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Abstract

We spell two conundrums, one of physical and another of mathematical nature,

and explain why one helps to explain the other.

1 Introduction I: Hopf algebra cohomology

Let us start by the mathematical conundrum. The two main classical examples of

Hopf algebras, respectively cocommutative and commutative, are the enveloping algebra

U(g) of a Lie algebra g and the algebra R(G) of representative functions on a group G.

For definiteness, consider both over the complex numbers. On U(g) the coproduct ∆ :

U(g) → U(g)⊗ U(g) is defined first on elements X ∈ g by

∆(X) := X(1) ⊗X(2) = X ⊗ 1 + 1⊗X,

and then extended to all of U(g) multiplicatively. The output of ∆ is invariant under

exchange of the two copies of U(g) in its image: this is cocommutativity. For the second,

R(G) is the space of functions f : G → C whose translates x 7→ f(xt), for all t ∈ G,

generate a finite-dimensional subalgebra of the commutative algebra of continuous func-

tions C(G) under ordinary multiplication. Then also R(G) is endowed with a coproduct

in which

R(G)⊗R(G) 3 ∆f is given by ∆f(x, y) :=
(
f(1) ⊗ f(2)

)
(x, y) := f(xy);

which is not cocommutative, unless G is abelian. There is of course a functor going back

from commutative Hopf algebras to groups.

When g is the tangent Lie algebra of a Lie group G, it is sometimes asserted that both

previous constructions are mutually dual. Reality is richer: although U(g) is certainly in
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duality to R(G), there is a bigger dual space, the Sweedler dual R◦(G) of R(G), which

is still a Hopf algebra, and includes in particular the (also cocommutative) group algebra

CG; ∆g = g⊗ g holds for ‘pure’ elements g ∈ CG. In fact, R◦(G) is a semidirect product

of CG and U(g). We touch here at the general situation, as any cocommutative Hopf

algebra is a semidirect product of a group algebra and an enveloping algebra [1, 2]. For

the general background on Hopf algebras and matters of notation, besides [2] we refer

to [3]; we denote by 1 the unit in H and the augmentation homomorphism by η. Going to

cohomology, is stands to reason that the cohomology of enveloping algebras will contain

the same information as the theory of Lie algebra extensions, and that of commutative

Hopf algebras as the theory of group cocycles. But this is not quite what happens! Let

us follow Majid [4] now. With id the identity map of H onto itself, define four maps from

H ⊗H to H ⊗H ⊗H by:

∆0(·) = 1⊗ (·); ∆3(·) = (·)⊗ 1; ∆1 = ∆⊗ id; ∆2 = id⊗∆.

Let χ be an invertible (in the algebra) element of H ⊗H. This is a 2-cochain in general.

Then its coboundary:

H ⊗H ⊗H 3 ∂χ := ∆0(χ)∆2(χ)∆1(χ
−1)∆3(χ

−1) =: ∂+χ∂−χ−1.

An 2-cocycle for H is a 2-cochain such that ∂χ = 1. We compute:

(1⊗ χ)(id⊗∆)χ(∆⊗ id)χ−1(χ−1 ⊗ 1) = 1,

that is (1⊗ χ)(id⊗∆)χ = (χ⊗ 1)(∆⊗ id)χ. (1.1)

Now, for H = R(G), we recognize a group 2-cocycle, that is a nowhere vanishing func-

tion χ on G×G such that

χ(g1, g2)χ(g1g2, g3) = χ(g1, g2g3)χ(g2, g3); ∀g, g1, g2, g3 ∈ G.

We have recovered the standard theory of group 2-cocycles, allowing to construct group

extensions, and well known to physicists —we require as well unitality of χ, that is

(η ⊗ id)χ = (id⊗ η)χ = 1, guaranteeing χ(g, 1G) = χ(1G, g) = 1.

There naturally exists a dual theory of cocycles on Hopf algebras that, when applied

to U(g), reproduces the results of Lie algebra cohomology. For Lie algebras like P, the one

of the Poincaré group, which is well known to be inextensible, such dual procedure gives

nothing; and of course the same is true of the previous theory of cocycles for Hopf algebras

when applied to the component of the identity of the Poincaré group. But, what about

coming back to the framework of (1.1) and trying to apply it to the noncommutative

Hopf algebra U(P)? Or, for that matter, what about trying to apply the theory of

cocycles on Hopf algebras to R(G)? Well, it is not true that the theory of n-cocycles
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for Hopf algebras, when used on objects that are not commutative; or the dual theory

of n-cocycles on Hopf algebras, when used on non-cocommutative algebras, always lead

to proper cohomologies. But this was never to stop quantum group theorists; and, lo and

behold, for 2-cocycles there is no difficulty, indicating that a sort of generalized symmetry

is present. A 2-cocycle for U(g) is precisely what they call a twist. We briefly review how

twists permit to deform the coproduct. Let H be a cocommutative Hopf algebra and χ

the twist. Consider ∆χ(a) := χ∆(a)χ−1. This gives a new coproduct on H. First of all,

for the new coproduct ∆χ is still an algebra map:

∆χ(ab) = χ∆(ab)χ−1 = χ∆(a)∆(b)χ−1 = χ∆(a)χ−1χ∆(b)χ−1 = ∆χ(a)∆χ(b).

Let us check coassociativity of ∆χ:

(∆χ ⊗ id)∆χ(a) = χ12(∆⊗ id)(χ∆(a)χ−1)χ−1
12

= χ12((∆⊗ id)χ)((∆⊗ id)∆a)((∆⊗ id)χ−1)χ−1
12

= χ23((id⊗∆)χ)((id⊗∆)∆a)((id⊗∆)χ−1)χ−1
23 = (id⊗∆χ)∆χ(a).

Here χ12 of course means χ ⊗ 1 ∈ H ⊗H ⊗H, and so on. We have used (1.1). The re-

sulting Hopf algebra is denoted Hχ. Naturally this twisting procedure to create new Hopf

algebras, when used with cohomologous cocycles, gives Hopf algebras that are isomorphic

via inner automorphisms; but often an appropriate twist gives a novel construction.

Now, for H any Hopf algebra, not necessarily commutative or cocommutative, a left

(Hopf) H-module algebra (A,×) is a not necessarily commutative algebra which is a

representation space for (the algebra structure of) H, and moreover

h · (a× b) = h(1) · a× h(2) · b whenever h ∈ H, a, b ∈ A.

The formula h · 1A = η(h)1A usually added here is redundant [5]. Write also ×(a⊗ b) =

a× b. The consequence of the twist is that the product

a ?χ b := ×
(
χ−1(a⊗ b)

)
, (1.2)

for a, b ∈ A, defines a new associative algebra Aχ, covariant under Hχ. In effect, asso-

ciativity of ?χ follows from the 2-cocycle condition. One trivially checks covariance: for

h ∈ H,

h · (a ?χ b) := h · ×
(
χ−1(a⊗ b)

)
= ×

(
∆(h) · χ−1(a⊗ b)

)
= ×

(
χ−1∆χ(h) · (a⊗ b)

)
=: ?χ

(
∆χ(h) · (a⊗ b)

)
.

We ask forgiveness from the reader for the heavy notation; it will be needed later.

The mystery is this: in principle there is no more information in the Hopf algebra U(g)

than in the Lie algebra g. So, in terms of symmetry, what may the twisting procedure

mean?
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For P with its usual generators Tν , Mαβ, taking χΘ := exp(− i
2
θµν Tµ ⊗ Tν), where

Θ := (θµν) is a skew-symmetric matrix, a little calculation with a glance at (3.2) gives:

∆χ(Mαβ) = Mαβ ⊗ 1 + 1⊗Mαβ + i
2
θρσ

(
(gαρTβ − gβρTα)⊗ Tσ + Tρ ⊗ (gασTβ − gβσTα)

)
;

while the coproduct for the Tν is not modified. This is, in cohomological terms, what was

done in [6]. As in that reference, to check the cocycle condition (1.1) is left to the reader.

Moreover, ?χΘ
is a Moyal product [7], and the apparently unlikely deed of having the

Poincaré Lie algebra act on Moyal algebra has been done. Deforming the coproduct of an

enveloping algebra is much less drastic than deforming the product, and, very gratifyingly,

the Casimirs and the whole paraphernalia of relativistic fields remain unaffected. Still, the

manner in which the action of P on its representation spaces propagates to their tensor

products has been modified.

2 Introduction II: a physical discussion

The motivation for [6] was that the question of relativistic symmetry on noncommu-

tative Minkowski (or Euclidean, as the case may be) spacetime is apparently a vexing

one. Indeed, periodically, and as recently as [8], there are complaints about the calami-

tous state of the study of covariance in noncommutative field theory (NCFT). Often,

authors just look at the Moyal commutators [xµ, xν ]?Θ
= iθµν and conclude that Poincaré

invariance is broken down to a subgroup. To wit, with Pn, En respectively denoting the
1
2
(n2 + n) dimensional Poincaré (respectively, Euclidean) Lie algebras of Lorentz trans-

formations (respectively, rotations) and translations on Rn, and assuming Θ has maximal

rank, P ≡ P4 reduces to a six-dimensional Lie algebra isomorphic to P2 ⊕ E2. See [9].

Respectively, E4 would break down to E2 ⊕ E2. One easily finds in the NCFT literature

statements like: “the physics depends on the frame of reference” [10]; picturesquely adding

that it must be so, because the speed of light in a noncommutative geometry depends on

the direction of motion. Also [11] espouses the viewpoint of [10]. On the face of it, this

is a defensible one.

But if so, would it be justified to use the Wigner particle structure of scalar, vector,

spinor fields and so on, as done as a matter of course in almost every paper in NCFT?

This is the second mystery.

This is why the ideas in paper [6] —see also [12]— were welcome. These authors

apparently establish that a form of Poincaré covariance is relevant in NCFT. In particular,

Poincaré group representations and their tensor products are totally pertinent. Later, it

has been claimed that the analysis of [6] extends to the conformal group [13]; also twisted

conformal symmetry in NCFT in two dimensions has been examined [14].
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There is, however, a touch of obscurantism in [6]. For a start, their treatment is

couched in the abstract language of quantum groups, and no physical interpretation of

their reconstruction of Moyal algebra from a twisting of the coproduct on the Poincaré

enveloping algebra was attempted. Also, the twisting is a general geometrical fact, not

specifically linked to the the Poincaré group.

Actually, some of the early treatments of relativistic symmetry in NCFT are more

forthcoming: we refer to the lucid remarks in [15] and the analysis in the deep paper [16].

One may rephrase their argument as follows. Assume that in a region of the space there

is a background field. Its presence modifies the vacuum, breaking Poincaré invariance, in

the sense that active Lorentz transformations are no longer symmetries of the physical

system. But this does not stop an electron under the influence of that background from

being a relativistic electron. It remains possible for observers to describe the system in

a Poincaré covariant way, by suitable changes in the description of the background (the

so-called observer or passive Lorentz transformations). In doing so, one stays within the

same theory; were we to modify charges, masses or other internal variables of the system

it would be otherwise. The phenomenon of variation of the speed of light is expected with

any background field [17]; a result that does not contradict relativity: rather, relativity is

used to derive it.

Now, one may contend that the situation is analogous in NCFT, where one has the

skew-symmetric tensor Θ describing the background. Noncommutativity would brook no

ether, even we ignore as yet what its dynamical equations —and boundary conditions—

are. The origin of the theory in string dynamics [18] does not appear to contradict this

view. Our analysis has points of contact with the recent papers [19], that use the Hopf dual

H◦
χ of Hχ, and with [20]. One should rather not speak alternatively of unbroken/broken

symmetry, but of manifest/hidden invariance. Relativistic symmetry is simply hidden in

NCFT.

The solution of the second conundrum holds a key to the first. Symmetries in the

noncommutative regime (no less than in the commutative one) are always described by

automorphisms —that is, derivations at the infinitesimal level— of the algebra of observ-

ables. When the symmetry is hidden, those derivations involve the parameters of the

vacuum state. We discover that, in some cases at least, twists or deformations of Hopf

algebras are related to hidden symmetries.

3 Conventions

The form of the Moyal product used in this paper is that of Rieffel [21]; this is good

for any rank of Θ, and is moreover an exact (nonperturbative in Θ) deformation of the

ordinary product. Due to the singular nature of the Θ ↓ 0 limits, all kind of pitfalls await
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the unwary user of perturbative forms. For the precise relation between both kinds we

refer to [22], in the analogous framework of phase space Quantum Mechanics. Of course,

at some points we need to fall back on perturbative forms for comparison purposes. Given

the 4× 4 skewsymmetric matrix Θ, the Moyal star product on R4 is:

f ?Θ h(x) =
1

(2π)4

∫
d4y d4u f

(
x + 1

2
Θy

)
h(x + u) eiy·u. (3.1)

The group A(4; R) of affine transformations acts on four-vectors by x 7→ Lx+a, where

a ∈ R4 and L denotes a matrix with det L 6= 0. We have (L, a)(L′, a′) = (LL′, La′ + a).

Thus the inverse transformation of (L, a) is (L−1,−L−1a). Often we write just g for (L, a)

and g · x for Lx + a. An action on functions on R4 ensues, of the form:

[(L, a) . f ](x) := f
(
L−1(x− a)

)
.

This definition leads to the natural g1 . [g2 . f ] = (g1g2) . f .

The 11-dimensional Weyl group W of rigid conformal transformations (translations

and dilations plus Lorentz transformations) generated by {Tτ , D,Mαβ }, with commuta-

tion relations:

[Tτ , Tσ] = 0; [Tτ , D] = Tτ ; [Tτ , Mαβ] = gταTβ − gτβTα;

[D, Mαβ] = 0; [Mαβ, Mγδ] = gβγMαδ + gαδMβγ − gαγMβδ − gβδMαγ, (3.2)

will be envisaged. This subgroup of A(4; R) is singled out in relation with dynamical

—as opposed to merely geometrical— aspects: for definiteness we consider now ?-gauge

(noncommutative Yang–Mills) theories, whose action is invariant under W . This is as

in [16]. The prototype is the Maxwell-? theory on R4, with gauge potential Aµ. Unfortu-

nately, lack of space prevents us from going into the particulars of gauge theory: almost

solely its vector aspect is important here. Throughout, we consider R4
Θ with constant

(position-independent) noncommutativity. Let us note, however, that the interplay be-

tween coordinate, gauge and Θ-variables characteristic of NCFT is even more patent in

non-constant noncommutativity spaces [23], of whose the one considered here must be

regarded as a limit case.

4 Twisted affine transformations

The question is to compute [g . f ] ?Θ [g . h]. Denote by L−t the contragredient matrix

of L. By a simple change of variables in the integral (3.1) one obtains:

[g . f ] ?Θ [g . h](g · x) = f ?L−1ΘL−t h(x); that is to say,

[g . f ] ?Θ [g . h] = g . (f ?LΘLt h). (4.1)
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In the noncommutative world, i.e., for Θ 6= 0, spacetime and parameter transformations

are intimately linked; we see in (4.1) emerging an action, trivial for translations, of the

affine group on the linear space of skewsymmetric matrices, given by

(L, a) ·Θ = L ·Θ := LΘLt.

There is neither novelty nor mystery about this action: it is just classical congruence,

studied by Lagrange and Sylvester centuries ago. Its only invariant is the rank, so the

orbits are constituted respectively by the generic set of invertible skewsymmetric matrices,

the set of non-invertible, nonvanishing skewsymmetric matrices, and the zero matrix.

Given Θ, the matrices L ∈ A(4; R) such that L · Θ = Θ form a “little group” AΘ, of

dimension 10 for the generic orbit (then and only then does Θ define a symplectic form).

There is of course an enormous difference between merely regarding AΘ —or AΘ∩W— as

‘the’ symmetry group, and regarding it as the result of a symmetry breaking A(4; R) ↓ AΘ

of a larger group.

In summary, on the variables (x, Θ) the affine transformations act by

(L, a) · (x, Θ) = (Lx + a, LΘLt). (4.2)

For the induced action on the sections of the field of ?-algebras over the space of all Θ’s,

regarded as functions of (x, Θ), from (4.1) we conclude that

[g . f ] ?Θ [g . h] = g . (f ?Θ h). (4.3)

Such an automorphism equation is the trademark of covariance. The paper is but a

corollary of this fundamental formula. Incidentally, the oldest avatar of these formulae

we know of was found in [24]. Also, recently (4.3) has been rederived from a different

viewpoint in [25].

If g ∈ AΘ, its action is vertical on that field, and then we may replace (4.3) by:

[g . f ] ?Θ [g . h](x) = f ?Θ h(g−1 · x).

Moreover this equivariance can be realized by global gauge transformations, that is, by

conjugation with ?Θ-unitary elements. Properties of those unitaries were reported in [26].

Next we descend to the infinitesimal level. The action (4.2) possesses infinitesimal

generators, which are vector fields in the (x, Θ) spaces. As convenient coordinates on the

noncommutativity parameter sector we may take the six nonvanishing components of Θ.

In some sense, this is whole point: the variable is Θ, the coordinates do not have intrinsic

physical meaning. Writing L = 1 + B in (4.2), for small B we have

(L, a) · (x, Θ) ∼ (x + Bx + a, Θ + BΘ + ΘBt) =
(
x + Bx + a, Θ + BΘ− (BΘ)t

)
.
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This means that suitable generators are

ΓB,a :=
(
aα + bα

βxβ
) ∂

∂xα
+

(
bρ
βθβσ + θρβbσ

β

) ∂

∂θρσ
=

(
aα + bα

βxβ
) ∂

∂xα
+ (BΘ)[ρσ] ∂

∂θρσ
,

where we have put (bα
β) = B. We write ∂α ≡ ∂/∂xα and for a while omit from our

considerations the aα∂α part: it is well known that the Leibniz rule for these operators

with the Moyal product holds. The remaining vector fields ΓB have components linear in

the respective coordinates. We rewrite

ΓB = bα
βxβ∂α +

(
bρ
βθβσ + θρβbσ

β

) ∂

∂θρσ
=: εα

B(x)∂α − δεB
θρσ ∂

∂θρσ
. (4.4)

The last form of the second part of ΓB points to its geometrical meaning: it is (minus)

the Lie derivative with respect to the vector field εB of the contravariant components of

the matrix Θ, regarded as a tensor:

δεθ
ρσ = εα

B(x)∂αθρσ − θβσ∂βερ
B − θρβ∂βεσ

B = −bρ
βθβσ − θρβbσ

β = −δεB
θσρ.

This is an indication that we are on the right track. It is obviously important —in

physics in relation with application of Noether’s theorem, for instance— to record the

4× 4 matrices B such that BΘ + ΘBt = 0 or δεB
θµν = 0. We identify the Lie algebra aΘ

of matrices B such that BΘ is symmetric. Now, from (4.3) we quote its infinitesimal

version

ΓB(f ?Θ h) = ΓBf ?Θ h + f ?Θ ΓBh. (4.5)

The simplicity of (4.5) and of the path leading to it is remarkable. For B ∈ aΘ, in view of

our remark at the end of the previous section, ΓB is an inner derivation of the ?-algebra

(precisely, it is equivalent to a ?Θ-commutator in a multiplier ?-algebra) for det Θ 6= 0;

otherwise ΓB is outer. This kind of derivations were not considered in the previous

analysis [27]. In the simpler case of R2, with bα
β = δα

β and θαβ = εαβθ, we get only the

derivation xµ ∂
∂xµ + 2θ ∂

∂θ
. This had been noticed by some mathematicians [28].

The reader is encouraged to check (4.5) by brute-force calculations: compute ∂
∂θρσ (f ?Θ

h) and εB(f ?Θ h), directly from (3.1) in both cases, using integration by parts.

Summarizing: for Θ = 0 (the commutative world), automorphisms of the algebra

of observables are diffeomorphisms. These are locally generated by vector fields, with

components which are arbitrary in principle. In the noncommutative world, vector fields

no longer represent infinitesimal symmetries. However, vector fields with components

up to degree one in the coordinates can still be interpreted as —manifest or hidden—

symmetries of Moyal algebra.

5 Coming back to [16]

The comparison with [16] is very instructive. All the generators in (3.2) are affine.

In [16] their action is written down only on the (unquantized) gauge potentials and the
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gauge field strengths Fµν := ∂µAν − ∂νAµ− i[Aµ, Aν ]?Θ
, in terms of functional derivatives

with respect to the former. That method is unnecessarily complicated. It is enough to

treat the Aν , Fµν as covariant vectors and 2-tensors, respectively, and substitute the Lie

derivative for the action (4.4) of ΓB on scalar functions, for the corresponding matrix B.

For the gauge potentials, as the ∂/∂θρσ do not intervene, this gives

ΓB(Aµ) = bρ
τx

τ∂ρAµ + Aρ∂µ(bρ
τx

τ ) = bρ
τx

τ∂ρAµ + bρ
µAρ.

In particular, if B = Mαβ then bρ
τ = δρ

βgατ − δρ
αgβτ , and if B = D then bρ

τ = δρ
τ , so we get

ΓMαβ
(Aµ) = xα∂βAµ − xβ∂αAµ + gµαAβ − gµβAα; ΓD(Aµ) = xρ∂ρAµ + Aµ;

together with ΓTτ (Aµ) = ∂τAµ, of course. For the field strengths, one has to take into

account the Θ-dependence in their definition. Still the corresponding terms cancel and

one concludes

ΓMαβ
(Fµν) = xα∂βFµν − xβ∂αFµν + gµαFβν − gµβFαν + gναFβµ − gνβFαµ;

ΓD(Fµν) = xα∂αFµν + 2Fµν ; ΓTτ (Fµν) = ∂τFµν .

We have recovered in all simplicity the results of [16], with the proviso that the widespread

use of ?-anticommutators in that reference is another unnecessary complication, because
1
2
(xα ?Θ ∂βFµν + ∂βFµν ?Θ xα) is the same as xα∂βFµν for any Θ. All looks like in the

commutative world, and invariance of the noncommutative Yang–Mills action ensues.

6 Coming back to [6] and [13]

In this last discussion, our point de départ is (1.2) for χ = χΘ. We write ?Θ for ?χΘ
,

giving the asymptotic version of the Moyal product [18], and ∆Θ for ∆χΘ
. Now, let X be

any derivation of the commutative product ×, i.e., any vector field. It has the property

that

X · ×(a⊗ b) = ×
(
∆0(X) · (a⊗ b)

)
.

Then

X · (a ?Θ b) = X · ×
(
χ−1

Θ (a⊗ b)
)

= ×
(
∆0(X) · χ−1

Θ (a⊗ b)
)

= ×
(
χ−1

Θ ∆Θ(X) · (a⊗ b)
)

= ?Θ

(
∆Θ(X) · (a⊗ b)

)
.

This is a general geometrical fact, independent of whether X is the generator of a Poincaré

transformation or not. It is then scarcely surprising that Matlock [13] has found it to be

valid for local conformal transformations. For similar reasons, sections 3 of [6] and 4

of [13] are tautological.

Next we need a more explicit name, say ρ, for the representation of X as a Moyal

algebra operator. What we have been able to prove in the above is that, for X an affine
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transformation, if ρ(∆Θ(X)) = ρ(∆0(X)) + R(X), then there is another linear operation

ρ̃ of X on the Moyal algebra, not a derivation either, such that

ρ̃(X) · (a ?Θ b) = ρ̃(X) · a ?Θ b + a ?Θ ρ̃(X)b− ?Θ

(
R(X)(a⊗ b)

)
;

and so ρ + ρ̃ is a ?-derivation. Thus hidden and twist covariance boil respectively down

to

XΘmΘ = mΘ∆0(X) and XmΘ = mΘ∆Θ(X),

where we have written XΘ for the realization of X as a derivation in (x, Θ)-space. This

does not seem to work for special conformal transformations, as noted in [16,19,29].

7 Conclusion

We have examined in parallel references [6] and [16]. This in particular amounts to a

(partial) physical interpretation of the manipulation in [6], in terms of an action of the

Poincaré group by observer transformations, involving the space of parameters describing

a noncommutativity background field. For Euclidean symmetry everything would work

out essentially the same.

Our results show by the way that the seminal ‘quantum spacetime’ formalism by

Doplicher, Fredenhagen and Roberts [30] and NCFT as currently practiced essentially co-

incide. Mathematically, the space of states in [30] is a particular orbit of congruence (4.2)

when L is in the Lorentz group. This should have been clear at least since reference [31].

In the quantum spacetime formalism questions of relativistic symmetry breaking can be

adjourned for a while by use of the Heisenberg picture for fields depending on the position

variables; however, to perform physical evaluations, one is forced to choose a state, that

is, a finite measure on the Θ-space; and in so doing Lorentz symmetry becomes hidden.

The moral of our story is that sometimes concrete group actions are able to complement

what ‘twisted symmetry’ teaches us. It would be good to know under which general

conditions cocycles for cocommutative Hopf algebras relate to hidden symmetry.
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[9] L. Alvarez-Gaumé and M. A. Vázquez-Mozo, Nucl. Phys. B 668 (2003) 293.
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