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Abstract

In this paper, we develop a cosymplectic inhomogeneous formulation for a (reg-
ular) Lagragian system whose Lagrangian is a section of an AV-bundle Z! over the
evolution space and such that Z! satisfies certain properties. The Lie algebroid the-
ory is used. This general construction is applied to a particular example: Newtonian

mechanics in a Newtonian space-time.

Key words: AV-bundles, Lie algebroids, cosymplectic geometry, inhomogeneous

formulation, Lagrangian dynamics, Hamiltonian dynamics, Newtonian Mechanics.

MSC (2000): 17B66, 55D17,70G45, T0H03, T0H05

1 Introduction

The most natural geometric framework for studying mechanical systems is a fibred
manifold 7 : £ — R. In fact, FE is the configuration manifold and the 1-jet manifold
Jim of 1-jets of local sections of 7 is the evolution space. The Lagrangian function will
be a real C®-function L : J'7r — R defined on J'm and in the particular case when
L is regular the corresponding Hamiltonian section h : V*r — T*FE is a section of the
canonical projection y : T*E — V*m, where Vr is the vertical bundle to m. Moreover,
one may construct a cosymplectic structure on J'7 (respectively, V*m) and the solutions
of the Euler-Lagrange equations (respectively, the Hamilton equations) are the integral
curves of the corresponding Reeb vector field (see [9, 10]; see also [1, 3]). Note that J'7 is
an affine bundle over £ modelled on the vector bundle Vo — E and that p: T*"E — V*n
is a AV-bundle (in the terminology of [5]). So, the affine character is present in the
theory (we recall that AV-bundles were introduced in [5] as affine line bundles which are

modelled on trivial vector lines bundles).
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On the other hand, there are some physical theories where we find difficulties when
we interpret the Lagrangian as a real function on J'mw. For instance, in the standard
geometric inhomogeneous formulation of Newtonian Mechanics in a Newtonian space-
time. In fact, in this formulation there is a strong dependence on the inertial frame
chosen. Different Lagrangian (and different Hamiltonians) are used for different inertial
frames. In [6], a nice frame independent inhomogeneous (homogeneous) formulation of
analytical mechanics in Newtonian space-time is presented. The AV -differential geometry
is widely used. In fact, the inhomogenous (homogeneous) Lagrangian is interpreted as a
section of a certain AV-bundle.

The aim of this Note is to develop a cosymplectic inhomogeneous formulation for a
(regular) Lagrangian system whose Lagrangian is a section [ of an AV-bundle Z! over J'r,
Z1 satisfying certain properties. For this purpose, the Lie algebroid theory will be used.
The resultant general construction may be applied to the particular example which was
discussed in [6] and, as consequence, we obtain a cosymplectic inhomogeneous formulation
of Newtonian Mechanics in a Newtonian space-time. In addition, in the particular case
when the AV-bundle Z! is trivial then the section [ is a Lagrangian function on Jlw
and one recovers some classical results about the standard cosymplectic inhomogeneous
formulation of time-dependent Mechanics.

The Note is structured as follows. In Section 2, we recall some definitions and results
about Lie algebroids and linear Poisson structures, AV-bundles and some geometrical
structures on J'7. In Section 3, we discuss the inhomogeneous cosymplectic formulation
of the Lagrangian (Hamiltonian) dynamics on jet manifolds and its relation with the AV
differential geometry and the Lie algebroid theory. Finally, in Section 4 we apply our

results to a particular example: Newtonian mechanics in a Newtonian space-time.

2 Preliminaries

2.1 Lie algebroids and linear Poisson structures

Let A be a vector bundle of rank m over the manifold E of dimensionnand 74 : A — F
be the vector bundle projection. Denote by I'(74) the C°°(FE)-module of sections of
Ta : A — E. A Lie algebroid structure ([-,-]a,pa) on A is a Lie bracket on the space
['(14) and a bundle map p4 : A — TE, called the anchor map, such that if we also denote
by pa : I'(ta) — X(E) the homomorphism of C'*°(E)-modules induced by the anchor
map then [X, fY]a = f[X,Y]a + pa(X)(f)Y, for X,Y € T'(74) and f € C*(FE). The
triple (A, [-,]a, pa) is called a Lie algebroid over E (see [11]). In such a case, the anchor
map p : ['(T4) — X(F) is a homomorphism between the Lie algebras (I'(14), [+, -]4) and
(X(E),[-,*]). A natural example of Lie algebroid is the tangent bundle TE of a manifold
E.
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If ([,-]a,pa) is a Lie algebroid structure on a vector bundle 74 : A — E then the
dual bundle 73 : A* — E admits a linear Poisson structure IT4.. Moreover, if {-, -} 4«
is the Poisson bracket associated with I14« then {-,-} 4+ is characterized by the following
relations

{forigomita =0, {X.gorite =pa(X)(9)ors (X Via=[XYLa (21)
for X,Y € T'(r4) and f,g € C°(E). Here, X denotes the linear function on A* induced
by X. In the particular case when A is the tangent bundle to E then the linear Poisson
structure of A* = T*FE is just the canonical symplectic structure on T*E (see [2]).

On the other hand, if IT 4~ is a linear Poisson structure on the vector bundle 7} : A* —
E then IT 4« induces a Lie algebroid structure ([-, -], pa) on the vector bundle 74 : A — E
which is given by (2.1) (see [2]).

Finally, if ([-,-]4, pa) and ([, -]a, pas) are Lie algebroid structures on the vector bun-
dles 74 : A - F and 7o : A — E and & : A — A’ is a vector bundle morphism
(over the identity of E) between A and A’ then ® is a Lie algebroid morphism (that is,
P[X,Y]a =[PX,PY]a and pa(PX) = pa(X), for X, Y € I'(74)) if and only if the dual
map ¢* : (A')* — A* is a Poisson morphism (that is, {f o ®*, go ®*} an+ = {f, g} a0 D7,
for f,g € C>(AY)).

2.2  AV-bundles

Let 7 : Z — M be an affine bundle of rank 1 over a manifold M modelled on the
trivial vector bundle my/«g : M X R — M, that is, 7z : Z — M is an AV-bundle in the
terminology of [4]. Then, we have an action of R on each fiber of Z. This action induces
a vector field Xz on Z which is vertical with respect to the projection 7 : Z — M.

On the other hand, there exists a one-to-one correspondence between the space of
sections of 7z : Z — M, I'(1z), and the set {F; € C>*(Z)/Xz(F,) = 1}. In fact, if
[ € T(77) and (2%, s) are local fibred coordinates on Z such that X, = 55 then [ may be
considered a local function L on M, x* — L(x"), and the function F; on Z is locally given
by Fi(z',s) = L(z°) + s (for more details, see [4]).

2.3 Some geometrical structures on J'w

Let E be an (n+1)-dimensional fibred manifold over R, i.e., there exists a surjective

submersion 7 : £ — R. We denote by Jm the 1-jet manifold of local sections of 7, namely
J'n={jl¢/¢:UCR — E,70o¢=idy,U open neighbourhood of ¢}.

If (t,q") are fibred coordinates on E, then J'7 has local coordinates (t, ¢, v*). In fact, if

d A
B(s) = (s,¢"(s)), s € U, then jl¢ has coordinates (t, p(t), %(t)) Therefore, J'm has
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dimension 2n+1 and it is a fibred manifold over £ and R with canonical projections m  :
Jir — E and 7, : J'm — R, respectively. In local coordinates we have m o(t, g%, va) =
(t,q*) and (¢, ¢, v*) = t. We define a canonical embedding i : J'm — TE as follows
i(jl¢) = ¢(t), where (t) € Ty E is the tangent vector at t of the curve s — ¢(s). If
we take local coordinates (t,q4,7,74) on TE, we have i(t,¢*,v?) = (¢,¢4,1,v%). Now,
denote by ng the 1-form on E given by ng = 7*(dt) and by V= the vertical bundle of
m: E — R. It follows that

Jr2i(J'n)={v e TE/ng(v) =1}, Vr={veTE/ng(v) =0}

Thus, J'7 is an affine subbundle (over E) of the vector bundle 775 : TE — E which is
modelled over the vector subbundle 7y, : Vi — E. Note that the dual bundle (J'7)" to
J'7 is isomorphic to the cotangent bundle T*M to M. So, the bidual bundle to J'7 may
be identified with the tangent bundle T'F of E.

On the other hand, there exists a canonical endomorphism S of T'.J'7 which is called
the vertical endomorphism. S is a vector field of type (1,1) on J'7 defined as follows. If
Xe Tj14(J'7) then (T 0)(X) — To((Tm1)(X)) € (V)yu and we define

SX = ((Tm10)(X) = To((Tm)(X)5h

where N (V) — Tje(J'm) denotes the vertical lift. The local expression of S is
S = (dg* — vdt) ® i
ovA
A vector field € on J'w is a non-autonomous second order differential equation (NSODE
for simplicity) if S(€) = 0 and 7(€) = 1, 5 being the 1-form on .J'x given by n = (m)*(dt).
The vector field £ is a NSODE if and only if it has the following local expression

E(t, g vt = % + ’UA% + SAG%.
A local section ¢ is 7 : E — R is an integral section of a NSODE ¢ if the 1-jet prolongation
ji¢ of ¢ to Jlm is an integral curve of €. Thus, t — ¢(t) = (¢, ¢*(t)) is an integral section
of ¢ if and only if it satisfies the following system of non-autonomous differential equations

of second order

ot 4, 5 AP do* 4
di2 _£<t7¢7W)7 W_U'

It should be remarked that an integral curve v of a NSODE ¢ is necessarily a 1-jet

prolongation, say v = j'¢, where ¢ is an integral section of £ (for more details, see [13]).

3 AV-bundles, Lie algebroid theory and the inhomogeneous cosymplectic

formulation of the Lagrangian (Hamiltonian) dynamics

Let 7 : E — R be a fibration from a manifold E of dimension n 4+ 1 on R. Suppose
that (;1 : Z! — E is an affine bundle modelled on the vector bundle (1 : V! — E of
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rank n + 1. Assume also that 7,1 : Z! — Jlm is an epimorphism of affine bundles, that
Ty1 0 V1 — Vi is the corresponding epimorphism of vector bundles and that e : B — V1
is a section of (y1 : V! — FE such that ker 71 (y) =< eo(y) >, for all y € E. Now, let
Cz : Z — E be the bidual bundle to (s : Z' — E. Then, the epimorphism of affine
bundles 7,1 : Z! — J'7 induces an epimorphism of vector bundles 7z : Z — TE and
ker 77(y) =< eg(y) >, for all y € F (we recall that the bidual bundle to J' is isomorphic
to the tangent bundle of E). Moreover, it is clear that 7,1 : Z! — Jl'mr and 77 : Z — TE
are AV-bundles.

On the other hand, if #* : V! — Z is the canonical inclusion then, since the pair

(Z,i' oep) is an special vector bundle over F (in the terminology of [4]), one may consider
the affine dual bundle of Z as the affine subbundle Z* of Z* defined by

Zh={p e Z*/(ioe)(¢) = 1}.

Z*%is an affine bundle modelled on the vector bundle 7p+p : T*E — E. As we know, T*E
admits a canonical symplectic structure.

Next, we will analyse a particular class of affine symplectic structures on Z*.

Let Q4 be an affine symplectic structure on Z*. In other words, Q4 is a closed
nondegenerate 2-form on Z* and the Poisson bracket of two affine functions on Z* is an
affine function. Then, using some results which were proved in [7] (see Corollary 3.9 in

[7]), we deduce that Qz: induces a linear Poisson structure Iz« on Z* such that
ker [T =< d(i' 0 eg) > . (3.1)

Conversely, if IIz« is a linear Poisson structure on Z* and (3.1) holds then, using again
Corollary 3.9 in [7], we have that I1;« restricts to a nondegenerate affine Poisson structure
on Z*. In other words, Il induces an affine symplectic structure on Z*.

Thus, we conclude that there exists a one-to-one correspondence between affine sym-
plectic structures on Z* and linear Poisson structures on Z* such that (3.1) holds.

Now, we will consider Lie algebroid structures ([-, -]z, pz) on the vector bundle (z :
Z — FE such that:

(C1) The map 77 : Z — TE is an epimorphism of Lie algebroids (over the identity of E)

and
(C2) The section ' o ey is a central element in the Lie algebra (T'(Cz), [, -]2)-
In fact, we will introduce the set Ay given by
Az = A(l:,"1z,02)/([, ]z, pz) is a Lie algebroid structure on Z

which satisfies (C1) and (C2)}.
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On the other hand, we will denote by Sz the set defined by

Sz = {Q4:/Qy: is an affine symplectic structure on Z*

and 75 : T*E — Z* is a Poisson morphism }.

Then, using the above results (see also Section 2.1), we have
Proposition 3.1 There exists a one-to-one correspondence between the sets Az and Sz.

Using the Poincaré Lemma, one may prove the following result.

Proposition 3.2 If ([, ]z, pz) is an element of the set Ay then the Lie algebroid (Z,[-, -]z,
pz) 1s locally isomorphic to the standard Lie algebroid Trpopr; : TE x R — E.

We recall that the standard Lie algebroid structure ([, -]rexr, prexr) on the vector

bundle 7rgopr; : TE X R — FE is given by

[[(Xa f)? (Ya g)ﬂTEXR = ([Xa YLX(Q) - Y(f))? pTEXR<X7 f) = X7

for (X, f),(Y,g) € X(E) x C>*(E).

In the rest of this Section, we will assume that €2, is an element of S or, equivalently,
that we have a Lie algebroid structure ([-, -]z, pz) on the vector bundle (; : Z — E which
belongs to the set Ay.

Remark 3.3 Since 75(ng) is a 1-cocycle for the Lie algebroid (Z, [, ]z, pz), we deduce
that Z! is a Lie affgebroid (see [5, 12]) for the definition of a Lie affgebroid) and that the
map 74 : Z' — Jlm is an epimorphism of Lie affgebroids (see [8] for the definition of a

morphism of Lie affgebroids). &

Next, we consider the affine dual bundle (V!)* of the special vector bundle (V1 ¢eg),
that is, (V1) = {4 € (V1)*/éo(¢0) = 1}. Then, one may define an epimorphism p : Z* —
(VH* between the affine bundles Z* — E and (V!)} — E given by

() = vy, for p € Zj and y € E.

Now, we will obtain the local expressions of the 2-form €2: and the projection u :
7 — (VHE,

Using Proposition 3.2, we may choose local coordinates (¢, ¢, v4) on J'7 as in Section
2.3 and a local basis {e, e4, €9} of I'((z) such that 74(e) = 2, 75(e4) = 8%1 and [e,ea]z =
lea,es]z = 0, for all A and B (note that e is a local section of the affine bundle (51 : Z! —
E). Thus, we have the corresponding local coordinates (¢,¢*,v#,v°) on V! and Z' and
the dual local coordinates (t, ¢, pa, po) on (V1)*. We also may consider the corresponding

local coordinates (¢,¢*,v,v*,v°) on Z and the dual local coordinates (t,q“, p, pa,po) on

178



Z*. Moreover, the local equation defining Z* (respectively, (V1)) as an affine subbundle
of Z* (respectively, (V1)*) is po = 1. Therefore, (t,q?,p,pa) (vespectively, (t,q*,pa)) are
local coordinates on Z* (respectively, (V!)¥). Finally, using the above coordinates, we

deduce that
QZi = qu A dpA + dt N dp> M(t, qA>p7pA) = (tv qAapA)‘ (32)

Remark 3.4 Suppose that Z! is the trivial affine bundle J'7 x R, that 7,1 : J'mr x R —
J'7 is the canonical projection onto the first factor, that eq : E — Vm x R is the section
given by eg(y) = (0y,1), for y € E and that ([-,-]z, pz) is the standard Lie algebroid
structure on the vector bundle TE x R — E. Then, Z* and (V1)* may be identified with
T*FE and V*m, respectively, and, under these identifications, 2,: is just the canonical

symplectic 2-form on T*F and p is the canonical projection from 7% F on V*r. &

3.1 The Lagrangian formalism
3.1.1 POINCARE-CARTAN 2-FORM AND LEGENDRE TRANSFORMATION

Suppose that [ : J'm — Z! is a section of the projection 741 : Z! — J'z. [ will be called
the affine Lagrangian for the inhomogeneous formulation of the dynamics (independent
on the choice of the inertial frame).

If TTE is the open subset of TE defined by TTE = {v € TE/ng(v) > 0} then [ may
be extended to a section [T : TTE — Z of 7, : Z — TFE (over TTE) given by

I (v) = ()i (17 (—

ne(v)

), forveTHE,

where i : J'm — TE and i, : Z' — Z are the canonical inclusions. Note that % c
i(J'). "

I™ will be called the affine Lagrangian for the homogeneous formulation of the dynamics
(independent on the choice of the inertial frame).

Since 74 : Z — TF is an AV-bundle one may consider the vector field X, on Z
induced by the action of R on Z and the real function Fj+ : 7,,'(TTE) — R induced by
the section [T : TTE — Z. We have that Xz(Fj+) = 1 and, thus, we may define the map
Leg, : J'm — Z* given by

LeaO)) = = Fis(z 4 52'),
ds|s=0
for z, 2" € Zyyy, with 72(2) = i(ji ¢).

The map Leg; is called the extended Legendre transformation associated with .

The Poincaré-Cartan 2-form associated with [ is the 2-form €; on J'7 given by Q; =
Leg;(Qy:). The Legendre transformation associated with [ is the map leg, : Jim — (V1)
defined by leg; = p o Leg;.
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If we choose local coordinates as above such that the local expression of [ is

I(t,q*, v = (t,¢*, v*, L(t, ¢*, v?))

then o
(gt 0 = (gt gt L (g, D), for >0,
VA
Fi(t,q*,v,0%,0%) = vL(t, ¢*, —) +1°, for v >0
v
and oL 0L
A Ay _ A A
Legl(taq y U ) - (t7q 7[5;1) 62}_14781}_14)7
legl(tan7UA) = (tan7 )7
o A TP (3.3)
O, (t = (——— — A dt
tlt,q%v%) (8t8v2A v 0qBovA 82qA)w
L, B A B
(%Banw A w +8 Aava A dv”,

where w4 = dg? — vAdt.

Remark 3.5 Under the same hypotheses as in Remark 3.4, the lagrangian section [ may
be considered as a Lagrangian function L : J'm — R and the 2-form €; on J'7 and the
map leg; : J'm — (V) = V*r are just the standard Poincaré-Cartan 2-form and the

standard Legendre transformation associated with L. &

3.1.2 EULER-LAGRANGE EQUATIONS AND REGULAR LLAGRANGIANS

If ¢ : 1 CR — E is a section of the projection 7 : £ — R then one may consider the
1-jet prolongation of ¢, j'¢ : I C R — J'r and its tangent lift d(%lf) I CR— TJ'n.

The curve ¢ is a solution of the Fuler-Lagrange equations for [ if and only if
i%(jl(z))ﬂl(jtlgb) =0, forallt.

If (t,q?, v*) are local coordinates on J'm, I(t,q*,vd) = (¢,q4, v*, L(t,¢*,v?)) and
#(t) = (t,q*(t)) then, using (3.3), we deduce that ¢ is a solution of the Euler-Lagrange

equations for [ if and only if

d oL OL A dg?
E(&J_A)_@:O, v :E, for all A.

We may assume that the above curves ¢ are the integral sections of a NSODE &. In such
a case, { satisfies the following equation 7¢(}; = 0. In other words, we may reformulate
geometrically our problem as search for a vector field ¢ on J'z satisfying the following

conditions
iy =0, in=1, S&=0,
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where 7 is the 1-form on J'7 defined by 5 = (m;)*(dt) and S is the vertical endomorphism.
The affine Lagrangian section [ is said to be regular if the pair (€2, 7) is a cosymplectic
structure on J'm, that is, p AQP = A A...(" ... A€ is a volume form on Jl7.

From (3.3), it follows that [ is regular if and only if for each system of local coordinates
2

ovAduB
If [ is regular then there exists a unique solution & of the equations ¢} = 0 and

(t, ¢, v*) on Jlm we have that the matrix ( ) is regular.

ig,m = 1. In fact, & is the Reeb vector field of the cosymplectic structure (£2;,7). In
addition, using (3.3), we deduce that & is a NSODE, that is, S§ = 0. Therefore, the
integral sections of & are just the solutions of Euler-Lagrange equations for [. & is called

the Euler-Lagrange vector field associated with [.

Remark 3.6 Under the same hypotheses as in Remark 3.4, the regular affine Lagrangian
section | may considered as a regular Lagrangian function L : J'7 — R and & is the

standard Euler-Lagrange vector field associated with L. &

3.2 The Hamiltonian formalism

The spaces Z* and (V1)* are affine bundles over E modelled on the vector bundles

< (i o eg) >'= {p € Z* /(i 0 e) (i) = 0}

and
<eg >"={y € (V) /eo(y) = 0},

respectively. Moreover, the map p : Z* — (V1)} is an epimorphism of affine bundles and

the corresponding epimorphism of vector bundles ! :< i' o ¢g >%—< ¢y >0 is given by
i) = pva, forp € Z; and y € E.

Note that ker ul, =< 75(ng)(y) >, forally € E. Thus, p : Z* — (V')' is an AV-
bundle (this will be the bundle of the Hamiltonian section).

On the other hand, from (3.3), it follows that a Lagrangian section [ : Jlm — Z! is
regular if and only if the Legendre transformation leg; : J'm — (V1) is a local diffeomor-
phism.

Next, we will assume that [ is hyperregular, that is, the map leg, : J'm — (Vi)* is
a global diffeomorphism. Then, one may consider the section h : (V1) — Z% of the
AV-bundle p : Z* — (V1) given by h = Leg; o leg; . h is the Hamiltonian section.

Now, we will introduce the 2-form €, on (V!)* defined by

O, = h* (), (3.4)
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Q)+ being the symplectic 2-form on Z*. Suppose that (¢, ¢, p,pa) and (¢, ¢*,pa) are local

coordinates on Z* and (V1)* and that the local expression of the Hamiltonian section A is
ht,q",pa) = (ta", —H(t.q" pa), pa)-
Then, using (3.2) and (3.4), we deduce that
Qn, = dg* Ndpa+ dH A dt. (3.5)

Let Wit : Vf — R be the canonical projection and 77% be the 1-form on Vf given by
nt = (7})*(dt). From (3.5), it follows that the pair (Q,n}) is a cosymplectic structure on
(VI that is, n AQP = nf AQu A ... .. AQ, is a volume form on (V1) dn} = 0 and
d€), = 0. Thus, we may consider the Reeb vector field &, which is characterized by the
conditions

igth = 0, Z‘ghﬁ% =1.
Using (3.5), we have that the local expression of &, is

o 0H 9 _oH D
Ot  OpaOgt  0g” 0pa’

&n =

and, therefore, the integral curves of &, satisfy the Hamilton equations

dg*®  OH dpy OH
dt — Ops’ dt OgA’ ora

&y, is called the Hamiltonian vector field associated with the Hamiltonian section h.

On the other hand, it is clear that leg(€,) = @ and legf(n}) = n. Consequently,
the Legendre transformation leg; is a cosymplectomorphism between the cosymplectic
manifolds (J'm, Q1) and (V1) Qu,nt). So, the Euler Lagrange vector field & and the
Hamiltonian vector field &, are legi-related. This implies that if ¢ : I C R — F is a
solution of the Euler-Lagrange equations for [ then v = leg; o jl¢ is a solution of the
Hamilton equations for h. Conversely, if v: I € R — (V!)* is a solution of the Hamilton

equations for h then leg,” Yoy = j'¢, where ¢ is a solution of the Euler-Lagrange equations
for [.

Remark 3.7 Under the same hypotheses as in Remark 3.4, the Hamiltonian section may
be considered as a section h : V*1r — T*FE of the canonical projection p : T"E — V*n

and, under this identification, the pair (€2, ’rﬁ) is a cosymplectic structure on V*7 and &,
is the Reeb vector field of (€, 7}). &

4  An example

In order to illustrate the results obtained in Section 3 we will consider an example

which was discussed in [6].
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The Newtonian space-time is a system (FE, T, g), where F is a four-dimensional affine
space with the model vector space V', 7 is a non-zero element of V* and g : E° — (EY)*
is an scalar product on E° = ker 7.

We will denote by E! the affine subspace of V' given by E!' = {u € V/7(u) = 1}
and for each u € E' we will introduce the linear epimorphism i, : V — E° defined by
iw(v) = v — 7(v)u. An element u of E' may be interpreted as an inertial reference frame.

The space-time E is fibred over the time 7' = FE/E° which is an affine space of
dimension 1 modelled on R. So, the fibration 7 : £ — T’ is just the canonical projection.

Note that

TE=ZExV, J\n=2ExE' VrxExE"

Now, for each u € E!', we will consider the inhomogeneous Lagrangian function L, :
Jin =~ E x E' — R given by

Lu(y,w) = Tg(w —u)(w —u) = p(y),
where ¢ : ' — R is a potential.

The Lagrangian function L, is hyperregular. Thus, in order to obtain the well-known
equations of motion, one may apply the classical Lagrangian (Hamiltonian) inhomoge-
neous formalism of the dynamics. These geometrical constructions will depend on the
inertial reference frame u. However, we can develop an inhomogeneous formulation of the
dynamics independent on the choice of the inertial frame as follows (see [6]).

If uw and v are two inertial reference frames then we deduce that
Lu(y,w) — Ly(y,w) = mo(u',u)(w), for (y,w) € E x E*,
where 0 : E' x E' — V* is the map defined by
o(u',u)(v) = g(u' — u)(z%u/(v)), forv e V.

This result suggests to consider the equivalence relation ~ on the set £' x V x R defined
by

(u,v,7) ~ (W, 0", 7") & v="0"and r =1 +mo(u,u)(v).

It follows that the quotient set W = (E' x V x R)/ ~ is a real vector space with
wo = [(u, 0,0)] as the zero vector and wy = [(u,0,1)] # 0, u being an arbitrary element of
E'. Moreover, one may prove that W/ < w; >= V and, therefore, we have a canonical
projection Ty : W — V (see [6]). Thus, it is clear that W! = 7;;}(E') is an affine space
modelled on the vector space W0 = 7.,/ (E°). We will denote by 71 : W' — E' and by
Tiwo : W9 — E° the canonical projections.

Then, in this particular example, the affine bundle Z* (in Section 3) is just the trivial
affine bundle (51 : Z! = E x W! — E which is modelled on the trivial vector bundle
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(v, : VI = E x W% — E. The bidual bundle to Z! is the trivial vector bundle (z : Z =
ExW — E.

The projections 74 : Z = ExW = TEXExV,75 : Z' = ExW! — Jlrn 2 E x B!
and 71 V= Ex W — Vr =2 E x E° are just the product maps Id X 7y, Id x 1y, and
Id x Ty, respectively. The section eg: B — VI =Ex W of (n : VI=ExW? = F
is given by eg(y) = (y,w,), for all y € E. On the other hand, the affine bundle Z* — E
is isomorphic to the trivial affine bundle pry : E x P — E, where P is the quotient affine

space P = (E' x V*)/ ~! and ~! is the equivalence relation on E' x V* defined by
(u,p) ~' (W, p) & p=p +mo(,u)

(see [6]). Note that P is an affine space modelled on V*. In addition, the affine bundle
(V1) — E is isomorphic to the trivial affine bundle pr; : E x Py — E, where P, is the
quotient affine space Py = E' x (E°)*/ ~Y and ~ is the equivalence relation on E* x (EY)*
defined by
(u,po) ~ (u', ph) < po = P+ mg(u’ — u)

Now, for each v € E' and v € V|, we may consider the section S(u,w) Of the vector bundle
(z:Z=FExW — E given by sq,.,)(y) = (v, [(u,v,0)]), for all y € E. We remark that
if {v;} is a basis of V' then {s(4,,), €0} is a global basis of I'((z). So, one may introduce
a Lie algebroid structure ([-, -]z, pz) on the vector bundle (; : Z = E x W — E which is

characterized as follows
[S(uw) S )]z = [S(uw), €0]z = 0, for u,u’ € El'and v,v' €V,
and pz(5w.w)) and pz(eo) are the vector fields on E defined by

IOZ(S(U,U)) E—-TE=EX ‘/7 y e E— pZ(S(u,v))(y> = (y,U) € b X V7
pzleg) : E—=TE=ZEXV, yeFE—pzle)(y) =(y,0) € ExV.

On the other hand, the Lagrangian functions L., u € E*, define a section [ : J'm =
E x E' — Z' = E x W! of the projection 751 : Z! = Ex W! — Jln = E x E*! as follows

Iy, w) = (y, [(u, w, Ly(y,w))]), for (y,w) € E x E*.

[ is the affine Lagrangian for the inhomogeneous formulation of the dynamics (see [6]).
The affine Lagrangian [ is hyperregular. Furthermore, if € : T'(J'7) x i T(J'7) =
Ex E' xV x E° xV x E° — R is the Poincaré-Cartan 2-form, leg; : J'vr &2 E x E! —

(V)i =2 E x P, is the Legendre transformation and & : J'v & E x E' — TJln =

0

184



E x E' xV x V% is the Euler-Lagrange vector field associated with [ then we obtain that

Ly, w, g, 0,9, 0" = Qp,(y, w9, w0, 9, 40') = m{g(iu(y)) (') — g(w)(iu(y))}
+7(){(dsp () (i () — mg(w’) (w — u)}
=7 (1 ){(dso(y)) (2 (9)) — mg(w)(w —u)},
legi(y,w) = (y, [(u, mg(w —u))]),
Gly,w) = &, (y,w) = (y,wiw, 597 (dse(y))),
for (y,w) € E x E', (y,w), (¢,w') € V x E°. Here, dsp denotes the vertical differential
of ¢ with respect to the projection 7 (thus, d,p(y) € (E°)*).

Finally, we conclude that the Hamiltonian section h; : (VI)} 2 Ex Py — Z¥ > Ex P,
the 2-form Q, : T(V1)E x 1 TV =2 Ex Py x V x (E°)* x V x (E°)* — R and the
Hamiltonian vector field &, : (VI 2 E x Py — T(VI)} =~ E x Py x V x (E°)* are given
by

Iy

h(y, [(w,p)]) = (v [(u,poiv— (Ep(g7 (D)) + ¢(y)7)]),
(s [(w,0)]5 9, 0,9,0') = iu(y) (') — p(iu(@)’)) +7(y '

—
=
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»
»—Aﬁ
—~
<
~—
~—
~
S
—~
.
~—
~—
+
S|~
-
—~~
SS)
L
—
3
=
~—
——

&n(y: [(u,p)]) = W,piu+ =g (p), —dsp(y)),
for (y,p) € E x (E°)*,u € E' and (y,p), (¢/,p)) € V x (E°)*.
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