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Abstract

We analyse a new dynamical theory of symplectic connections with the most

general second order lagrangian densities which only depends on the curvatures of

symplectic connections and the symplectic structure itself. In spite of its space-

time metric independence the theory is not topological but describes the dynamics

of some elementary entities which are not relativistic massless particles. In this

way the theory, which can be considered a generalisation of Maxwell and Einstein

theories of Electromagnetism and Gravitation avoids the violation of known no-go

theorems for helicity three fields
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1 Introduction

Symplectic manifolds became in the last decades the standard framework for the

canonical description of classical mechanics [1, 2]. Although, the symplectic framework

also seemed to be, in principle, very convenient for the description of quantum mechanics

[3, 4] it was not easy to get a right picture [5, 6].

One of the essential ingredients of the Fedosov quantization by deformation program

[5, 6] is the use symplectic connections1. A symplectic connection of a symplectic manifold

(M, ω) is a linear connection in the tangent bundle TM which preserves the symplectic

form, i.e.

∇ω = 0 .

The symplectic connection of a symplectic manifold is not unique even if we impose

the torsionless condition. In this sense the symplectic geometry presents a behaviour

very peculiar and different from that of Riemannian geometry. However, from a field

theoretical point of view this fact is very interesting because permits the existence a new

1A further generalisation for Poisson manifolds is due by Konsevich [7]

9



type of field theories whose basic fields are symplectic connections of a given symplectic

structure.

The similarity with the theory of Riemannian connections also suggest that symplectic

connections might provide the clue for the formulation of a consistent theory of interacting

relativistic massless helicity 3 particles in four dimensional manifolds.

The generalisation of the gauge principle for massless theories of higher spin has always

been very elusive. Such a generalisation is, of course, possible for free particles in terms

of 3-covariant symmetric tensors [8]. However, the introduction of any kind of interaction

for higher helicity particles seem to be incompatible [9, 10, 11] with the gauge symmetry

principles [12, 13, 14].

There had been many attempts to formulate, from the classical field theory viewpoint,

consistent theories of self interacting higher helicity fields [15], either by modifying the

field content of the theory or the gauge symmetry. But no consistent theory has been

found involving a finite number of those massless fields in interaction with lower spin

fields, including gravity [16, 17] or with themselves [12, 13, 14]. Partial progress has been,

however, achieved by using infinite towers of massless fields [13, 14, 18, 19] or anti-de

Sitter space-time backgrounds [20, 21, 22].

However, the theory of symplectic connections provides all required kinematic ingredi-

ents for a successful theory of helicity 3 fields. First, if the connections are torsionless they

can be identified with symmetric 3-covariant tensors. On the other hand the fact that

the fundamental fields are connections suggest the existence of a gauge principle similar

to that of electromagnetic or gravitational fields [23].

2 Symplectic Connections and Massless Fields with helicity 3

Symplectic connections were introduced already in the forties [24, 25]. A more sys-

tematic global analysis was developed in the late fifties [26, 27] (see also Ref. [28]).

In recent years symplectic connections have appear playing a leading role in geometric

quantization [3, 4, 29, 30], quantization deformations of symplectic structures [5, 6, 31, 32].

For any pair of symplectic connections ∇1,∇2 of (M, ω) the difference

∆ = ∇2 −∇1 (1)

defines a (1,2)-tensor field ∆ such that for any pair of vector fields X, Y of M

∇XY = ∇XY + ∆XY. (2)

If the torsion of ∇ vanishes

∇XY −∇Y X − [X, Y ] = 0
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the contraction of ∆ with the symplectic form ω,

∆̃(X, Y, Z) = ω(X, ∆Y Z)

defines a symmetric (0,3) tensor ∆̃ with symmetric Young tableau

.

Thus, if we fix a reference symplectic connection2 ∇∗ the space of torsionless symmetric

connections [26, 27, 33, 34]

M = {∇;∇ torsionless symplectic connection}

can be identified with the space of 3-covariant symmetric tensors

S = {∆̃; ∆̃ (0, 3) symmetric tensor}.

The curvature tensor R of a torsionless symplectic connection defined by

R(X,Y, Z) = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z (3)

for any vector fields X, Y, Z defines a (1,3) tensor field which verifies the symmetry prop-

erties

R(X, Y, Z) = −R(Y,X, Z)

R(X, Y, Z) + R(Z,X, Y ) + R(Y, Z,X) = 0

∇XR(Y, Z) +∇ZR(X, Y ) +∇Y R(Z,X) = 0.

(4)

The contraction of R with the symplectic form ω defines a (0,4) tensor

R̃(W, X, Y, Z) = ω(W, R(Y, Z)X) (5)

with symmetry properties

R̃(W, X, Y, Z) = −R̃(W, X,Z, Y )

R̃(W, X, Y, Z) = R̃(X, W, Y, Z)

R̃(W, X, Y, Z) + R̃(Z,W, X, Y ) + R̃(Y, Z,W,X) + R̃(X, Y, Z, W ) = 0

∇V R̃(W, X, Y, Z) +∇Y R̃(W, V, X,Z) +∇XR̃(W, Y, V, Z) = 0

(6)

which corresponds to a Young tableau

in contrast with that of the standard Riemann tensor

2If M is paracompact such connections always exists.
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.

A symplectic Ricci tensor can be defined in analogy with Riemannian Ricci tensor by

tracing out the the curvature tensor

Rc(X, Y ) = Tr R(X, ·)Y.

In this case Rc it is dependent on the choice of the symplectic connection. But any

symplectic Ricci tensor is also symmetric

Rc(X, Y ) = Rc(Y,X)

with Young diagram

.

Since Rc is a symmetric tensor it is not possible to define a non-trivial symplectic

scalar curvature term

Rs = Tr Tr ω−1 ⊗Rc = 0.

3 Symplectic Field Theory

The simplest non-trivial scalars which can be associated to symplectic connections are

Lc(∇, ω) = Tr Tr R∗
cRc L(∇, ω) = Tr Tr Tr Tr R∗R, (7)

where R∗ and R∗
c are the dual (2,0) and (4,0) tensor fields of R and Rc with respect to

the symplectic structure ω. In local coordinates, they are defined by

Rijkl = ωii′ωjj′
ωkk′

ωll′Ri′j′k′l′ Rij
c = ωii′ωjj′

Rci′j′ (8)

ωij being the inverse matrix of ωij = ω(∂i, ∂j). There is an extra scalar density associated

to the 2n–dimensional symplectic manifold, the volume form

Ω = ω ∧ ω ∧
n

· · · ∧ ω. (9)

Both L or Lc, can be used to define a field theory because they are quadratic in derivatives

of symplectic connection fields. The corresponding actions

S(∇, ω) =

∫
M

Ω Tr Tr Tr Tr R∗R, Sc(∇, ω) =

∫
M

Ω Tr Tr R∗
cRc (10)

are however not independent in four-dimensional symplectic manifolds M , because in that

case there is combination of both terms

S(∇, ω)− 2Sc(∇, ω) (11)
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which is proportional to a topological invariant

P (∇, ω) =
1

8π2

∫
M

Ω (Tr Tr Tr Tr R∗R− 2 Tr Tr R∗
cRc) , (12)

the first Poyntrjagin class of ∇. This means that the classical motion equations of the

actions

ωi′i∇i′R̃ijkl + ωi′i∇i′R̃iklj + ωi′i∇i′R̃iljk = 0 (13)

and

∇iR
c
jk +∇jR

c
ki +∇kR

c
ij = 0 (14)

are equivalent [35] However, from a quantum point of view. the topological term might

have some physical effects giving rise to a θ–vacuum term

Sq(∇, ω) =
1

2α0

S(∇, ω) +
θ

2π
P (∇, ω) (15)

which in local coordinates reads

Sq(∇, ω) =
1

2α0
2

∫
M

RαβµνRαβµν +
θ

32π2

∫
M

[
RαβµνR

αβµν − 2 RµνR
µν

]
(16)

and only involves the curvature tensors of the connections and the symplectic form. The

metric independence of (16) implies that the dynamics of the symplectic fields is com-

pletely decoupled from the gravitation. The theory is invariant under symplectomor-

phisms, i.e. diffeomorphisms which preserve ω. In local coordinates symplectomorphisms

are infinitesimally generated by a scalar function φ such that ξµ = ωµν∂νφ. Symplectic

connections are however transformed in this approximation as

∆′
µνσ = ∆µνσ + ∂µ∂ν∂σφ, (17)

and the action (16) is invariant.

The symplectomorphic gauge symmetry indicates the existence of dynamical con-

straints. But, the Cauchy problem is more degenerate because of the existence of many

zero modes in the quadratic terms which are not associated to any known gauge symmetry

[23].

4 Conclusions

Although the above theory of symplectic connections is metric independent it is not

a topological theory. The reason is that this theory is only invariant under symplecto-

morphisms but not under general diffeomorphisms. Therefore, the theory describes the

dynamics of some field theoretical degrees of freedom which are not merely topological
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On the other hand since the symplectic background form is not preserved by Poincaré

transformations, the degrees of freedom of the theory do not carry a relativistic particle

interpretation. The only way of associating a particle–like interpretation of symplectic

connections is by introducing couplings to space-time pseudo-riemannian metrics and to

consider the symplectic form ω itself a dynamical field. In this manner when the space-

time metric background is the Minkowski metric the theory becomes Poincaré invariant

[23, 36]. However, in this approach although symplectic connections can be classically

related to massless particles, quantum effects generate masses for symplectic connections

fields because there is no gauge symmetry matching principle.
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student at Valladolid University astutely introduced me to the charm and power of modern

differential geometry and group theory. This work was partially supported by CICYT

(grant FPA2004-02948) and DGIID-DGA (grant2005-E24/2).

References

[1] J.M. Souriau, Structure des Systémes Dynamiques, Dunod, Paris (1969)
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