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Abstract

The construction of integrable systems from symplectic realizations of Poisson

coalgebras with Casimir elements is revisited. Several examples of Hamiltonians

with either undeformed or ‘quantum’ coalgebra symmetry are given, and their Li-

ouville integrability is discussed. The essential role of symplectic realizations in this

context is emphasized.

1 Introduction

Poisson coalgebras (Poisson algebras endowed with a compatible comultiplication

structure) have been shown to be relevant as the ‘hidden’ symmetries underlying the

integrability properties of a wide class of N -dimensional (ND) (super)integrable classical

Hamiltonian systems (see [1]–[5] and references therein). In this construction, once a

symplectic realization of the coalgebra is given, their generators play the role of dynam-

ical symmetries of the Hamiltonian, while the coproduct map is used to ‘propagate’ the

integrability to arbitrary dimension.

From this coalgebra approach, several well-known (super)integrable systems have been

recovered and some integrable deformations for them, as well as new integrable systems,

have also been obtained. In particular, this integrability-preserving deformation procedure

has been used to introduce both superintegrable and integrable free motions on spaces

with either constant or variable curvature, and (super)integrable potential terms can also

be considered on such spaces [6]. The aim of this contribution is to provide a summary

of this approach to Hamiltonian integrability, where symplectic realizations of Poisson

coalgebras play an essential role.

27



2 Hamiltonian systems on Poisson coalgebras

We recall that a coalgebra (A, ∆) is a (unital, associative) algebra A endowed with a

coproduct map [7]:

∆ : A → A⊗ A,

which is coassociative

(∆⊗ id) ◦∆ = (id⊗∆) ◦∆.

In addition, ∆ has to be an algebra homomorphism from A to A⊗ A:

∆(a b) = ∆(a) ∆(b), ∀ a, b ∈ A.

Moreover, if A is a Poisson algebra and

∆({a, b}A) = {∆(a), ∆(b)}A⊗A , ∀a, b ∈ A,

we shall say that (A, ∆) is a Poisson coalgebra. The comultiplication ∆ provides a ‘two-

fold way’ for the definition of the objects on A ⊗ A ⊗ A, that will be essential as far as

superintegrability is concerned.

Let us summarize the general construction of ref. [1]. Let (A, ∆) be a Poisson coalgebra

with l generators Xi (i = 1, . . . , l), and r functionally independent Casimir functions

Cj(X1, . . . , Xl) (with j = 1, . . . , r). The coassociative coproduct ∆ ≡ ∆(2) has to be a

Poisson map with respect to the usual Poisson bracket on A⊗ A:

{Xi ⊗Xj, Xr ⊗Xs}A⊗A = {Xi, Xr}A ⊗XjXs + XiXr ⊗ {Xj, Xs}A.

Then, the m-th coproduct map ∆(m)(Xi)

∆(m) : A → A⊗ A⊗ . . .m) ⊗ A, (1)

can be defined by applying recursively the coproduct ∆(2) in the form

∆(m) := (id⊗ id⊗ . . .m−2) ⊗ id⊗∆(2)) ◦∆(m−1). (2)

Such an induction ensures that ∆(m) is also a Poisson map.

Table 1. Functions obtained by applying the coproduct map.

X1 X2 . . . Xl C1 C2 . . . Cr

∆(2)(X1) ∆(2)(X2) . . . ∆(2)(Xl) ∆(2)(C1) ∆(2)(C2) . . . ∆(2)(Cr)

∆(3)(X1) ∆(3)(X2) . . . ∆(3)(Xl) ∆(3)(C1) ∆(3)(C2) . . . ∆(3)(Cr)

.

..
.
..

.

..
.
..

.

..
.
..

.

..

∆(N)(X1) ∆(N)(X2) . . . ∆(N)(Xl) ∆(N)(C1) ∆(N)(C2) . . . ∆(N)(Cr)
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In this way, we can construct the set of functions shown in Table 1. From them,

given a smooth function H(X1, . . . , Xl), the N -sites Hamiltonian is defined as the N -th

coproduct of H:

H(N) := ∆(N)(H(X1, . . . , Xl)) = H(∆(N)(X1), . . . , ∆
(N)(Xl)). (3)

From [1] it can be proven that the set of r ·N functions (m = 1, . . . , N ; j = 1, . . . , r)

C
(m)
j := ∆(m)(Cj(X1, . . . , Xl)) = Cj(∆

(m)(X1), . . . , ∆
(m)(Xl)), (4)

Poisson-commute with the Hamiltonian{
C

(m)
j , H(N)

}
A⊗A⊗...N)⊗A

= 0, (5)

and is in involution:{
C

(m)
i , C

(n)
j

}
A⊗A⊗...N)⊗A

= 0, m, n = 1, . . . , N, i, j = 1, . . . , r. (6)

Example 1. Lie–Poisson algebras g∗ with generators Xi (i = 1, . . . , l) and Casimir

functions Cj(X1, . . . , Xl) (j = 1, . . . , r), when endowed with the (primitive) coalgebra

structure

∆(Xi) = Xi ⊗ 1 + 1⊗Xi, (7)

are Poisson coalgebras. A very natural choice is to consider Hamiltonians H(X1, . . . , Xl)

that, under the iterated application of the coproduct map, will generate dynamical systems

on g∗ ⊗ g∗ ⊗ . . .N) ⊗ g∗ with N · r constants of the motion in involution.

Example 2. The Poisson analogues of quantum algebras and groups [7] are also (de-

formed) coalgebras (Az, ∆z) (where z is the deformation parameter). Consequently, any

function of the generators of a given ‘quantum’ Poisson algebra (with deformed Casimir

elements Cz,j) will provide a deformation of the Hamiltonian described in the previous

Example.

3 Symplectic realizations and integrability

Thus, for any Poisson coalgebra (A, ∆) and Hamiltonian function H we have con-

structed a Hamiltonian system on the Poisson manifold A⊗N constructed as N -tensor

copies of A. This is a ‘cluster-type’ dynamical system [4] with l · N dynamical variables

whose evolution equations are

Ẋ(i,m) =
{
X(i,m), H

(N)
}

, i = 1, . . . , l, m = 1, . . . , N,

where X(i,m) denotes the generator Xi living on the m-th copy of A. The r Casimir

functions of A generate a maximum number of r ·N integrals of the motion for H(N) (see
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Table 1), but since l − r ≥ 2 we have always less than l ·N − 1 integrals and, therefore,

complete integrability for H cannot be reached in terms of the ‘algebraic’ dynamical

variables X(i,m).

However, we can get a specialization of the coalgebra formalism by working on the

symplectic leaves of the initial Poisson coalgebra through suitable symplectic realizations.

If A has rank r (i.e., A has r Casimir functions) a symplectic leaf of A (always even

dimensional) will be denoted by A(k1,k2,...,kr), where the leaf is characterized by the set of

constant values (k1, k2, . . . , kr) for the Casimir functions. Then a symplectic realization

D for A(k1,k2,...,kr) can be obtained in terms of s pairs (qi, pi) of canonical variables

D : x → x(q1, p1, q2, p2, . . . , qs, ps),

where x is any point on A(k1,k2,...,kr). Note that different symplectic leaves can be chosen

for each copy of A within A⊗N , and for each of them a symplectic realization has to be

constructed. In this way the symplectic realization of H(N) given by

H
(N)
D := (D ⊗D ⊗ . . .N) ⊗D)(H(N)),

is defined on the N -th tensor product of the symplectic leaves

A
(k

(1)
1 ,k

(1)
2 ,...,k

(1)
r )

⊗ A
(k

(2)
1 ,k

(2)
2 ,...,k

(2)
r )

⊗ . . .⊗ A
(k

(N)
1 ,k

(N)
2 ,...,k

(N)
r )

,

where k
(m)
i is the value of the i-th Casimir for the m-th symplectic leaf.

If we consider symplectic realizations with the same s for all the sites in the tensor

product chain, H
(N)
D turns out to be a function of N · s pairs of canonical variables, i.e.,

it defines a Hamiltonian system with N · s degrees of freedom. Therefore, we need a

number of (N · s− 1) independent constants of the motion in involution to get complete

integrability. Since the formalism provides at most N · r integrals, in order to have that

N · s− 1 ≤ N · r,

we need that the chosen symplectic realization D of A fulfils

s ≤ r + 1/N,

and we are led to the following necessary condition for complete integrability:

s ≤ r.

Consequently, symplectic realizations with s = 1, . . . , r are candidates for the construction

of completely integrable systems. Obviously, this condition is not sufficient since the

functional independence of a (N · s− 1) dimensional subset of the N · r integrals coming

from the coproduct has to be explicitly checked in each case. Indeed, for some symplectic
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realizations the number of independent integrals is less than (N · s− 1) and only partial

integrability can be achieved.

Note that for a given rank r lower values of s are, in principle, preferred from the

integrability viewpoint, since the number of degrees of freedom N ·s decreases with respect

to the (fixed) maximum number of integrals N · r.

3.1 Superintegrability

Note that, instead of (2), another recursion relation for the m-th coproduct map can

be defined:

∆
(m)
R := (∆(2) ⊗ id⊗ . . .m−2) ⊗ id ) ◦∆

(m−1)
R .

Due to the coassociativity property of the coproduct, this new expression will provide

exactly the same expressions for the N -th coproduct of any generator. However, if we

label from 1 to N the sites of the chain of N copies of A, lower dimensional coproducts

∆(m) (with m < N) will be ‘different’ in the sense that ∆(m) will contain objects living

on the tensor product space 1 ⊗ 2 ⊗ . . . ⊗ m, whilst ∆
(m)
R will be defined on the sites

(N − m + 1) ⊗ (N − m + 2) ⊗ . . . ⊗ N . Therefore, the coalgebra symmetry of a given

Hamiltonian gives rise to two ‘pyramidal’ sets of r ·N integrals of the motion in involution

that Poisson-commute with H(N) [5]. This ‘right set’ of integrals characterizes the quasi-

maximal superintegrability of the coalgebra-symmetric Hamiltonians, that is, since both

sets have ∆(N)(C) ≡ ∆
(N)
R (C) in common there remains one integral to ensure maximal

superintegrability.

4 Some examples

4.1 3D Lie–Poisson coalgebras

By following the known classifications summarized in [8] we consider the set of 9 non-

isomorphic 3D (l = 3) real Lie algebras, all of them with rank r = 1 (note that the

generators ei in [8] are now written as Ji). Therefore, s = 1 and the ‘one-particle’ sym-

plectic realizations given in Table 2 are candidates to provide ND completely integrable

(and thus, quasi-maximally superintegrable) systems. The constant k is just the value of

the Casimir C that fixes the symplectic leaf. Note that, in many cases, if k = 0 we would

get a lower dimensional symplectic leaf, that we do not consider. We also emphasize that

two symplectic realizations with the same value for k can always be related through a

canonical transformation.

Many superintegrable Hamiltonians can be explicitly obtained by applying the coalge-

bra construction and the symplectic realizations given in Table 2. The only case in which

the construction does not provide complete integrability is A3,1 (the Heisenberg algebra),
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where the Casimir coincides with the central generator J1 and its m-th coproducts are

just numerical constants under the symplectic realization.

For the rest of the cases, once a symplectic realization is given, the Hamiltonian H(N)

will be a function of N canonical pairs (qi, pi) and is completely integrable, since the

functional independence of the C(m) functions is guaranteed by the fact that the m-th

integral C(m) depends on the first m pairs (qi, pi) of canonical coordinates.

Example 3. For instance, the Calogero–Gaudin Hamiltonian [9, 10]

H(N) =
N∑

i<j

2 pi pj (1− cos(qi − qj)),

comes from the k = 0 symplectic realization (∗) of A3,8 (the sl(2) algebra) by taking as the

Hamiltonian the Casimir operator C [1]. In general, note that the choice of the symplectic

realization drastically changes the ‘shape’ of the Hamiltonian. For instance, by using the

Gelfan’d–Dyson symplectic map (∗∗) with k = 0 the very same Calogero–Gaudin system

reads

H(N) =
N∑

i<j

− pi pj (qi − qj)
2.

Table 2. Symplectic realizations for 3D Lie-Poisson algebras.

J1 J2 J3 C

A3,1 k p −kq J1 k 6= 0

A3,2 ke
p
k p e

p
k −kq J1 e

− J2
J1 k 6= 0

A3,3
p2

2
k p2

2
pq
2

J2
J1

k 6= 0

A3,4 kep e−p −q J1J2 k 6= 0

Aα
3,5 e

p
α kep −αq J2J−α

1 k 6= 0

A3,6

√
k sin p

√
k cos p q J2

1 + J2
2 k 6= 0

Aα
3,7

√
k eαp sin p

√
k eαp cos p q (J2

1 + J2
2 )
�

J1+i J2
J1−i J2

�iα
k 6= 0

A3,8
eq

2
(k − 2p2) p e−q 2J2

2 + J1J3 + J3J1 ∀k

(∗ ∗ ∗) q2

2
pq
2

− p2

2
+ k

q2 ∀k, q 6= 0

(∗∗) −p q2 +
√

2 k q p q −
q

k
2

p ∀k

−peq p pe−q k = 0

(∗) p sin q + p p cos q p sin q − p k = 0

A3,9 p
p

k − p2 cos q
p

k − p2 sin q J2
1 + J2

2 + J2
3 ∀k

Example 4. The following Hamiltonian

H(N) =
N∑

i=1

(p2
i

2
− k(i)

q2
i

)
+ F

( N∑
i=1

q2
i

)
, (8)

is formed by the superposition of N ‘centrifugal barriers’ determined by the k(i)-terms and

a central potential through the arbitrary smooth function F . This is also A3,8 coalgebra-

invariant under the symplectic realization (∗ ∗ ∗) [2] and the Hamiltonian is taken as

H = − J3 + F(2 J1).
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Therefore, as particular cases, this Hamiltonian reproduces the Smorodinsky–Winternitz

system [11] for F = 2ωJ1 and provides a generalization of the Kepler potential when

F = −γ/
√

2J1 (ω and γ are real constants).

Example 5. Given a Hamiltonian with certain coalgebra symmetry, any coalgebra de-

formation provides a superintegrable deformation of the initial Hamiltonian. In this way,

the following superintegrable deformation of (8) has been obtained by making use of the

non-standard quantum deformation of A3,8 [2]:

H(N)
z =

N∑
i=1

(sinh zq2
i

zq2
i

p2
i

2
− zk(i)

sinh zq2
i

)
ezK

(N)
i (q2) + F

( N∑
i=1

q2
i

)
, (9)

where the long-range K-functions are defined by K
(N)
i (q2) = −

∑i−1
s=1 q2

s +
∑N

l=i+1 q2
l .

We stress that when all the constants k(i) vanish, Eq. (9) provides the Hamiltonian for

the motion of a particle on an ND space of non-constant curvature under the action

of an arbitrary ‘central’ (radial) potential F (see [6, 12] for the 2D and 3D spaces and

potentials).

Example 6. Another interesting example of coalgebra-invariant system is the following

analogue [1] of the Ruijsenaars-Schneider model [13]:

H(N)
z =

N∑
i=1

cosh θi exp
(
− z

2
(

i−1∑
j=1

qj) +
z

2
(

N∑
k=i+1

qk)
)
,

where (qi, θi) are canonically conjugate coordinates. This completely integrable Hamil-

tonian was obtained by using the Poisson analogue of a quantum deformation of the

symplectic realization of the (1+1)D Poincaré algebra A3,4.

4.2 4D Lie-Poisson coalgebras

In this case the classification [8] provide a set of 12 non-isomorphic 4D (l = 4) real

Lie algebras. Among them, 4 algebras have no Casimir functions (rank r = 0) and the

remaining ones have rank r = 2. The former set of algebras do not has any constant

of the motion coming from the coalgebra map, and therefore must be discarded in our

approach.

For the remaining cases, the symplectic leaves of 4D algebras with rank 2 are 2D,

so we can consider symplectic realizations with s = 1. In Table 3 we summarize some

of them, and for the explicit expressions of the Casimir functions we refer to [8]. The

functional independence of the integrals of the motion can be explicitly proven for all

these cases. Note that the canonical transformation between both symplectic realizations

of A4,8 becomes evident.
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Example 7. Let us now consider the oscillator algebra A4,8 and the H function

H = λ J4 + µ J2 J3,

that gives rise under the realization (∗) with (k1 = 1 and k2 = 0) to the following integrable

Hamiltonian

H(N) = (λ + µ)
N∑

i=1

pi + 2 µ

N∑
i<j

√
pi pj cosh(qi − qj),

which is just the one introduced in [14]. The integrals of the motion in involution in the

chosen realization read:

C(m) =
m∑

i=1

pi −
m∑

i<j

2
√

pi pj cosh(qi − qj).

Table 3. Symplectic realizations for some 4D Lie-Poisson algebras.

J1 J2 J3 J4

A4,1 k1 p p2−k2

2k1
−k1q k1 6= 0

Aα
4,2

kα
1

k2
ep k1e

p k1p ep −q k1 6= 0

A4,3 ep k1 k1 (p− log k2) −q k1 6= 0

A4,4 k1e
p k1p ep k1ep

2
(p2 + k2) −q k1 6= 0

Aa,b
4,5 (k1a)

1
a ep a eap (k1a)

b
a

k2
ebp −q k1, k2 6= 0

A4,8 k1 q k1 p − k2

2k1
+ (qp+pq)

2
k1 6= 0

(∗) k1
√

peq k1
√

pe−q − k2

2k1
+ p k1 6= 0

A4,10 k1 k1q p
−p2−k2

1q2+k2

2k1
k1 6= 0

Example 8. The algebra A4,1 is the (1+1) extended Galilei Lie algebra, and their associ-

ated integrable systems have been constructed in [15], where their quantum deformations

have also been analysed. Note that the problem of the classification of quantum defor-

mations is only fully solved for all 3D Lie algebras and for some isolated cases in slightly

higher dimensions (see [15] and references therein).

4.3 Higher dimensions

Non-isomorphic real Lie algebras of dimension 5 are also fully classified (we use the

notation given in [8] for Mubarakzyanov results). There are 40 different Lie algebras with

ranks r = 1, 3. Rank 3 cases admit one-body (s = 1) symplectic realizations (see some

examples in Table 4) and lead to completely integrable systems [16]. The analysis of

coalgebra systems coming from rank 2 algebras is more involved, since s = 1, 2 [16].

In higher dimensions, classifications of real Lie algebras are partial and restricted to

certain simple, solvable or nilpotent subclasses (see [17] for a very interesting Poisson ap-

proach to this problem). From the point of view of coalgebra integrability it is immediate
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to realize that the rank r of the algebra grows much more slowly than its dimension l,

and we are forced to find a symplectic realization with small s in order to get complete

integrability from the coalgebra approach. For instance, if we consider the compact real

forms of the Cartan series Al, the rank is just r = l whilst the dimension of the algebra

grows with l2. In particular, for su(3) we have that r = 2 and we need (at most) a

two-particle (s = 2) symplectic realization [16].

Another interesting example is provided by the ‘two-photon’ algebra h6, a 6D Lie

algebra with r = 2 (therefore s = 1, 2) that admits an s = 1 symplectic realization [3]

for which, among the 2N integrals provided by the coalgebra, only 2N − 5 of them are

functionally independent and N−2 are in involution. Hence, any Hamiltonian H with h6-

coalgebra symmetry is ‘almost’ integrable (only one constant is left), and such a remaining

integral does exist for some special choices of H which are connected with the subalgebras

of h6 [3].

Table 4. Symplectic realizations for some 5D Lie-Poisson algebras.

J1 J2 J3 J4 J5

A5,1 k1 k2 p+ k3
k2

k2
k1

p −k1q k1, k2 6=0

A5,2 k1 p 1
2k1

�
p2−k2

�
1

6k2
1

�
p3−3k2p+2k3

�
−k1q k1 6=0

A5,3 k1 k2 p −k2q− k3
2k1

−k1q− p2

2k2
k1, k2 6=0

Aa,b,c
5,7 ep 1

k1
eap 1

k2
ebp 1

k3
ecp −q k1, k2, k3 6=0

Ac
5,8 k1 k1p k3ep kc

3
k2

ecp −q k1, k2, k3 6=0

Ab,c
5,9 k3ep k3pep kb

3
k1

ebp kc
3

k2
ecp −q k1, k2, k3 6=0

A5,10 k1 k1p k1
2

p2− k2
2k1

k3ep −q k1, k3 6=0

Ac
5,11 k2ep k2pep k2

2
ep
�
p2+k3

� kc
2

k1
ecp −q k1, k2 6=0

A5,12 k1ep k1pep k1
2

ep
�
p2+k2

� k1ep

6

�
p3+3k2p+2k3

�
−q k1 6=0

A5,15 ep (p−log k2) ep eαp

k1
eαp

αk1
(αp−log k1k3) −q k1, k2, k3 6=0
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