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Departamento de F́ısica Teórica,
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Abstract

A monodromy matrix depending on two spectral parameters that fulfils a Yang-

Baxter equation is presented. The Bethe Ansatz method is used to determine the

eigenvalues and eigenvectors of the associated transfer matrix. The relation with

one-dimensional spin systems with alternating coupling is shown.

PACS: 75.10Jm, 05.50.+q and 02.10.Xm

The physics of the one dimensional chains provides an excellent ground for a rigourous

study of different properties of solvable models and their experimental verification in

quantum magnetic systems. It is known that these models are useful analysing many

body problems and recently, they have been applied to the study of 1D systems model of

real atoms that have become to be the object of experiments.

One of the most popular model is the spin 1/2 chain

H =
2N∑
i

J ~σi · ~σi+1 , (1)

proposed by W. Heisenberg in 1928 [1] and solved by H. Bethe [2] using the well known

Bethe Ansatz method.

Later, Faddeev and collaborators [3] solved that model by applying the Quantum

Inverse Scattering Method (QISM). The generalization of the method gives a family of

solvable models one of which is the Heisenberg model(1). A very good review of this

method can be found in [4].

A solvable model is a system where a complete set of commuting operators can be

found. In the QISM a monodromy matrix T (λ) is defined in an auxiliary space, such

matrix depends on the parameter λ which is known as the spectral parameter. Every

element of this matrix is an operator acting in the space of the states of the system. The
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method shows that the model is solvable if there is a matrix R(µ) in the tensorial product

of two auxiliary spaces that verifies the Y ang −Baxter equation

R(λ− µ)(T (λ)
⊗

T (µ)) = (T (µ)
⊗

T (λ))R(λ− µ) . (2)

The Trace of T (λ) in the auxiliary space gives the transfer matrix F (λ) and the

Hamiltonian is given by the derivative,

d ln F

dλ

∣∣∣∣
λ= i

2

. (3)

The successive derivatives give the set of commuting hermitian operators.

Recently it has been discovered a Spin-Pierls transition in the inorganic compounds

CuGeO3 [5] and α′−NaV2O5 [6] which, in general, seems well described by an antiferro-

magnetic Heisenberg chain with dimerization. If we allow the spin-phonon interaction in

the one dimensional S = 1/2 Heisenberg chain, it shows a spontaneous lattice dimeriza-

tion where the strength of the antiferromagnetic coupling alternates between strong and

weak values. To the study of those physical systems it has been applied several methods

such as bosonization [7] and variatitonal methods between others. [8]

The hamiltonian which describes a chain with 2N sites and a nearest neighbour inter-

action of spins with alternating coupling constant can be writen

H =
2N∑
i

J(1 + (−1)iu)~σi · ~σi+1 , (4)

where σi are the Pauli matrices and we suppose periodic boundary conditions

~σ2N+1 = ~σ1 . (5)

In the present paper we find a monodromy matrix depending on two spectral parameter

from which the hamiltonian (4) is derived so we can apply a method equivalent to that of

the Bethe Ansatz. Unfortunately, the final result shows that (4) is not solvable but the

expressions obtained can be useful in other approaches.

The hamiltonian (4) can be obtained from a transfer matrix. To do that, we first

associate with the hamiltonian an auxiliary linear problem formulated in quantum terms.

Let Li(λ, s) be a local matrix operator depending on two parameters, which acts on an

auxiliary 2-dimensional space and on the two dimensional space of states for each site.

Writing in components, it is

Li(λ, s)(a,b),(αi,βi) = λδa,bδαi,βi
+

i

2
s

3∑
l=1

σl
a,bσ

l
αi,βi

, (6)

where the Latin indexes are in the auxiliary space and Greek indexes are for the space of

states in the corresponding site. In terms of deltas and taking into account that
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~σa,b~σα,β = 2δa,αδb,β − δa,bδα,β , (7)

Li can be written as,

Li(λ, s)(a,b),(αi,βi) = (λ− i

2
s)δa,bδαi,βi

+ isδa,αi
δb,βi

. (8)

We group by pairs the 2N sites and define the two sites operator by the product in

the auxiliary space

Mi(λ1, s1, λ2, s2)) = L2i−1(λ1, s1)L2i(λ2, s2) , (9)

and we proceed to consider the product of the M matrices in the auxiliary space

T (λ1, s1, λ2, s2) =
N∏
i

Mi(λ1, s1, λ2, s2) , (10)

which is a 2 × 2 matrix in the auxiliary space and it is the monodromy matrix and can

be written in the general form

T (λ1, s1, λ2, s2) =

 A(λ1, s1, λ2, s2) B(λ1, s1, λ2, s2)

C(λ1, s1, λ2, s2) D(λ1, s1, λ2, s2)

 , (11)

where A, B, C and D are operators acting on the space of states of the total chain. The

hamiltonian belongs to this family of operators and is obtained from the trace F of this

operator,

F (λ1, s1, λ2, s2) = trace (T ) = A(λ1, s1, λ2, s2) + B(λ1, s1, λ2, s2) , (12)

from which we can obtain the main physical operators of the system. So, taking the

definition of F = trace (T ), we obtain for the indicated values of λ1 and λ2,

F (λ1 =
i

2
s1, s1, λ2 =

i

2
s2, s2) = (−s1s2)

Nδα1,β2 · δα2,β3 · · · ·δα2N−1,β2N
· δα2N ,β1 , (13)

that is the one-side translation operator which can be related to the momentum P by,

F (λ1 =
i

2
s1, s1, λ2 =

i

2
s2, s2) = (−s1s2)

N exp (−iP ) . (14)

.

The hamiltonian is obtained from the derivative of the function logarithm of F . Then

we define the operators,

Ii = δa,bδαi,βi
, Qi = δa,βi

δαi,b , (15)
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(
∂

∂λ1

Ml +
∂

∂λ2

Ml

)∣∣∣∣λ1=is1/2
λ2=is2/2

= is2I2l−1 ·Q2l + is2Q2l−1I2l , (16)

where the · product is understood in the auxiliary space. In the same form we perform

the derivative of the monodromy matrix T ,

(
∂

∂λ1

T +
∂

∂λ2

T
)∣∣∣∣λ1=is1/2

λ2=is2/2

= −i(s1s2)
N−1

[ N∑
h

s2(
2h−2∏
·l=1

Ql · I2h−1 ·
2N∏
·l=2h

Ql)

+
N∑
h

s1(
2h−1∏
·l=1

Ql · I2h ·
2N∏

l=2h+1

Ql)
]

, (17)

where again the · product is in the auxiliary space. Finally taking the trace and multi-

plying in the site spaces by F−1, we obtain,

H =
1

F

(
∂

∂λ1

F +
∂

∂λ2

F
)∣∣∣∣λ1=is1/2

λ2=is2/2

= −i
N∑

h=1

(
1

s1

δα2h−1β2h−2
δα2h−2β2h−1

+
1

s2

δα2hβ2h−1
δα2h−1β2h

) .

(18)

Using (7), we obtain the hamiltonian written in the habitual form.

H =
i

2
J

2N∑
l

(1 + (−1)lu)(~σl~σl+1 − I) , (19)

with

J =
1

2s1

+
1

2s2

, u =
1

2J

(
1

s1

− 1

s2

)
. (20)

In order to find the eigenvalues and eigenstates of the transfer matrix we define first

the reduced T̃ matrix.

T̃ (µ = µ1, x = µ1 − µ2) = T (µ1 =
λ1

s1

, 1, µ1 =
λ2

s2

, 1) =
1

(s1s2)N
T (λ1, s1, λ2, s2) . (21)

If we define, in a similar way, the operator M̃ ,

M̃(µ = µ1, x = µ1 − µ2) = M(µ1 =
λ1

s1

, 1, µ1 =
λ2

s2

, 1) , (22)

then M̃ satisfies the Yang-Baxter equation,

R(λ− µ) · (M̃(λ, x)⊗ M̃(µ, x)) = (M̃(µ, x)⊗ M̃(λ, x)) ·R(λ− µ) , (23)

where R is the 4× 4 matrix in the space tensorial product of the two auxiliary spaces.

R(λ) = c(λ)Q + b(λ)I ⊗ I , (24)

being c and b the functions,
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b(λ) =
i

λ + i
, c(λ) =

λ

λ + i
, (25)

and the Q operator,

Q =
1

2
(I ⊗ I + ~σ ⊗ ~σ) , (26)

is the same that in (15) but now it acts in the tensorial product of the two auxiliary

spaces. The T̃ operator enjoys most of the properties of M̃ , in particular the Yang-Baxter

equation.

R(λ− µ) · (T̃ (λ, x)⊗ T̃ (µ, x)) = (T̃ (µ, x)⊗ T̃ (λ, x)) ·R(λ− µ) , (27)

that is the simple algebraic analog of the very difficult calculations in the Hamiltonian

approach. From this relation (27) we derived the important commutation relations for

the operators Ã, B̃ and D̃ in (11).

[B̃(λ, x), B̃(µ, x)] = 0 , (28)

Ã(λ, x) B̃(µ, x) =
1

c(µ− λ)
B̃(µ, x)Ã(λ, x)− b(µ− λ)

c(µ− λ)
B̃(λ, x)Ã(µ, x) , (29)

D̃(λ, x) B̃(µ, x) =
1

c(λ− µ)
B̃(µ, x)D̃(λ, x)− b(λ− µ)

c(λ− µ)
B̃(λ, x)D̃(µ, x). (30)

Now we present the properties of the eigenstates of the F operator and their associated

eigenvalues. We begin with the state |Ω > that is defined as the state of the chain in

which every site is with a z-spin component equals to +1/2,

|Ω >=
2N∏
⊗i

(
1

0

)
i

. (31)

It is eigenstate of both Ã(λ, x) and D̃(λ, x) and consequently |Ω > is also eigenstate

of F̃ (λ, x) = Ã(λ, x) + D̃(λ, x). Their values are

Ã(λ, x)|Ω > = (λ +
i

2
)N(λ + x +

i

2
)N |Ω > , (32)

D̃(λ, x)|Ω > = (λ− i

2
)N(λ + x− i

2
)N |Ω > . (33)

Following the habitual procedure, the B̃(λ, x) can be interpreted from (29) as a kind

of creation operator, then we want construct eigenstates of the form,

|φ(λ1, · · · , λr, x) >= B̃(λ1, x) · · · B̃(λr, x)|Ω > , (34)

where x is fixed and λ1, · · ·λr are arbitrary parameters to be determinate later.
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Now we apply Ã(λ, x) to |φ(λ1, · · · , λr, x) >. The action is found by pushing it to the

right through the B̃’s using the commutation relation (29) r times.

Ã(λ, x)|φ(λ1, · · · , λr, x) >=
r∏
j

1

c(λj − λ)
B̃(λ1, x) · · · B̃(λr, x)Ã(λ, x)|Ω > + · · ·

+Unwanted terms . . . . (35)

Two type of terms arise when Ã goes through the B̃’s, the first is the wanted term

where Ã and B̃ operators retain their respective arguments λ and λi that comes from the

fist term of the right hand side of (29) . The other terms are called unwanted and they

are characterized by having the arguments of the Ã and B̃ operators interchanged. A

typical unwanted term is,

−b(λk − λ)

c(λk − λ)

∏r
j 6=k

1

c(λj − λk)
B̃(λ1, x) · · ·

B̃(λk−1, x)B̃(λ, x)B̃(λk+1, x) · · · B̃(λr, x)Ã(λk, x)|Ω > . (36)

Similar relation are obtained for the D operator

D̃(λ, x)|φ(λ1, · · · , λr, x) >= (λ− i

2
)N(λ + x− i

2
)N ∏r

j
1

c(λj−λ)
|φ(λ1, · · · , λr, x) > + · · ·

+ Unwanted terms . . . . (37)

The eigenvalues for F are obtaining by adding (35) and (37) and requiring that the

unwanted terms cancel term by term. This cancellation will lead to r algebraic equations

involving the parameters λ1, · · · , λr, the Bethe ansatz equations (BAE) for our model.

Then we have,

F̃ (λ, x)|φ(λ1, · · · , λr, x) >= Λ̃(λ, x, λ1, · · · , λr)|φ(λ1, · · · , λr, x) > , (38)

with

Λ̃(λ, x, λ1, · · · , λr) = (λ +
i

2
)N(λ + x +

i

2
)N

r∏
j

1

c(λj − λ)
+

+ (λ− i

2
)N(λ + x− i

2
)N

r∏
j

1

c(λ− λj)
. (39)

The BAE can be obtained by an equivalent method. We can note that the T̃ matrix

is an analytic function of λ, in fact it is a polynomial of λ, and as such it cannot have a

pole. The c(λj − λ) function has a zero in λj = λ, then the residue in that point must be

cero, that condition gives r equations,
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(λj +
i

2
)N(λj + x +

i

2
)N

r∏
k 6=j

1

c(λk − λj)
+ (λj −

i

2
)N(λj + x− i

2
)N

r∏
k 6=j

1

c(λj − λk)
= 0 .

(40)

If we substitute the function c(λj − λk) this expression becomes,

(λj − i
2
)N(λj + x− i

2
)N

(λj + i
2
)N(λj + x + i

2
)N

=
r∏

k 6=j

λj − λk − i

λj − λk + i
, j = 1, . . . , r , (41)

that are the BAE for our system. For finite N , this set of algebraic equations does not

have analytic solutions, but for N → ∞ the equations are simpler and explicit solutions

can be obtained for fixed x, as can be found, for example in [4, 9]

The function ln(F̃ (λ, x)) has as eigenvalues the logarithm ln(Λ̃(λ, x, λ1, · · · , λr) and

the same eigenstates. They are determined by the solutions of the BAE (41).

We can apply the operator derivative shown in equation (18) to eigenvalue equations

(38) but the result is not an eigenvalue equation for the Hamiltonian (4), because it has

one more term due to dependence in the parameter x of the eigenstate, which is related

to the λ2 parameter in the derivative.

It is known that the Hamiltonian (4) is not solvable as we have said in the beginning of

this paper, but this method can relate this problem with other systems. One orientation

of the problem can be to find, from the same monodromy matrix, other derivative combi-

nation independent of the one shown in (4) and look for a new relation of the operators.

The study the properties of interplay between this possible set of operators is leaved as

an open problem for a future work.
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y Técnica, Grant No BFM2003/01300 and by the Diputación General de Aragón, E24/1.

References

[1] W. Heisenberg, Zeit. f. Phys 49, 629 (1928).

[2] H. Bethe, Zeit. f. Phys 71, 205 (1931).

[3] E. K. Sklyianin, L.A. Takhtajan and L. D. Faddeev, Theor. i Mate. Fisika 40, N 3,

194 (1979). L.A. Takhtajan and L. D. Faddeev, Uspechi Mat. Nauka 34 N 5, 13-68

(1979); (Russian Math. Surveys 34 N 5, 11-61 (1979). )

[4] L. Faddeev, Les Houches Lectures 1982, 563-608, Elsevier, Amsterdam (1984).

L. Faddeev, Nakai Lectures on Mathematical Physics 1987, 23-70, Worl Scientific

Singapore (1990).

7



[5] M. Hase, I. Terasaki and K. Uchinokura, Phys. Rev. Lett. 70, 3651 (1993).

M. Hase, I. Terasaki, K. Uchinokura, M. Tokunaga, N. Miura and H. Obara, Phys.

Rev. B 48, 9161 (1993)

[6] M. Isobe and Y. Ueda, J. Phys. Soc. Jpn 65, 1178 (1996).

Y. Fujii et al., J. Phys. Soc. Jpn 66, 326 (1997).

T. Ohama, M. Isobe, H. Yasuoka and Y. Ueda, J. Phys. Soc. Jpn 66, 545 (1997).

[7] M. C. Cross and D. S. Fisher, Phys. Rev. B 19 ,402 (1979).

T. Nakano and H. Fukuyama, J. Phys. Soc. Jpn. 49, 1679 (1980)

[8] H. Frahm and J. Schliemann, Phys.Rev. B 56, 5359 (1997)

[9] Gomez C., Ruiz-Altaba M. and Sierra G., Quantum groups in two-dimensinal physics,

Cambridge Unversity Press (1996).

8


