + xy dpx∧dpy

Ha
Y = p2

xpy + w2(ypx − xpy)xy +
2k2ypy

x3
− 2k3xpx

y3

and the bi–Hamiltonian structure for Ha = T + V a is given by

i(Γa
H) ω0 = dHa , and i(Γa

H) ωa = dHa
Y .

4.2 Potential Vb

The potential Vb is superintegrable with three quadratic constants of motion, Ib
r , r =

1, 2, 3,

Ib
1 = Hb

x ,
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Ib
1 = Hb

y ,

Ib
3 = (xpy − ypx) px + w2x2y + (

1

2
)k2x

2 − 2k3(
y

x2
) .

The function Ib
3 arises from a symplectic symmetry. This symmetry is geometrically

represented by the Hamiltonian vector field Xb
3 of the function Ib

3

i(Xb
3) ω0 = dIb

3 , Xb
3(Hb) = 0 .

We can write the vector field Xb
3 as follows

Xb
3 = Yb + Y ′

b

with Yb and Y ′
b given by

Yb =
∂Ib

3

∂px

∂

∂x
− ∂Ib

3

∂x

∂

∂px

Y ′
b =

∂Ib
3

∂py

∂

∂y
− ∂Ib

3

∂y

∂

∂py

It can be proved that

[Yb, ΓH ] = 0 , [Y ′
b , ΓH ] = 0 .

So we have

(i) LYb
ω0 = ωb 6= 0 , (ii) Yb(Hb) = Hb

Y = Ib
4 , (iii) ΓH(Ib

4) = 0 .

The vector filed Yb is given by

Yb = (y2px − xypy)
∂

∂x
+ ΓH(y2px − xypy)

∂

∂px

The new symplectic form and the new Hamiltonian, now denoted by ωb and Hb
Y , become

ωb = − 2(w2y +
2k3

y3
) dx∧dy + 2py dx∧dpy + py dy∧dpx − y dpx∧dpy

Hb
Y = pxp

2
y + (

2k3

y2
− w2y2)px + (4w2x + k2)ypy

and the bi–Hamiltonian structure for Hb = T + V b is given by

i(Γb
H) ω0 = dHb , and i(Γb

H) ωb = dHb
Y .
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