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Abstract

Given a Dirac subbundle and an isotropic subbundle, we provide a canonical

method to obtain a new Dirac subbundle. When the original Dirac subbundle

is Courant involutive, this construction has interesting applications, unifying and

generalizing some results on the reduction of Dirac structures previously found in

the literature.

1 Introduction

The structure underlying the reduction of Poisson or symplectic manifolds is a Pois-

son algebra. Such an algebraic structure can be encoded in geometric terms through the

concept of Dirac structure, which generalizes the Poisson and presymplectic geometries

by embedding them in the framework of the geometry of TM ⊕ T ∗M . Dirac structures

were introduced in a remarkable paper by T. Courant [3]. Therein, they are related to

the Marsden-Weinstein reduction ([6]) and to the Dirac bracket ([4]) on a submanifold

of a Poisson manifold. Recently, Dirac subbundles have been considered in connection

to the reduction of implicit Hamiltonian systems (see [2],[1]). This simple but power-

ful construction allows to deal with mechanical situations in which we have both gauge

symmetries and Casimir functions.

Dirac structures are special types of Lie algebroids contained in the vector bundle

TM ⊕T ∗M . We shall use the notation ρ1 : TM ⊕T ∗M → TM , ρ2 : TM ⊕T ∗M → T ∗M

for the canonical projections.

The Courant bracket on sections of TM ⊕ T ∗M is defined by

[(X, ξ), (X ′, ξ′)] = ([X, Y ], ι(X)dξ′ − ι(X ′)dξ +
1

2
d(ι(X)ξ′ − ι(X ′)ξ)).

It is bilinear and antisymmetric but not a Lie bracket, since it does not satisfy the Jacobi

identity in general.
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Consider the natural symmetric bilinear form on TM ⊕ T ∗M ,

〈(X, ξ), (X ′, ξ′)〉 = ι(X)ξ′ + ι(X ′)ξ. (1.1)

Following the seminal paper [3], we define a Dirac subbundle as a subbundle D ⊂ TM⊕
T ∗M maximally isotropic with respect to (1.1). Maximal isotropy implies that D⊥ = D,

where D⊥ stands for the orthogonal subspace of D. In particular, dim(D) = dim(M).

A Dirac structure is a Dirac subbundle D such that its sections close under the Courant

bracket. In this case, as shown in [3], the restriction to D of the Courant bracket fulfills

the Jacobi identity and D with anchor ρ1|D is a Lie algebroid.

The two basic examples of Dirac structures are:

Example 1.1. For any 2-form ω, the graph Lω of ω[ : TM → T ∗M is a Dirac subbundle

such that ρ1(Lω) = TM at every point of M . Lω is a Dirac structure if and only if dω = 0.

Example 1.2. Let Π be a bivector field on M . The graph LΠ of the map Π] : T ∗M → TM

is always a Dirac subbundle. In this case ρ2 maps LΠ onto T ∗M . LΠ is a Dirac structure if

and only if Π is a Poisson structure (i.e. if the bracket {·, ·} : C∞(M)×C∞(M) → C∞(M)

defined by Π satisfies the Jacobi identity).

The concept of symmetry of a Dirac structure is a generalization of the definitions in

the presymplectic and Poisson cases. Namely, a vector field Y is a symmetry of the Dirac

structure D if (LY X,LY ξ) ∈ Γ(D) for every (X, ξ) ∈ Γ(D), where L stands for the Lie

derivative.

In this note, our main objective is to find a common description of the already known

reduction and projection procedures for Dirac structures. Actually, our original motiva-

tion was to generalize for any Dirac structure the Marsden-Ratiu reduction of Poisson

manifolds [5], which we describe next.

Let (M, Π) be a Poisson manifold. Consider a submanifold N and a distribution

E ⊂ TM |N such that:

(i) E ∩ TN is integrable.

(ii) The foliation defined by E ∩TN is regular, so that the space of leaves N/(E ∩TN)

is a manifold.

(iii) E leaves invariant the Poisson bracket in the sense that if f, g ∈ C∞(M) are invariant

along E, then {f, g} is also invariant along E.

Under these assumptions, the space of leaves N/(E∩TN) inherits a Poisson structure

from (M, Π) if and only if

Π](E0) ⊂ TN + E (1.2)

where E0 is the annihilator of E, i.e. E0
p = {α ∈ T ∗

p M | α(v) = 0, ∀v ∈ Ep}.
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An interesting application of this construction is obtained by choosing E = Π](TN0)

with Π](TN0) ∩ TN = {0}. Then, the inherited Poisson structure corresponds to the

well-known Dirac bracket on N . Another particular case that we will discuss in the sequel

is that of N = M .

2 Stretched Dirac structures

Take a Dirac subbundle D and a subbundle S ⊂ TM ⊕T ∗M isotropic with respect to

the symmetric pairing (1.1), i.e. S ⊂ S⊥. It is not difficult to show that we can ‘stretch’

D along S and obtain another Dirac subbundle, namely

DS := (D ∩ S⊥) + S

(assuming it is a subbundle). We must show that it is maximally isotropic, but this is

immediate:

(DS)⊥ = (D⊥ + S) ∩ S⊥

= (D ∩ S⊥) + S = DS

where in the last line we have used that D is maximally isotropic and S is a subset of

S⊥. In a sense this construction is canonical, for DS is the Dirac subbundle closest to D

among those containing S, as stated in the following

Theorem 2.1. Let D, S and DS be as above and let D′ be a Dirac subbundle such that

S ⊂ D′. Then, D′ ∩D ⊂ DS ∩D. In addition, D′ ∩D = DS ∩D if and only if D′ = DS.

Proof:

From the isotropy of D′ and given that S ⊂ D′ we deduce that D′ ⊂ S⊥. Hence,

D′ ∩D ⊂ S⊥ ∩D = DS ∩D.

If the equality D′ ∩D = DS ∩D holds, then D′ ⊃ D′ ∩D = S⊥ ∩D. Since S ⊂ D′,

we find that DS = (D ∩S⊥) + S ⊂ D′. But DS and D′ have the same dimension, so that

they are equal. �

In general even when DS is a smooth subbundle its sections do not close under the

Courant bracket. We discuss now some particularly interesting examples and applications

of this construction.

Dirac bracket (or Dirac Dirac structure): Consider an integrable distribution

Φ ⊂ TM and take S = Φ0 ⊂ T ∗M . Then, for any Dirac structure D on M , DS (if
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smooth) is a Dirac structure such that ρ1(D
S) is everywhere tangent to the foliation.

That is,

(DS)p = {(Xp, ξp + νp)|(Xp, ξp) ∈ Dp, Xp ∈ Φp, νp ∈ Sp}.

Let us see that sections of DS close under the Courant bracket:

[(X, ξ + ν), (X ′, ξ′ + ν ′)] =

= ([X, X ′], ι(X)dξ′ − ι(X ′)dξ +
1

2
d(ι(X)ξ′ − ι(X ′)ξ))+

+(0, ι(X)dν ′ − ι(X ′)dν). (2.1)

(X, ξ), (X ′, ξ′) are sections of the Dirac structure and then so it is the first line of the

right hand side of (2.1). X, X ′ are vector fields in the integrable distribution Φ and then

[X,X ′] is also a vector field of Φ. Finally, we have to show that the third line of (2.1) is

a section of Φ0. Contracting with a vector field Y in Φ we obtain:

ι(Y )(ι(X)dν ′) = X(ι(Y )ν ′)− Y (ι(X)ν ′)− ι([X,Y ])ν ′ = 0

where we have used that ν ′ is a secton of S = Φ0 and X, Y are sections of Φ, which is

an integrable distribution. Therefore, we have proven that DS is a Dirac structure on M

(assuming it is a subbundle).

DS can be considered as a generalization of the Dirac bracket extended to the whole

manifold for the case of Dirac structures. Recall that the Dirac structure DS is the

graph of a bivector field (which is a Poisson structure due to involutivity) if and only if

ρ1(D
S) = T ∗M at every point of M . This is equivalent to

DS + TM = TM ⊕ T ∗M. (2.2)

Taking the orthogonal of (2.2) we get the more familiar (and equivalent) condition

(D + Φ0) ∩ Φ = {0}. (2.3)

If this holds, DS corresponds to a Poisson bracket which should be called Dirac bracket.

Indeed, it coincides with the standard Dirac bracket if D itself comes from a Poisson

structure Π. In this case (2.3) can be rewritten as Π](Φ0) ∩ Φ = {0} (see Section 1).

Once we have defined the Dirac structure DS we can restrict it to any leaf N of the

foliation induced by Φ. Let i : N → M be the inclusion. The image of the bundle map

i−1
∗ ⊕ i∗ : DS|N → TN ⊕ T ∗N

defines a Dirac structure DS
N in TN ⊕ T ∗N . The isotropy of DS

N is obviously inherited

from the isotropy of DS. Now, using that Ker(i−1
∗ ⊕ i∗) = Φ0|N and that dim(DS

N) =

dim(DS) − Ker(i−1
∗ ⊕ i∗) we deduce that DS

N is maximally isotropic in TN ⊕ T ∗N . The
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proof of the closedness of the Courant bracket in DS
N is just the proof of the closedness

in DS given above, recall at this point that we are assuming that DS is a subbundle.

Projection along an integrable distribution: Now, let S ⊂ TM be an integrable

distribution. Assuming that both D ∩ S⊥ and DS are subbundles, any section of DS can

be written as (X + Y, ξ) where (X, ξ) is a section of D ∩ (TM ⊕ S0) and Y is a section of

S.

DS is not Courant involutive in general. This is not strange since one would expect

to be able to define a Dirac structure only on M/S, the space of leaves of the foliation

defined by S (assuming that M/S is a manifold). Objects on M which descend suitably

to M/S will be said projectable along S. Functions on M/S, C∞(M)pr, can be viewed as

the set

C∞(M)pr = {f ∈ C∞(M) | X(f) = 0, ∀X ∈ Γ(S)}.

Vector fields on M/S are then defined as derivations on C∞(M)pr, i.e. X(M)pr =

{X ∈ X(M) | X(C∞(M)pr) ⊂ C∞(M)pr}. Notice that X belongs to X(M)pr if and only

if Z(X(f)) = 0, ∀f ∈ C∞(M)pr, ∀Z ∈ Γ(S). Or equivalently, [Z,X](f) = (LZX)(f) = 0

using that Z(f) = 0. Hence, we obtain the more useful characterization

X(M)pr = {X ∈ X(M) | LZX ∈ Γ(S), ∀Z ∈ Γ(S)}.

Analogously, 1-forms on M/S, Ω1(M)pr, are linear maps from X(M)pr to C∞(M)pr.

An analogous argument to that followed for vector fields yields:

Ω1(M)pr = {ξ ∈ Γ(S0) | LZξ = 0, ∀Z ∈ Γ(S)}.

We are now ready to prove that sections (X +Y, ξ) of DS which are projectable along

S, i.e.

a) ξ is a section of S0,

b) ∀Z ∈ Γ(S), (LZ(X + Y ),LZξ) = (Z ′, 0), with Z ′ ∈ Γ(S)

are Courant involutive. Notice that the integrability of S implies that LZX = [Z,X] in

condition b) must be a section of S. Hence, if (X + Y, ξ) is a projectable section, X itself

must be a projectable vector field.

Take two such sections (X + Y, ξ) and (X ′ + Y ′, ξ′). First notice that

[X + Y,X ′ + Y ′]− [X, X ′] ∈ Γ(S)

because [X, Y ′], [Y,X ′] and [Y, Y ′] are sections of S due to condition b) and the integra-

bility of S. Therefore,

[X + Y,X ′ + Y ′] = [X, X ′] + W, W ∈ Γ(S). (2.4)
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We must prove that LZ [X + Y,X ′ + Y ′] = [Z, [X + Y,X ′ + Y ′]] is a section of S for any

Z ∈ Γ(S). Using (2.4), this amounts to prove that [Z, [X, X ′]] ∈ Γ(S). By the Jacobi

identity,

[Z, [X,X ′]] = [[Z,X], X ′]− [[Z,X ′], X] (2.5)

which is a section of S because X and X ′ are projectable vector fields.

For the cotangent part of the Courant bracket of projectable sections we have

d(ι(X + Y )ξ′) = d(ι(X)ξ′),

ι(X + Y )dξ′ = ι(X)dξ′ + LY ξ′ − dι(Y )ξ′ = ι(X)dξ′ (2.6)

where we have used conditions a) and b) above. We want to show that the right-hand

side of both equations in (2.6) are projectable sections, i.e. both are in Γ(S0) and have

vanishing Lie derivative along any section Z ∈ Γ(S). This is not difficult:

ι(Z)(ι(X)dξ′) = −ι(X)(LZξ′ − d(ι(Z)ξ′)) = 0,

ι(Z)d(ι(X)ξ′) = LZ(ι(X)ξ′) = ι(LZX)ξ′ + ι(X)LZξ′ = 0,

LZ(ι(X)dξ′) = ι(LZX)dξ′ + ι(X)LZdξ′ =

= LZ′ξ′ − d(ι(Z ′)ξ′) + ι(X)d(LZξ′)− ι(X)d(ι(Z)ξ′) = 0,

LZ(d(ι(X)ξ′)) = d(ι(Z)d(ι(X)ξ′)) = 0, (2.7)

where Z ′ = LZX = [Z,X] ∈ Γ(S).

We say that S leaves D invariant if for any point p ∈ M and any (Xp, ξp) ∈ (DS)p there

exists a (local) projectable section of DS such that it coincides with (Xp, ξp) at p. This

is the generalization of condition (iii) of the Marsden-Ratiu Poisson reduction presented

in Section 1. One can show that if S leaves D invariant then S is a symmetry of DS.

In this situation we can project the Dirac structure onto M/S. Given the projection

τ : M → M/S the image of

τ∗ ⊕ (τ ∗)−1 : DS → T (M/S)⊕ T ∗(M/S)

correctly defines a Dirac structure on M/S.

Generalized Marsden-Ratiu reduction: The third example is a combination of

the two previous ones and is inspired by the work of Marsden and Ratiu [5]. It consists

in reducing a Dirac structure D to a submanifold N along a symmetry S of DS. S is an

integrable distribution as above and we view N as a leaf of another integrable distribution

Φ ⊂ TM .

As we have learnt DS induces a Dirac structure in M/S. The latter can be reduced

to N/(S ∩ TN) and is the generalization to any Dirac structure of the procedure of [5]

for Poisson manifolds.
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One may wonder when the reduced Dirac structure, which we denote by D̂, is actually

a Poisson structure on the orbit space N/(S ∩ TN). D̂ is Poisson if and only if

D̂ ∩ T (N/(S ∩ TN)) = {0}.

Equivalently, in terms of the original Dirac structure D, D̂ is Poisson if and only if for

any p ∈ N we have that

(Xp, ξp) ∈ Dp s.t. ξp ∈ (S0)p ∩ (TN0)p ⇒ Xp ∈ S.

This can be reformulated as

TM ⊕ (S0 ∩ TN0) ⊂ D ∩ (S ⊕ T ∗M) + TM (2.8)

and taking the orthogonal with respect to the symmetric pairing,

TM ∩ (D + S0) ⊂ S + TN (2.9)

which can be phrased by saying that the (generalized) Poisson vector fields of S0 are

sections of S + TN . This is the natural generalization of condition (1.2) for an arbitrary

Dirac structure D. Clearly, (2.9) and (1.2) coincide when D is Poisson.

Thus we have shown that Marsden and Ratiu reduction fits perfectly in the framework

of Dirac structures in the sense that the reduction of an invariant Dirac structure always

produces a Dirac structure (assuming the existence of the different subbundles) in the

reduced space.

To summarize, the stretching of Dirac structures is an interesting type of deformation

which, on the one hand, generalizes the Dirac bracket to any Dirac structure when the

stretching is made along a subbundle of T ∗M (concretely, the annihilator of an integrable

distribution). On the other hand, if the stretching is performed along an integrable distri-

bution which leaves invariant the Dirac structure, then our construction corresponds to its

projection along the integrable distribution. It would be interesting to find more general

applications and examples. In particular, it would be nice to understand (and interpret)

the general case in which the stretching is made along a general isotropic subbundle of

TM ⊕ T ∗M . It is also worthwhile to generalize the whole construction for the case of

twisted Dirac structures. This will be the subject of further research.
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