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Abstract

The relation between Lie algebroid and the BV formalism is revisited. The

equivalence between the Lie algebroid structure and it exterior algebra is the basis

for a set of examples leading to a Lie algebroid structure in a infinite dimensional

setting.

1 Introduction

During the last fifty years Lie groups and Lie algebras played a relevant role in the

development of physical theories [2]-[5]. However the generalization of such concepts,

Lie groupoids and Lie algebroids, have only been incorporated in the physics literature

during the very recent years. Here we will see that the concept of Lie algebroid is a natural

structure in the BRST formulation of gauge theories (for details on the BRST construction

see e.g [6], [7]). Specifically we will use the fact that the Lie algebroid structure is in a one

to one relation with an exterior differential algebra structure (which can be understood in

term of homological vector fields on a supermanifold see e.g. [8]). In particular the BRST

operator for the Yang-Mills kind theories is a special case of a Lie algebroid on an infinite

dimensional setting.

2 Lie algebroids

Let us first recall the definition and some properties of Lie algebroids. The concept

of Lie algebroid, which was introduced by Pradines [9], not only generalizes the concept

of Lie algebra but also that of tangent bundle of a manifold B. We recall that such

tangent bundle, τ : TB → B is a vector bundle in which the set of its sections, the vector

fields, Γ(τ) = X(B), is endowed with a Lie algebra structure. Moreover, the sections of

the bundle act as derivations on the associative and commutative algebra of functions in

the base manifold B. Both properties, together with a compatibility condition, are the

essential ingredients of a Lie algebroid structure: given a function ϕ ∈ C∞(B) and two

sections X, Y ∈ Γ(τ), the following relation holds:

[X, ϕ Y ] = ϕ [X,Y ] + (Xϕ) Y .
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Two other properties which will be also generalized to the case of Lie algebroids

are that there exists a (regular) Poisson structure on the dual bundle, for example, the

cotangent bundle T ∗B, and that there is a graded exterior differential operator which is

a derivation of degree one in the set of forms, d : Ωr(B) → Ωr+1(B), such that d2 = 0.

Here Ωr(B) denotes Ωr(B) = Γ(T ∗B∧ r· · · ∧T ∗B).

Definition 2.1. A Lie algebroid with base B is a vector bundle τE : E → B, together

with a Lie algebra structure in the space of its sections given by a Lie product [·, ·]E, and

a vector bundle map over the identity in the base, called anchor, ρ : E → TB, inducing

a map between the corresponding spaces of sections, to be denoted with the same name

and symbol, such that: .- For any pair of sections for τE, X,Y , and each differentiable

function ϕ defined in B,

[X, ϕ Y ]E = ϕ [X, Y ]E + (ρ(X)ϕ)Y .

Where ρ is a Lie algebra homomorphism. Let {xi | i = 1, . . . , n} be local coordinates

in a chart on an open set U ⊂ B, and let {eα | α = 1, . . . , r} be a basis of local sections

of the bundle UE = τ−1
E (U) → B. Each local section VU is written V = yα eα. The local

coordinates of p ∈ UE are p = (xi, yα).

The local expressions for the Lie product and the anchor map are (summation on

repeated indices is understood):

[eα, eβ]E = Cαβ
γ eγ , ρ(eα) = ρi

α
∂

∂xi
, (2.1)

where α, β, γ = 1, . . . , r and i = 1, . . . , n. The functions Cαβ
γ ∈ C∞(U) and ρi

α ∈ C∞(U)

are called structure functions of the Lie algebroid. The conditions for ρ to be a Lie algebra

homomorphism are ∑
cycl(α,β,γ)

(
ρi

α
∂Cβ γ

µ

∂xi
+ Cα ν

µ Cβ γ
ν

)
= 0 , (2.2)

and the compatibility conditions between ρ and [·, ·] are

ρj
α

∂ρi
β

∂xj
− ρj

β
∂ρi

α

∂xj
= ρi

γ Cα β
γ . (2.3)

These equations are called structure equations.

Some examples of the Lie algebroid structure are:

Example 1. A Lie algebra: consider a finite dimensional real Lie algebra g as a vector

bundle over a single point. The sections are the elements of the algebra g, the Lie product

is that of g and the anchor map is identically zero. In this case the expressions (2.1) take

the following form:

[eα, eβ]E = cαβ
γ eγ , cαβ

γ ∈ R , (2.4)

ρ (eα) = 0 , α, β = 1, . . . , r . (2.5)
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where the structure functions Cαβ
γ are the structure constants cαβ

γ of g and ai
α ≡ 0.

Example 2. The tangent bundle τB : TB → B, with anchor map ρ = ITB, the identity

map in TB, and the conmutator of vector fields as Lie bracket [·, ·]. In terms of the usual

coordinates in TB, (qi, q̇i), the structure functions are:

Cij
k = 0 , ai

j = δi
j . (2.6)

Note however that in a set of arbitrary coordinates in TB, some of the structure constant

Cij
k may be different from zero, and the anchor map may take another form (see e.g.

[10]).

Example 3. A Lie algebroid determined by an action of a Lie algebra g on a manifold

M (see e.g. [10] ), i.e. by a Lie algebra morphism γ : g → X(M). In this case, any section

v of the trivial bundle π : M × g → M can be seen as a g-valued function, ṽ(x) by means

of v(x) = (x, ṽ(x)), and an element of the Lie algebra g can be regarded as a constant

section.

Then, there exists a uniquely defined Lie algebroid structure on M × g such that the

bracket reduces to that of the Lie algebra for constant sections and the image of such

a section under the anchor map ρ is the corresponding fundamental vector field. The

bracket is given by

[v, w]M×g(x) = (x, [ṽ(x), w̃(x)] + (γ(ṽ(x)) w̃) (x)− (γ(w̃(x)) ṽ) (x)) ,

and the anchor ρ : M × g → TM by

ρ(x, v) = γ(ṽ(x)) ,

where γ is the linear map associating each element in g with the corresponding funda-

mental vector field, which is a Lie algebra homomorphism.

Example 4. The gauge algebroid: Let P (B, G, π) be a principal bundle over a manifold

B with structural group G, then the bundle

E ≡ TP�G → P�G ,

is endowed with a Lie algebroid structure induced by the action of the structural group G

on the tangent bundle σ : TP → P , the Lie product is defined on sections, elements of

Γ(B, E) ≡ Γ(B, TP )G, identified with sections of TP invariant under G, and anchor map

ρ : TP�G → TB. This Lie algebroid structure is related with the Atiyah sequence (see

e.g. [11])

0 // adP // TP�G Tπ // TB // 0
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3 Exterior differential algebra of a Lie algebroid.

Given a Lie algebroid, (E, ρ, [·, ·]E), the sections of τE : E → M will play the rôle

of vector fields, and will be called E-vector fields, and the sections of the dual bundle

πE : E∗ → B that of 1-forms, and will be called E-1-forms. Similarly, we can consider

sections for the projection from E∗ ∧ · · · ∧ E∗ onto B, which allows us to construct

the exterior algebra
∧• E∗ of the dual of E. The sections of

∧• E∗ are called E-forms.

The set of them, Γ(
∧• E∗), is a C∞(B)-module. An E-(k)-form is a E-form such that

θ ∈ Γ(
∧k E∗).

The exterior differential giving rise to de Rham cohomology can be generalized to this

more general framework defining a differential operator dE, which maps in a linear way

each E-(k)-form into a E-(k + 1)-form

dE : Γ(∧kE∗) → Γ(∧k+1E∗) ,

as follows:

dEθ(V1, . . . , Vk+1) =
∑

i

(−1)i+1ρ(Vi)θ(V1, . . . , V̂i, . . . , Vk+1) +

+
∑
i<j

(−1)i+j θ([Vi, Vj]E, V1, . . . , V̂i, . . . , V̂j, . . . Vk+1) ,

for V1, . . . , Vk+1 ∈ Γ(τE), where V̂i denotes, as usual, that the element Vi is omitted.

The Lie algebroid axioms imply the following properties:

1. If f ∈ C∞(B), then 〈dEf, V 〉 = ρ(V )f .

2. d2
E = 0.

3. dE is a super-derivation of degree 1, i.e. if θ is homogeneous of degree |θ|, then

dE(θ ∧ ζ) = dEθ ∧ ζ + (−1)|θ|θ ∧ dEζ .

Moreover, the exterior differential dE is fully characterized by these properties.

Observe that an exterior derivation dE satisfying d2
E = 0 on Γ(

∧• E∗) is equivalent

to the Lie algebroid structure on E, because both ρ and [·, ·] can be recovered from the

expressions

ρ(V )f := dEf(V ) , θ([V, W ]) := ρ(V )θ(W )− ρ(W )θ(V )− dEθ(V, W ) ,

for V, W ∈ Γ(τE), f ∈ C∞(B), θ ∈
∧1(E).

In local coordinates of E as indicated above, dE is determined by

dExi = ρi
α eα , dEeγ = Cαβ

γ eα ∧ eβ ,
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where {eα | α = 1, . . . , r} is the dual basis of {eα | α = 1, . . . , r}.
The conditions d2

Exi = 0 and d2
Eeα = 0 are equivalent to the structure equations (2.2)

and (2.3).

Some examples of de exterior algebra of a Lie algebroid are:

Example 5. The Chevalley-Eilenberg operator of Lie algebra cohomology: let E = g be a

finite dimensional Lie algebra, and consider the bundle g → {•} with the Lie algebroid of

the example (1), it is found that dE takes the form:

dgθ(v1, . . . , vk+1) =
∑
i<j

(−1)i+jθ([vi, vj], v1, . . . , v̌i, . . . , v̌j, . . . vk+1) , (3.1)

where vi ∈ g and θ ∈
∧•

g∗.

A local form of the differential operator, dg, can be obtained, after the choose of a local

basis of section, and is given by (see e.g. [7]):

ŝ =
1

2
fk

ijc
icj ∂

∂ck
, (3.2)

which is also known as the BRST form of the differential operator of Lie algebra coho-

mology. In this case some anticonmuting variables, the c1, . . . , ck are introduced, which

are the so called ghost variables (in general the ghost fields), such that:

cicj = −cjci , i, j = 1, . . . , (dim g) ,

Example 6. The de Rahm exterior operator: consider the tangent bundle with base man-

ifold B, (TB → B), with anchor map the identity in TB, and the Lie algebra bracket is

the Lie algebra bracket of vector field, so the differential operator dE ≡ d has the form:

dθ(v1, . . . , vk+1) =
∑

i

(−1)i+1viθ(v1, . . . , v̌i, . . . , vk+1) ,

(3.3)

where vi ∈ Γ(∧•TB) and θ ∈ Γ(∧kTB∗), being this the de Rahm differential operator.

The local form of this differential operator, in a local basis, is given by (see e.g. [7, 8]):

ŝ = aα
i ci ∂

∂xα
, (3.4)

which is also known as the BRST form of the differential operator.

Example 7. Let us consider an extension of the example (3), the action Lie algebroid, to

the case of a Lie group G acting on a manifold M , in this case the anchor map is given

by

ρ(X)(x) = Y , with X ∈ g , (3.5)
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which is a vector field on M , associated to the action induced on Ωn (g, C∞(M)) by the

action of the group G on M , where Ωn (g, C∞(M)) is the set of anti-symmetric multilinear

maps

ωn : g× · · · × g → C∞(M) : (X1, . . . , Xn) 7→ ωn (· ; X1, . . . , Xn) : M → R

ωn (· ; X1, . . . , Xn) (x) = ωn (x ; X1, . . . , Xn)

where the action of ρ(X) on Ωn (g, C∞(M)) is given by:

ρ(X)ωn (· ; X1, . . . , Xn) (x) = Y ωn (x ; X1, . . . , Xn) ,

finally the exterior differential operator is given by:

dωn(x; X1, . . . , Xn+1) =
∑

i

(−1)i+1Yiωn(x; X1, . . . , X̌i, . . . , Xn+1)+

+
∑
i<j

(−1)i+jωn(x; [Xi, Xj]g, X1, . . . , X̌i, . . . , X̌j, . . . Xn+1) . (3.6)

The BRST, or local, representation of the differential operator in this case is given by:

ŝ = ρ(Xi, x)ci +
1

2
Ck

ijc
icj ∂

∂ck
. (3.7)

Example 8. Consider a principal bundle with structure group G(M), let A denote the

connection 1-form with values in the Lie algebra G(M), in this setting we will considering

the action on the set of local functionals C(A) of the gauge fields, i.e., let

A(x) = Ai(x)Ti , where Ai(x) = Ai
µ(x)dxµ

where Ti is a basis of the Lie algebra G. The curvature two-form of the one-form is given

by

F = dA + A ∧ A .

The gauge transformation of A generated by the action of an element g(x) ∈ G(M)

define an action on C(A), the infinitesimal generators of this action are given by the vector

fields (for a complete analysis of the problem see e.g. [7]):

Yi(x) = − ∂

∂xµ

δ

δAi
µ(x)

− Ck
ijA

j
µ(x)

δ

δAk
µ(x)

, (3.8)

which generalize the action given in example (7). It is important at this stage to notice

that these vector fields satisfies

[Yi(x), Yj(y)] = δm(x− y)Ck
ijYk(y) . (3.9)

Special attention deserve the fact that this set of vector field (infinitesimal generators)

are in involution, i.e., the vector field form an integrable distribution in the field space
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(the space of functional of A). Now we turn our attention to the exterior operator which

acts on Ωn (G(M), C(A)), i.e., the set of antisymmetric multilinear mappings

ωn : G(M)× · · · ×G(M) → LC(A) : (X1, . . . , Xn) 7→ ωn[·] (X1, . . . , Xn)

ωn[A] (X1, . . . , Xn) : M → R ,

where LC(A) denote the local functionals of A, and Xi(x) are the base elements of

the G(M). Continuing with the construction it is found the following general differential

operator acting on Ωn (G(M), C(A)):

dG ωn[A](X1, . . . , Xn+1) =
∑

b

(−1)b+1ρ(Xib)ωn[A](X1, . . . , X̌ib , . . . , Xn+1)+

+
∑
a<b

(−1)a+bωn[A]([Xi, Xj], X1, . . . , X̌i, . . . , X̌j, . . . Xn+1) , (3.10)

Finally, the local or BRST form of the differential operator, is:

ŝ =

∫
dmx

{
−Dk

i µc
i(x)

δ

δAk
µ(x)

− 1

2
ci(x)cj(x)Ck

ij

δ

δck(x)

}
. (3.11)

where

ρ(Xi, x) = Yi(x) = Dk
l µ

δ

δAi
µ(x)

, (3.12)

with

Dk
i µ = δk

i

∂

∂xµ
− Ck

jiA
j
µ(x)

the covariant derivative.

4 Final comments

The last examples show a Lie algebroid structure over an infinite dimensional manifold,

in particular it is a Lie algebroid structure build on the interaction bundle [12] with basis

on the space of connection of a principal bundle. The Lie algebroid structure can be

constructed on a convenient setting (see e.g. [13]) this construction will be prosecuted

elsewhere.
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