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Abstract

In this note we define a “Lagrangian force” in geometric terms; then, the Euler-

Lagrange equation is interpreted as a Newton-like equation “mass×acceleration =

force”.

1 Introduction

Strictly speaking, Euler-Lagrange equations are not differential equations. They could

be seen better as a formula expressing the operations to perform in order to obtain the

vector field whose integral curves are the critical points of the action functional
∫

Ldt

constructed with a Lagrangian L. In this sense, they are linear equations for the sec-

ond derivatives of the components of these curves. This point of view is clearly stated

in the traditional coordinate-dependent formulation of Lagrangian mechanics: the Euler-

Lagrange equations d
dt

∂L
∂q̇i

− ∂L
∂qi

= 0 give rise to the following linear system for the accel-

erations a = (q̈i)

Ma = Q, (1)

where M =
(

∂2L
∂q̇i∂q̇j

)
is the Hessian of the Lagrangian with respect to the velocities and,

in the autonomous case, Q =
(
− ∂2L

∂qi∂q̇j
q̇j + ∂L

∂qi

)
. This term Q could be called the

“(Lagrangian) force” and (1) interpreted as a Newton-like equation “mass×acceleration

= force”. For natural mechanical systems L = T − V , the force Q includes the “true”

(physical) generalized force −∂V
∂q

and some ficticious (non-inertial) forces ∂T
∂q
− ∂2T

∂q∂q̇
q̇.

When the Lagrangian L is regular, the equations (1) can be solved for the accelerations

a = M−1Q and the trajectories q(t) are the solutions of the system of second order

differential equations q̈i = ai(q, q̇).

On the other hand, it is well known that either aspect of the Lagrangian formalism has

its own differential geometric interpretation. As it is well established [5, 2], the geometric

form of the Euler-Lagrange equations for an autonomous Lagrangian L ∈ C∞(TM) is

i(Γ)dϑL = −dEL, (2)
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where EL = ∆(L)− L is the energy function. As before, this is in fact a linear equation

on the manifold TM (the space of states) for the vector field Γ whose integral curves

will be the dynamical trajectories. In local coordinates (t, qi, q̇i) (2) is nothing but (1).

Now the point is the following: is there a direct geometric version of the Euler-Lagrange

equations (2) analogous to (1) from which the geometric object representing the force Q

is obtained?

The purpose of this note is to answer to this question. We will get the desired geometric

equation using the affine structures related to the 1– and 2–jet bundles associated to the

variational problem. In particular, we will see that the main geometric objects entering

in the dynamical equation can be seen as affine morphisms between affine bundles and

consequently the equation itself can be written explicitly as a linear equation.

2 Geometric structures

First of all, we will review the geometric structures appearing in the Lagrangian formu-

lation of Classical Mechanics and explain the subsequent notation. Let M be the configu-

ration space of a m–dimensional autonomous Lagrangian system, and τM : TM → M the

tangent bundle projection. The basic constructions we will make use of from now on are

those of jet bundles of curves of M [4]. First order Lagrangian systems are described by

a single function L ∈ C∞(TM) (the “Lagrangian”) encoding all the dynamical properties

(kinematics, masses, active forces, etc.) of the system; as the dynamical equations are of

the second order type, the spaces we need are the 1–jet bundle, which coincides with the

tangent bundle TM , and the 2–jet bundle T 2M ; both TM and T 2M are bundles over M ,

and the elements of TM are known as “velocities” or “(dynamical) states”, while those of

T 2M are the “accelerations”. There is a natural projection µ : T 2M → TM , j2
xσ 7→ j1

xσ,

jk
xσ denoting the k–jet, k = 1, 2, of the curve σ : R → M at the point σ(0) = x. Every

curve σ can be prolonged to curves jkσ : R → T kM given by jkσ(t) = jk
σ(t)σt, σt being

the curve σt(s) = σ(t + s) which starts from the point σ(t).

There exists a remarkable structure given by the “total time derivative” operators

T0 = idTM and T : T 2M → TTM defined by the rule

T ◦ j2σ = (j1σ)∗ ◦
d

dt
,

where d
dt
∈ X(R) is the unique vector field in R, which is endowed with a volume form

dt (the time measure), such that i( d
dt

)dt = 1. These operators T0 and T are in fact

vector fields along the projections τM and µ, respectively, and are (µ, τM)–related, i.e.,

τM∗ ◦T = T0 ◦ µ. As it is well known [1], each of these operators induces two derivations

along the corresponding maps: the contraction iT and the Lie derivative dT, and same

for T0. In particular, given a function f ∈ C∞(M) (resp., f ∈ C∞(TM)), its total time

derivative is a function dT0f ∈ C∞(TM) (resp., dTf ∈ C∞(T 2M)).
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Let us have a look at these constructions in local coordinates. Let (qi) be a local system

of coordinates in M ; let (qi, vi) and (qi, vi, ai) be the corresponding fibered coordinates in

TM and T 2M . If the curve σ locally is expressed as σ(t) = (σi(t)), σ(0) = x, the k–jets

are jk
xσ = (σi(t), dσi

dt
, . . . , dkσi

dtk
). On the other hand, the total time derivative operators are

T0(q, v) = vi ∂

∂qi
,

T(q, v, a) = vi ∂

∂qi
+ ai ∂

∂vi
,

while the total time derivative of a function f ∈ C∞(M) (resp., f ∈ C∞(TM)) is

dT0f(q, v) = ∂f
∂qi v

i (resp., dTf(q, v, a) = ∂f
∂vi a

i + ∂f
∂qi v

i).

For our treatment of Lagrangian dynamics the affine structure of the fibre bundle

µ is of great importance: it is an affine bundle over the vector bundle ker τM∗ (also

denoted as V (τM)) of the τM–vertical tangent vectors of TM . The τM -vertical vector

which corresponds to a couple of accelerations w,w′ ∈ µ−1(z) is the vector T(w)−T(w′) ∈
Vz(τM); it will be denoted by w−w′. By means of the affine structure and the vertical lift

ξv : TM ×M TM → V (τM) [5, 2] it is posible to associate to every function f ∈ C∞(TM)

three important affine morphisms between affine bundles: its total time derivative, its

Hessian and its Euler-Lagrange 1-form.

1. The total time derivative. Using the general fact that a function of the total space

A of a fibre bundle π : A → M is equivalent to a fibre bundle morphism between π and the

trivial vector bundle M × R → M , the total time derivative of a function f ∈ C∞(TM)

can be represented as a fibre bundle morphism

T 2M
dTf //

µ
##HH

HH
HH

HH
H TM × R

pr1yyssssssssss

TM

Its linear part [dTf ] : V (τM) → TM ×R is nothing but the vertical differential of f , i.e.,

the differential df restricted to the subbundle V (τM): in fact, for two accelerations w, w′

over one and the same state z ∈ TM we have

dTf(w)− dTf(w′) = 〈df(z),T(w)−T(w′)〉 = 〈df(z), w − w′〉.

In local coordinates essentially we have [dTf ] · (Xj ∂
∂vj ) = Xj ∂f

∂vj .

2. The Hessian. The concept of the fibre derivative of a morphism of affine bundles

[6] is another useful geometric tool in our constructions. Given a function f ∈ C∞(TM),

its fibre derivative is a morphism Ff : TM → T ∗M given by Ff(z) = DfτM (z)(z), where

fx is the restriction of f to TxM and the symbol D stands for the derivative of an

application between linear spaces. The second fibre derivative is a linear morphism F2f :
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TM → S2(TM) from TM to the bilinear symmetric functions of TM given by F2f(z) =

D2fτM (z)(z). By means of the vertical lift, we extend this morphism to a bundle morphism

Hf : TM → S2(V (τM)) according to the rule

Hf(z) · (ξv(z, v), ξv(z, v′)) = F2f(z) · (v, v′), v, v′ ∈ TτM (z)M.

In this sense, the second fibre derivative of a function f is usually called the Hessian

map of f . The induced linear morphism between the vector bundle V (τM) and its dual

vector bundle V ∗(τM) (the bundle of τM -semibasic 1-forms), will be denoted by Ĥf and

the following diagram holds:

V (τM)

$$IIIIIIIII

cHf // V ∗(τM)

zzuuuuuuuuu

TM

(3)

This is the interpretation of the second fibre derivative we need in the following, and

it can be proved [6] that ker(Ff)∗ = ker Ĥf , a property saying that Ff is a (local)

diffeomorphism at a point z ∈ TM if and only if Ĥf |Vz(τM ) is a linear isomorphism. When

this condition holds, the function f is said to be regular (or hyper-regular, for a global

diffeomorphism). Consequently, the vertical bundle V (τM) will be endowed with a scalar

product structure Hf ; when, furthermore, the Hessian map is positive, the scalar product

in V (τM) is Euclidean.

In local coordinates the expressions for the fibre derivatives are

Ff(q, v) =
∂f

∂vi
dqi,

Ĥf · (X i ∂

∂vi
) = X i ∂2f

∂vi∂vj
dqj,

The regularity condition will be det
(

∂2f
∂vi∂vj

)
6= 0.

3. The Euler-Lagrange 1-form. We define a 1–form on the space of accelerations,

known as the Euler–Lagrange form δf , as [1]

δf = dTθf − µ∗df ∈
∧1

(T 2M), (4)

where θf = df ◦ S ∈
∧1(TM) is a τM–semibasic form, i.e., θf ∈ Sec(V ∗(τM)), defined

by means of the almost-tangent structure (or vertical endomorphism) S of the tangent

bundle T (TM). Note that the 1–form along τM equivalent to θf is nothing but the fibre

derivative of f , and also that δf can be expressed in terms of the “energy” Ef = ∆(f)−f ,

where ∆ ∈ X(TM) is the vector field of dilations along the fibres of TM (the Liouville

vector field) [5, 2]:

δf = iTdθf + µ∗dEf .

96



As the Euler-Lagrange form δf is τ ◦ µ–semibasic, it is equivalent to a 1-form along

τ ◦ µ, i.e., to a bundle morphism δf∨ : T 2M → T ∗M ; using the vertical lift again, we

can extend δf , by duality, to an equivalent morphism δ̃f from T 2M to the space of τM–

semibasic 1-forms V ∗(τM):

T 2M

µ
##GG

GG
GG

GG
G

eδf // V ∗(τM)

zzuuuuuuuuu

TM

, (5)

the relation between δ̃f and δf∨ being

〈δ̃f(w), ξv(z, v)〉 = 〈δf∨(w), v〉, w ∈ µ−1(z), v ∈ TτM (z)M. (6)

It is this interpretation (5) of the Euler-Lagrange 1-form we will need later. The coordinate

representation of the Euler-Lagrange form is

δf =

[
dT

(
∂f

∂vj

)
− µ∗

∂f

∂qj

]
dqj.

The main property we want to point out is the following.

Proposition 1 The Euler–Lagrange 1-form δ̃f (5) is an affine morphism of affine bundles

whose linear part is the Hessian map of f .

Dem.- Let us consider two accelerations w, w′ ∈ µ−1(z); thus δ̃f(w), δ̃f(w′) ∈ V ∗
z (τM)

and for a vector v ∈ TzM we have, using (6), 〈δ̃f(w) − δ̃f(w′), ξv(z, v)〉 = 〈δf∨(w) −
δf∨(w′), v〉. Now, picking two vectors Y ∈ TwT 2M and Y ′ ∈ Tw′T 2M such that (τM ◦
µ)∗w ·Y = (τM◦µ)∗w′ ·Y ′ = v, a direct calculation, using the properties of all the differential

forms involved, gives

〈δ̃f(w)− δ̃f(w′), ξv(z, v)〉 = dθf (z) · (T(w)−T(w′), µ∗w · Y ) . (7)

On the other hand, a direct calculation, this time using the (local) flow of the vertical lift

Xv ∈ X(TM) of a vector field X ∈ X(M), shows that

dθf (z) · (Xv(z), V ) = 〈£Xvθf (z), V 〉

= F2f(z) · (X(τM(z)), τM∗z · V )

= Hf(z) · (Xv(z), ξv(z, τM∗z · V ));

applying this result to the previous partial one (7) we finally arrive at

〈δ̃f(w)− δ̃f(w′), ξv(z, v)〉 = Hf(z) · (w − w′, ξv(z, v)), ∀v ∈ TzM,

that is

δ̃f(w)− δ̃f(w′) = Ĥf · (w − w′),

∀w,w′ ∈ T 2M such that µ(w) = µ(w′).
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3 The equation of motion and the Lagrangian force

Now let us study the motion of a first order autonomous Lagrangian system. There are

two alternative but equivalent geometrical interpretations of the Euler-Lagrange equations

of the variational problem with Lagrangian L [3]: the extremals can be regarded either

as the integral curves of a Second Order Differential Equation Γ ∈ X(TM) solution of the

equation (2) i(Γ)dθL = −dEL or as those of a section γ ∈ Sec(µ) such that γ∗δL = 0, that

is δL∨ ◦ γ = 0 or

δ̃L ◦ γ = 0; (8)

thus, the dynamical equation is interpreted as a linear equation in affine bundles, the

point of view suitable in our constructions. The relation between γ and Γ is given by

[1, 3]

Γ = T ◦ γ; (9)

in local coordinates, if Γ(q, v) = vj ∂
∂qj + Γj(q, v) ∂

∂vj , then the equivalent section reads

γ(q, v) = (qj, vj, Γj(q, v)).

For regular Lagrangians, i.e., Lagrangians L such that ĤL is a (local) isomorphism,

it is well established that the solution is unique, that is, there is a unique (local) SODE

γ ∈ Sec(µ) solution of the linear equation (8). This is the motion obeying the Hamilton

principle with L as Lagrangian, and is completely determined by L.

Using the affine structures involved, we can write the equation of motion (8) as a

linear equation for the deviation γ − γ0 ∈ Sec(V (τM)) of the actual motion from another

one γ0 ∈ Sec(µ) taken as “the reference motion”:

ĤL ◦ (γ − γ0) = Q, (10)

where

Q = −δ̃L ◦ γ0 ∈ Sec(V ∗(τM)) (11)

is the “(Lagrangian) force”. Thus, the equation of motion (10) can be interpreted as a

Newton-type equation. The force Q is a τM -semibasic 1-form representing the influences

which deviate the motion γ from the reference γ0.

Now the dynamical problem is to look for the sections γ− γ0 ∈ Sec(V (τM)) satisfying

the linear equation (10); we can visualize it in the following commutative diagram:

V (τM)

$$IIIIIIIII

cHL // V ∗(τM)

zzuuuuuuuuu

TM
γ−γ0

ddIIIIIIIII

Q
::uuuuuuuuu

(12)

The equation of motion (10) immediately provides the unique solution γ − γ0 = ĤL
−1

Q.
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The reference motion is arbitrary and has no special physical meaning; however, if

we took γ0(q, v) = (q, v; 0) the components of the τM -semibasic 1-form Q representing

the Lagrangian force (11) are the ones pointed out in the introduction. It is clear that

this choice has sense only locally; in general, there is no vector structure in the space of

accelerations (and in the physical space itself). For natural systems L = T−V , the true or

inertial generalized force is the basic 1-form −τ ∗MdV and consequently −δ̃L ◦ 0 + τ ∗MdV =

−δ̃T ◦ 0 is the non-inertial force.
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