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Abstract

Nijenhuis tensors N on Courant algebroids compatible with the pairing are

studied. This compatibility condition turns out to be of the form N + N∗ = λI

for irreducible Courant algebroids, in particular for the extended tangent bundles

T M = TM ⊕ T∗M . It is proved that compatible Nijenhuis tensors on irreducible

Courant algebroids must satisfy quadratic relations N2 − λN + γI = 0, so that the

corresponding hierarchy is very poor. The particular case N2 = −I is associated

with Hitchin’s generalized geometries and the cases N2 = I and N2 = 0 – to other

”generalized geometries”. These concepts find a natural description in terms of

supersymplectic Poisson brackets on graded supermanifolds.
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1 Introduction

The theory of Nijenhuis tensors on Lie algebras goes back to a concept of contractions

of Lie algebras introduced by E. J. Saletan [Sa]. The study of Nijenhuis tensors for Lie al-

gebroids and Nijenhuis tensors on Poisson manifolds have been originated in [MM, KSM].

In [CGM1] it has been developed the theory of Nijenhuis tensors for associative prod-

ucts, and in [CGM2] contractions and Nijenhuis tensors have been studied for algebraic

operations of arbitrary type on sections of vector bundles.

Recall that a Nijenhuis tensor N for a bilinear operation ”◦” on sections of a vector

bundle A over M is a (1, 1)-tensor N ∈ Sec(A⊗A∗), viewed also as vector bundle morphism
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N : A → A (or the corresponding C∞(M)-linear map N : Sec(A) → Sec(A) on sections),

such that its Nijenhuis torsion

TorN(X,Y ) = N(X) ◦N(Y )−N(X ◦N Y ) (1)

vanishes. Here ”◦N” is the ‘contracted’ product:

X ◦N Y = N(X) ◦ Y + X ◦N(Y )−N(X ◦ Y ). (2)

This general procedure has been applied in [CGM3] to Leibniz algebras and Courant

algebroids [LWX] in their Leibniz algebra formulation. Leibniz algebras – non-skew-

symmetric generalizations of Lie algebras – were studied first by J.-L. Loday [Lo] (they

are called sometimes Loday algebras) and the (co)homology theory of Lie algebras was

generalized to this framework.

Definition 1 A Leibniz product (bracket) on a vector space A is a bilinear operation ”◦”
satisfying the Jacobi identity

(X ◦ Y ) ◦ Z = X ◦ (Y ◦ Z)− Y ◦ (X ◦ Z) (3)

for all X,Y, Z ∈ A. The space A with a Leibniz product we call a Leibniz algebra.

Let now ”◦” be a local Leibniz product on the space Sec(A) of sections of a vector bundle

A over M , i.e. a product which is locally defined by a bidifferential operator, and let

N : A → A be a (1, 1)-tensor over A. According to the general scheme in [CGM2], if the

Nijenhuis torsion (1) vanishes, the contracted product (2) is a Leibniz product which is

compatible with the original one, i.e. X ◦N Y +λX ◦Y is a Leibniz product for any λ ∈ R.

Note that the compatibility is always satisfied.

Theorem 1 [CGM3] The products ”◦N” and ”◦” are always compatible. The contracted

product (2) is still Leibniz if and only if the Nijenhuis torsion (1) is a 2-cocycle with

respect to the Leibniz cohomology operator, i.e.

(δTorN)(X, Y, Z) = TorN(X, Y ◦ Z)− TorN(X ◦ Y, Z)− TorN(Y,X ◦ Z) (4)

−TorN(X, Y ) ◦ Z + X ◦ TorN(Y, Z)− Y ◦ TorN(X, Z) = 0.

In this case ”◦N” and ”◦” are compatible Leibniz products.

The tensor N we will call a Nijenhuis tensor (for the Leibniz algebra Sec(A)) if the

Nijenhuis torsion TorN vanishes and a weak Nijenhuis tensor if the Nijenhuis torsion

TorN is a Leibniz 2-cocycle. In both cases the contracted product ”◦N” is Leibniz and it

is compatible with the original one.
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Example 1 An interesting example of a Leibniz product is the following Leibniz algebra

version of the Courant bracket (called sometimes also Dorfman bracket) on sections X +ξ

of the bundle T M = TM ⊕ T∗M :

(X + ξ) ◦ (Y + η) = [X, Y ] + (£Xη − iY dξ). (5)

Here [X, Y ] is clearly the bracket of vector fields, £X is the Lie derivative, etc. The

extended tangent bundle T M with the canonical symmetric pairing, coming from the

contraction, and with the Courant bracket is an example of a Courant algebroid (cf.

[LWX, Ro1]).

Since a Courant algebroid (see the next section) is not only a Leibniz algebra on sections

of a vector bundle but also a non-degenerate pairing with certain consistency conditions

with the Leibniz product, it has been studied in [CGM3] what is the property of N that

ensures the consistency conditions being satisfied also for ”◦N”. It turns out that it is

sufficient to assume that N + N∗ = λI, λ ∈ R, where N∗ is dual to N with respect to

the pairing. This implies in the particular case of T M that such N is associated with a

triplet consisting of a (1, 1)-tensor, a 2-form, and a bivector field on M .

In this paper we prove that this condition is also necessary for so called irreducible

Courant algebroids (T M is a canonical example). We prove also that such compatible

Nijenhuis tensors on irreducible Courant algebroids must satisfy additionally a quadratic

equation N2 − λN + γI = 0, se the associated hierarchy is trivial. Particular cases:

N2 = −I, N2 = I, and N2 = 0 correspond to the so called complex, product, and tangent

Courant structures, respectively. The complex Courant structures on T M were intro-

duced recently by N. Hitchin [Hi] under the name of complex generalized geometries and

they drew much attention among mathematicians and physicists. Our work shows that,

in practice, due to the above quadratic equation, no more ”generalized geometries” in this

sense than complex, product, and tangent are possible. Since, according to [Ro2], any

Courant algebroid is associated with a cubic homological Hamiltonian Θ on a symplectic

N -manifold of degree 2, we show that in this language complex Courant structures cor-

respond to certain quadratic super-functions N such that {{Θ, N}, N} = −Θ, where the

bracket is the corresponding Poisson superbracket.

2 Nijenhuis tensors for Courant algebroids

Let us recall briefly the structure of a Courant algebroid. We will use here the Leibniz

product (bracket) version of the Courant bracket presented already in [Ro1] with some

simplifications discussed already in [CGM3] (cf. also [GM, Definition1], [KS2, Definition

2.1], and [Uch]).

Definition 2 A Courant algebroid is a vector bundle τ : A → M equipped with a
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Leibniz product (bracket) ”◦” on Sec(A), a vector bundle map (covering the identity)

ρ : A → TM and a nondegenerate symmetric bilinear form 〈·, ·〉 on A satisfying the

identities

ρ(X)〈Y, Y 〉 = 2〈X, Y ◦ Y 〉, (6)

ρ(X)〈Y, Y 〉 = 2〈X ◦ Y, Y 〉. (7)

Note that (6) is equivalent to

ρ(X)〈Y, Z〉 = 〈X, Y ◦ Z + Z ◦ Y 〉. (8)

Similarly, (7) easily implies the invariance of the pairing 〈·, ·〉 with respect to the left

multiplication

ρ(X)〈Y, Z〉 = 〈X ◦ Y, Z〉+ 〈Y, X ◦ Z〉 (9)

and that ρ is the anchor map for the left multiplication:

X ◦ (fY ) = fX ◦ Y + ρ(X)(f)Y. (10)

A rather unpleasant constatation is that, even when the Nijenhuis torsion TorN of a (1, 1)-

tensor N ∈ Sec(A∗ ⊗ A) vanishes (so the contracted bracket is a Leibniz bracket), the

conditions (6) and (7) need not to be satisfied automatically for the ‘contracted’ product

(2). Assume therefore that N is just a (1, 1)-tensor on A (do not assume that N is

Nijenhuis at the moment) and repeat in short from [CGM3] the checking under what

conditions the identities (6) and (7) are still satisfied for ”◦N”. Exactly as in the classical

case of a Lie algebroid contraction [CGM2, Lemma 2], we have the anchor ρN = ρ ◦N for

the contracted multiplication

X ◦N (fY ) = f(X ◦N Y ) + ρ(NX)(f)Y. (11)

Let N∗ be the adjoint of N with respect to the pairing: 〈NX, Y 〉 = 〈X, N∗Y 〉 and let

∆ = N + N∗. Using the invariance (7) we get easily

〈X ◦N Y, Z〉 = 〈NX ◦ Y + X ◦NY −N(X ◦ Y ), Z〉

= ρ(NX)〈Y, Z〉 − 〈Y,NX ◦ Z〉+ 〈Y,N∗(X ◦ Z)〉+ 〈Y,X ◦N∗Z〉,

which equals ρ(NX)〈Y, Z〉 − 〈Y, X ◦N Z〉 if and only if 〈Y, X ◦∆Z −∆(X ◦ Z)〉 = 0 for

all X, Y, Z, i.e. if and only if ∆ commutes with the left multiplication

X ◦∆Z −∆(X ◦ Z) = 0. (12)

Thus (12) is equivalent to the invariance of the pairing with respect to ”◦N”:

ρN(X)〈Y, Z〉 = 〈X ◦N Y, Z〉+ 〈Y,X ◦N Z〉.
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Similarly, checking (6) for ”◦N”, we get

〈X, Y ◦N Y 〉 =
1

2
ρ(X)〈Y, ∆Y 〉 − 1

2
ρ(N∗X)〈Y, Y 〉

which equals 1
2
ρ(NX)〈Y, Y 〉 if and only if ρ(X)〈Y, ∆Y 〉 = ρ(∆X)〈Y, Y 〉. The latter can

be rewritten in the form

〈X, Y ◦∆Y + ∆Y ◦ Y 〉 = 2〈∆X, Y ◦ Y 〉

or

Y ◦∆Y + ∆Y ◦ Y = 2∆(Y ◦ Y ).

Using (12) we get finally the condition

∆(Y ◦ Y ) = ∆Y ◦ Y. (13)

Theorem 2 ([CGM3]) If N : A → A is a (1, 1)-tensor on a Courant algebroid, then

the contracted product (2) is compatible with the symmetric pairing 〈·, ·〉 of the Courant

algebroid, in the sense that (6) and (7) are satisfied for ”◦N” and ρN , if and only if

X ◦ (N + N∗)Y = (N + N∗)(X ◦ Y ) and (N + N∗)(Y ◦ Y ) = (N + N∗)Y ◦ Y

for all sections X, Y of A.

It is clear that, how restrictive the above conditions are, depends on ‘irreducibility’ of the

Courant product. However, there is one (and only one) case which works for any Courant

algebroid, namely the case N + N∗ = λI, λ ∈ R. A Courant algebroid we call irreducible

if λI are the only (1, 1)-tensors ∆ : A → A satisfying (12) and (13).

Theorem 3 The classical Courant algebroid structure on T M = TM ⊗ T∗M is irre-

ducible.

Proof.- Suppose that the (1, 1)-tensor ∆ commutes with the left multiplication. In lo-

cal coordinates (xi) we can write ∆(∂j) =
∑

i

(
∆i

j(x)∂i + ∆∗i
j (x)dxi

)
and ∆(dxj) =∑

i

(
∆i
∗j(x)∂i + ∆∗i

∗j(x)dxi
)
. In view of

0 = ∆(∂k ◦ ∂j) = ∂k ◦∆(∂j) =
∑

i

(
∂∆i

j

∂xk
(x)∂i +

∂∆∗i
j

∂xk
(x)dxi

)
and

0 = ∆(∂k ◦ dxj) = ∂k ◦∆(dxj) =
∑

i

(
∂∆i

∗j

∂xk
(x)∂i +

∂∆∗i
∗j

∂xk
(x)dxi

)
we get that ∆i

j(x) = ∆i
j, ∆i

j∗(x) = ∆i
∗j, ∆∗i

j (x) = ∆∗i
j , and ∆∗i

∗j(x) = ∆∗i
∗j are constant.

Now, since

(xk∂j) ◦ ∂k = [xk∂j, ∂k] = −∂j and (xj∂k) ◦ dxk = £xj∂k
dxk = dxj,
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we have

−∆(∂j) = −
∑

i

(
∆i

j∂i + ∆∗i
j dxi

)
= xk∂j ◦

∑
i

(
∆i

k∂i + ∆∗i
k dxi

)
= −∆k

k∂j + ∆∗j
k dxk (14)

and

∆(dxj) =
∑

i

(
∆i
∗j∂i + ∆∗i

∗jdxi
)

= xk∂j ◦
∑

i

(
∆i
∗k∂i + ∆∗i

∗kdxi
)

= −∆k
∗k∂j +∆∗j

∗kdxk. (15)

The identity (14) implies that ∆i
j = δi

j∆
k
k and −∆∗i

j = δi
k∆

∗j
k . Since the indices i, j, k are

arbitrary, we conclude that ∆i
j = λδi

j for some λ ∈ R and ∆∗i
j = 0, i.e., ∆(∂j) = λ∂j.

Similarly, from the identity (15) we conclude that ∆(dxj) = λ′dxj. But now λ = λ′

follows from (13). Indeed, (X + ξ) ◦ (X + ξ) = diXξ, so that (λX + λ′ξ) ◦ (X + ξ) =

λ£Xξ−λ′iXdξ = (λ−λ′)iXdξ+λdiXξ equals λ′diXξ for all vector fields X and all 1-forms

ξ, thus λ = λ′. �

Definition 3 A (1, 1)-tensor on a Courant algebroid we call orthogonal if N + N∗ = 0.

A (weak) Nijenhuis tensor N which is compatible with the symmetric pairing 〈·, ·〉 of the

Courant algebroid, in the sense that (6) and (7) are satisfied for ”◦N” and ρN , we call a

(weak) Courant-Nijenhuis tensor.

Thus weak Courant-Nijenhuis tensors give rise to contractions of Courant algebroids.

Note however, that the structure of a Courant algebroid is extremely rigid and that there

are very few true Courant-Nijenhuis tensors. First, observe that N is a Courant-Nijenhuis

tensor if and only if N − λ
2
I is Courant-Nijenhuis (cf. [CGM2, Theorem 8]), so we can

always reduce paired tensors to the case when N + N∗ = 0, i.e. to the case of orthogonal

N . Second, we have the following.

Theorem 4 ([CGM3]) If N is an orthogonal Courant-Nijenhuis tensor, then

X ◦N2Y = N2(X ◦ Y ), and N2(Y ◦ Y ) = (N2Y ) ◦ Y.

Proof.- Using N∗ = −N and the invariance of the pairing, we get

〈N(X ◦N Y ), Z〉 = −〈X ◦N Y, NZ〉 = −ρ(NX)〈Y, NZ〉+ 〈Y,X ◦N NZ〉 (16)

and

〈NX ◦NY, Z〉 = ρ(NX)〈NY, Z〉+ 〈Y,N(NX ◦ Z)〉, (17)

so N is Nijenhuis implies that the r.h. sides of (16) and (17) are equal, i.e.

X ◦N NZ −N(NX ◦ Z) = 0. (18)

But the l.h.s of (18) is

NX ◦NZ −N(X ◦N Z)−N2(X ◦ Z) + X ◦N2Z

and vanishing of the Nijenhuis torsion implies N2(X ◦Z) = X ◦N2Z. The second identity

one proves analogously, see the proof of (13). �
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Corollary 1 Any Courant-Nijenhuis tensor N on an irreducible Courant algebroid sat-

isfies:

(a) N + N∗ = λI,

(b) N2 − λN + γI = 0,

for certain λ, γ ∈ R, so that the algebra with involution generated by N , thus the corre-

sponding hierarchy, is trivial.

Proof.- According to Theorem 2, N+N∗ = λI. Then, applying Theorem 4 to N := N−λ
2
I,

we get (N − λ
2
I)2 = λ′I which yields (b) with γ = λ2

4
− λ′. �

Definition 4 An orthogonal Courant-Nijenhuis tensor N on a Courant algebroid we call

(for the terminology see [BC])

(i) a complex Courant structure, if N2 = −I;

(ii) a product Courant structure, if N2 = I;

(iii) a tangent Courant structure, if N2 = 0.

Remark. Note that complex Courant structures on the canonical Courant algebroid T M

from Example 1 have been introduced by N. Hitchin [Hi] under the name of generalized

complex geometries. They have been then studied by M. Gualtieri [Gu] and have drawn

an attention of other authors (see e.g. [Cr, LMTZ, Zu1, Zu2]). One can say, not very

precisely, that a generalized geometry is a geometry of contractions in which we replace a

Nijenhuis tensor on the tangent bundle (with the standard bracket of vector fields) with

a similar Nijenhuis tensor on the ‘extended tangent bundle’ (with the Courant bracket).

When generalizing this scheme to an arbitrary Courant algebroid, we can speak about a

Courant geometry.

Corollary 2 Any orthogonal Courant-Nijenhuis tensor on an irreducible Courant alge-

broid is proportional to either a complex Courant structure, or to a product Courant

structure, or to a tangent Courant structure.

3 Courant geometries as supergeometries

There is another approach to Courant algebroids, proposed by D. Roytenberg [Ro1,

Ro2] (cf. also [Vo]), in which the Courant algebroid corresponds to a symplectic N -

manifold (Ã, Ω) of degree 2 with the associated (graded) Poisson bracket {·, ·}, equipped

additionally with a cubic Hamiltonian Θ which is homological, i.e. {Θ, Θ} = 0. The

symplectic N -manifold Ã of degree 2 is here the pullback of T∗[2]A[1] (fibered canonically
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over (A⊕A∗)[1]) with respect to the embedding A ↪→ A⊕A∗ given by X 7→ (X, 〈X/2, ·〉),
i.e. it completes the commutative diagram

Ã −→ T∗[2]A[1]

↓ ↓
A[1] −→ (A⊕ A∗)[1]

Here we use the standard convention and, for a graded vector bundle E over a graded

manifold M, write E[n] for the graded manifold obtained by shifting the fibre degrees by

n. In this picture, the corresponding Leibniz bracket is a derived bracket (cf. [KS1, KS2])

for which Θ is a generating Hamiltonian:

X ◦ Y = {{X, Θ}, Y }. (19)

We should have probably written ”◦Θ” for the operation, but let us fix Θ and keep writing

simply ”◦”. Note that the above formula implies immediately

ρ(X)(f) = {{X, Θ}, f}. (20)

Here X, Y are functions on Ã of degree 1 (i.e. sections of A) and f is of degree 0 (i.e. f is

a function on M). Writing the graded algebra of super-functions on Ã as A =
⊕∞

k=0Ak,

we can identify the algebra of functions on M with A0 and the A0-module of sections

of A with A1. The Poisson bracket reduced to A1 is just the pseudo-Riemannian form

〈·, ·〉. Moreover, the Hamiltonian vector field ∂Θ = {Θ, ·} is a cohomology operator

in A defining the corresponding cohomology. The pseudo-Riemannian form 〈·, ·〉, thus

the Poisson bracket, identifies canonically A with A∗ by X 7→ {X, ·} (on sections) and

any orthogonal (1, 1)-tensor N ∈ Sec(A ⊗ A∗) can be clearly identified with an element

in A1 ·A1 ⊂ A2, denoted, with some abuse of notation, also by N . In this language,

N(X) = {N, X} for X ∈ A1. In an affine Darboux chart (xi, ξa, pj) on Ã, corresponding

to a chart (xi) on M and a local basis {ea} of sections of A such that 〈ea, eb〉 = gab, the

symplectic form Ω reads

Ω =
∑

i

dpidxi +
1

2

∑
a

dξagabdξb

and Θ ∈ A3 is of the form

Θ =
∑
a,i

ξaρi
a(x)pi −

1

6

∑
a,b,c

φa,b,c(x)ξaξbξc,

where ρi
a = ρ(ea)(x

i) and φa,b,c = 〈ea ◦ eb, ec〉. Any (1, 1)-tensor N : A → A, N(ea) =∑
b N b

a(x)eb is orthogonal if and only if
∑

b

(
N b

agbc + N b
c gab

)
= 0 and then it is represented

by the element

N =
1

2

∑
b

N b
agbcξ

cξa ∈ A1 · A1.
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Note, however, that what we have denoted N2 before, and which is {N, {N, ·}} in the

present notation, is not the square of N in the algebra A. Since we will not use powers

in the algebra A, we will keep the old notation.

Proposition 1 The derived bracket (19) generated by any cubic Hamiltonian Θ always

satisfies the compatibility conditions (12) and (13). The Jacobi identity (3) is equivalent

to the homological condition {Θ, Θ} = 0.

Proof.- Since {X, {Y, Y }} = 0 for X, Y ∈ A1, we have, due to the graded Jacobi identity,

0 = {Θ, {X, {Y, Y }}} = {{Θ, X}, {Y, Y }}} − 2{X, {{Θ, Y }, Y }}

= ρ(X)〈Y, Y 〉 − 2〈X, Y ◦ Y 〉,

whence (12). On the other hand,

〈X ◦ Y, Y 〉 = {{{Θ, X}, Y }, Y } = {{Θ, X}, {Y, Y }} − {{{Θ, X}, Y }, Y }

= ρ(X)〈Y, Y 〉 − 〈X ◦ Y, Y 〉,

that proves (13). That the Jacobi identity is equivalent to the homological condition

{Θ, Θ} = 0 follows now from [Ro2], Thorem 4.5. �

Example 2 ([Ro2]) The symplectic N -manifold of degree 2 associated with the canonical

Courant algebroid from Example 1 is

Ã = T∗[2]T[1]M ' T∗[2]T∗[1]M

with the canonical symplectic form Ω of degree 2. In local affine Darboux coordinates

(xi, ξj, pk, ϑl), where (xi) are local coordinates (of degree 0) on M , (ξj, ϑl) are degree-1 co-

ordinates associated with adapted linear functions on the bundle A = T M = TM ⊕T∗M

corresponding to dxj and ∂xl , and (pl) are degree-2 coordinates associated with linear

functions on another copy of T∗M – the core of the double vector bundle T∗[2]T[1]M '
T∗[2]T∗[1]M . In these coordinates Ω =

∑
i (dxidpi + dξidϑi) and the corresponding Pois-

son superbracket reads

{F, G} = idGidF

∑
i

(
∂pi

∂xi + ∂ϑi
∂ξi

)
.

The canonical cubic Hamiltonian is in this case Θ =
∑

i ξ
ipi which is just the Hamiltonian

lift of the de Rham vector field d =
∑

i ξ
i∂xi on T[1]M .

Proposition 2 For N ∈ A1 ·A1 ⊂ A2, the contracted product ◦N is the derived bracket

associated with the cubic Hamiltonian {Θ, N}. Moreover, N represents a weak Courant-

Nijenhuis tensor if and only if {{Θ, N}, N} is a ∂Θ-cocycle, and N represents a Courant-

Nijenhuis tensor if and only if {{Θ, N}, N} is the generating Hamiltonian for ”◦N2”.
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Proof.- We have

{{X, {Θ, N}}, Y } = −{{N, Θ}, X}, Y } =

= −{N, {{Θ, X}, Y }}+ {{Θ, {N, X}}, Y }+ {{Θ, X}, {N, Y }} =

= −N(X ◦ Y ) + NX ◦ Y + X ◦NY = X ◦N Y.

Thus, the product ”◦N” defines another Courant algebroid structure on (A, 〈·, ·〉) if and

only if {{Θ, N}, {Θ, N}} = 0. But

{{Θ, N}, {Θ, N}} = {{{Θ, N}, Θ}, N}}} − {Θ, {{Θ, N}, N}} = 0− {Θ, {{Θ, N}, N}}.

Since, as easily seen, X(◦N)NY = 2TorN(X,Y )+X ◦N2 Y , the vanishing of the Nijenhuis

torsion is equivalent that the generator of ”(◦N)N”, i.e. {{Θ, N}, N} is the generator of

”◦N2”. �

Corollary 3 A complex (resp., product, tangent) Courant structure on a Courant al-

gebroid A associated with the qubic Hamiltonian Θ is exactly an element N ∈ A1 · A1

satisfying {{Θ, N}, N} = −Θ (resp, {{Θ, N}, N} = Θ, {{Θ, N}, N} = 0).

A detailed description of such quadratic Hamiltonians is in general difficult, since in

particular it contains all true complex structures (cf. also [Cr]). There are also relations

to presymplectic-Nijenhuis and Poisson-Nijenhuis structures, thus bihamiltonian systems

(cf. [CGM3, Theorem 10]).

References

[BC] Bruckheimer, M. and Clark, R. S., Tensor structures on a differentiable mani-

fold, Ann. Mat. Pura Appl. 54 (1961), 123-141.
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[CGM2] Cariñena, J. F.; Grabowski, J. and Marmo, G., Contractions: Nijenhuis and

Saletan tensors for general algebraic structures, J. Phys. A: Math. Gen. 34

(2001), 3769-3789.
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