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Abstract

We calculate equatorial and halo orbits around an oblate magnetic planet. It

is known that circular equatorial and halo orbits exist for a dust grain orbiting a

spherical magnetic planet. However, the frequency of the orbit is constrained by

the charge-mass ratio of the particle. If the oblateness of the planet is taken into

account this constraint is modified or, in some cases, it disappears. The conditions

of stability of the orbits are also modified.

Keywords: planetary magnetospheres, Størmer problem, halo orbits, equilibria,

stability.

1 Introduction

The classical model of a particle subject to a magnetic dipole field was introduced by

Størmer [10, 11]. It has been taken as a starting point for the study of charged particles

orbiting a planet with magnetosphere [3, 2].

One of these models is the generalised Størmer problem considered in [1, 6, 7], which

describes the dynamics of a dust particle of mass m and charge q orbiting a rotating

magnetic planet of mass M . In this model, the magnetic field of the planet is supposed

to be a perfect magnetic dipole of strength µ aligned along the north-south poles of the

planet. Moreover, the planet’s magnetosphere is taken as a rigid conducting plasma which

rotates with the same angular velocity Ω = (0, 0, Ω) as the planet, in such a way that

the charge q is subject to a corotational electric field. In this way, using cylindrical coor-

dinates and momenta (ρ, z, φ, Pρ, Pz, Pφ) and assuming that the gravitational interaction

is purely Keplerian, the generalised Størmer problem can be modelled by the following

dimensionless two-degrees-of-freedom Hamiltonian
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where lengths and time are expressed, respectively, in units of the planetary radius R and

the Keplerian frequency wK =
√

M/R3 (Gaussian units). The variable r =
√

ρ2 + z2

stands for the distance of the charged particle to the center of mass of the planet. Cylin-

drical variables are natural to formulate the problem, as the system is invariant under

rotations around the z–axis. Furthermore, Hamiltonian (1) depends on two external pa-

rameters δ and β which indicate, respectively, the ratio between the magnetic and the

Keplerian interaction (i.e., the charge-mass ratio q/m of the particle) and the ratio be-

tween the electrostatic and the Keplerian interactions. On the other hand, the system

depends on the two external parameters Pφ and HS = E (the energy).

For this model, Howard et al. [1, 5, 4] proved the existence and stability of orbits

around the planet lying on the equatorial plane (equatorial orbits), and orbits that do not

intersect the equatorial plane, i.e. the so-called halo orbits. Even more, they provided a

comprehensive view of what kind of particles and what frequencies are expected for a given

position away from the planet. In particular, they speculate with the possibility of finding

this kind of orbits around Saturn. The electromagnetic ambient in this giant planet can be

fairly modelled by the corresponding terms in (1). However, the gravitational interaction,

appearing as a pure Keplerian term in (1), should be improved because Saturn is not a

perfect spherical planet, but it presents a pronounced oblateness. Hence, the purpose of

this paper is to study how the oblateness of a planet affects the equatorial and halo orbits.

A classical model for the oblateness of a planet is given by means of the so-called J2

term [9]. In this way, Hamiltonian (1) becomes
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where J2 is a positive dimensionless parameter for an oblate planet. For example, in the

case of Saturn, J2 = 0.09796.

Circular periodic trajectories around the z–axis correspond to equilibria (ρ0, z0) in the

rotating meridian plane (ρ, z), i.e. they appear as the equilibrium points of the system

ρ̇ =
∂H
∂Pρ

, ż =
∂H
∂Pz

, Ṗρ = −∂H
∂ρ

, Ṗz =
∂H
∂z

,

or equivalently, they are the critical points of the effective potential Ueff in (2),

Ueff = −1

r
− δ

Pφ

r3
+

δ2

2

ρ2

r6
+ δ β

ρ2

r3
+ 3J2

z2

2r5
− J2

2r3
. (3)

Following the procedure of Howard et al. [1, 5, 4], instead of Pφ, we introduce in (3) the

particle frequency ω,

ω = φ̇ =
∂Ueff

∂Pφ

=
Pφ

ρ2
− δ

ρ3
.
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This allows us to handle a function which determines when the sense of the rotation of the

particle is the same as the planet’s one or it is the opposite. Finally, in order to simplify

the calculations, we move to spherical variables (r, θ),

ρ = r sin θ, z = r cos θ.

Now, the effective potential reads as

Ueff = −1

r
+ δβ

sin2 θ

r
+ ω2

r2 sin2 θ

2
+ 3J2

cos2 θ

2r3
− J2

2r3
, (4)

and after this last change of variables, the critical points are found as the solutions of the

system of equations

∂Ueff

∂r
=

−3 J2

r4
+

1

r2
+

(

9 J2

2 r4
− β δ

r2
+ r ω2

)

sin2 θ = 0,

∂Ueff

∂θ
=

(−3 J2 + 2 β δ r2 + r5 ω2) sin 2θ

2r3
= 0.

(5)

The above system gives rise to the equivalent nonlinear system

−6 J2 + 2 r2 + (9 J2 − 2 β δ r2 + 2 r5 ω2) sin2 θ = 0,

(−3 J2 + 2 β δ r2 + r5 ω2) sin 2θ = 0.

(6)

The roots of (6) can be divided into two classes depending on the value of θ. On the one

hand if θ = π/2 we get the equatorial orbits and when θ 6= π/2 we obtain the halo orbits.

The paper is structured as follows. In Section 2 the existence of equatorial orbits

is discussed, whereas in Section 3, halo orbits are considered. Section 4 deals with the

stability of the orbits computed in Sections 2 and 3. The concluding remarks appear in

Section 5.

2 Existence of equatorial orbits

As it was said above, equatorial orbits appear when θ = π/2. In this case the second

equation of (6) vanishes, and r must satisfy the polynomial equation

3 J2 + 2 r2 − 2 β δ r2 + 2 δ ω r2 − 2 ω2 r5 = 0. (7)

By means of the Descartes rule of signs we infer that equation (7) has a unique positive

real root, taking into account that J2 is positive as we are considering an oblate planet.

This means that it does not matter the values of ω and δ, as there always exists an

equatorial orbit associated with them.

This situation does not occur for the case J2 = 0 (see the details in [1]), where the

existence of equatorial orbits is constrained to a certain region of the plane (δ, ω) whose
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boundary is given by the curve

1 − β δ + δ ω = 0. (8)

Indeed, for J2 = 0, (7) becomes

2 r2 (1 − β δ + δ ω − ω2 r3) = 0.

There are two real roots for the above equation: on the one hand the double root r = 0

and, on the other hand, the nontrivial root

re =

(

1 − β δ + δ ω

ω2

)1/3

.

As r is the radius of the orbit, it is positive and then 1− β δ + δ ω > 0. This gives rise to

the existence condition for equatorial orbits in the case J2 = 0.

However, if J2 6= 0 the two roots 0 and re will change in such a way that the double

root splits into two real roots only when the single root re becomes negative. The two

roots splitting from r = 0 are given by the series

r1,2 = a1,2 J
1/2

2
+ b1,2 J2 + c1,2 J

3/2

2
+ d1,2 J2

2
+ . . . .

By substitution of the above expression in equation (7), we obtain

a1,2 = ±
√

3

2(−1 + β δ − δ ω)
,

whereas the rest of coefficients are not of interest in the discussion. Thus, it is clear that

we get a positive real root, say r1, in the case

1 − β δ + δ ω < 0,

that is, outside of the existence domain for equatorial orbits in the case J2 = 0.

It is worth to note that when the parameter δ and the variable ω lie on the boundary

of the existence of re, the unperturbed polynomial equation has a quintuple root at r = 0,

and the corresponding positive perturbed root can be directly calculated and it is given

by

r = 5

√

6 J2 δ2

(2 β δ − 1)2
.

In Figure 1 it is depicted the plane (δ, ω), where the red color indicates those equatorial

orbits existing for J2 = 0 and the blue one indicates those equatorial orbits appearing due

to the effect of the oblateness of the planet.

Nevertheless, most of the orbits arising from the effect of J2 6= 0 cannot be taken into

account, because r < 1 and they would be inside the planet. Thus, the effective boundary

for the existence of equatorial orbits is given by

2 − 2 β δ + 3 J2 + 2 δ ω − 2 ω2 = 0, (9)
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Figure 1.— Equatorial orbits in the plane (δ, ω) for β = 0.4 and J2 = 0.09796. Red

color stands for equatorial orbits existing for J2 = 0. Blue color stands for those orbits

arising for J2 6= 0.

obtained from equation (7) when r = 1. In Figure 2 the effective boundary is depicted

for the parameters’ values of Saturn (β = 0.4 and J2 = 0.09796). It can be seen that the

set of new equatorial orbits is not too large and it is limited to a narrow region between

the two curves (8) and (9) which intersect at the points

(

2

2β +
√

6J2

,−
√

6J2

2

)

,

(

2

2β −
√

6J2

,

√
6J2

2

)

.

It is worth noting that the set of equatorial orbits of constant r is a family of hyperbolas

in the (δ, ω) plane. The asymptotic straight lines of this family correspond to the radius

of the synchronous orbit (rs) obtained by setting ω = β (the frequency of the synchronous

orbit), that is, rs is the positive solution of the equation

2β2r5 − 2r2 − 3J2 = 0.

We stress that now rs is not given by Kepler’s third law β2r3 = 1, but by a modified one.

We can express it asymptotically in terms of J2 as

β2r3 = 1 +
3

2
β4/3J2 −

3

2
β8/3J2

2
+ O(J3

2
).

The most remarkable fact is that the synchronous orbit plays the role of a separatrix in

the sense that if r > rs there is a close interval of non-allowed charge-mass ratio values,

but all the frequencies are possible. On the other hand, if r < rs the situation reverses:

all charge-mass ratios are allowed but there is a close interval of excluded frequencies (see

Figure 3).
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Figure 2.— Effective region for equatorial orbits, between black solid lines correspond-

ing to r = 1.

We also note that the curves do not cross, that is to say, two orbits of different radius

cannot share the same frequency and the same charge-mass ratio particles. This is not

the case when J2 = 0 where all the orbits share the pair of values ω = 0 and δ = 1/β.

Finally, we remark that the trajectories discussed through this section correspond

to the circular equatorial orbits found in [6, 7, 8] using normalisation and reduction

techniques.

3 Existence of halo orbits

Halo orbits appear as the solutions of system (6) when θ 6= π/2. In this case, the

term in r in the second equation of (6) must be zero, and then the following equation is

satisfied

3J2 + 2δ(ω − β)r2 + ω2r5 = 0. (10)

We note that the presence of J2 prevents from an easy expression of r. Furthermore,

from the Descartes rule of signs, it follows that if equation (10) has positive real roots,

then it has two different real roots. This is what happens when

128 δ5 (β − ω)5 − 3125 J2
3 ω4 > 0.

Now we have to discuss if the two roots, when they exist, correspond to a halo orbit. To

begin with, we note that we can eliminate J2 from system (6) to obtain

r3 ω2 (5 sin2 θ − 2) − 2 [1 + 2 δ (β − ω)(sin2 θ − 1)] = 0.
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Figure 3.— Curves of constant radius for equatorial orbits.

This is a linear equation in r3 and in sin2 θ. This means that each value of r is related

with a unique value of sin2 θ and vice versa. Thus, for a given r, i.e., a root of (10), we

can obtain two different halo orbits which are symmetric with respect to the equatorial

plane if

sin2 θ = 1 − 3ω2r3 − 2

5ω2r3 + δ(ω − β)
≤ 1.

This condition can be obtained in terms of δ, β, ω and θ by elimination of r in system

(6). In this way, we obtain the following equation in sin2 θ

32
[

−1 + 3δ(β − ω) sin2 θ
]3 [

1 − 2δ(β − ω)(1 − sin2 θ)
]2−27J3

2
ω4(5 sin2 θ−2)5 = 0. (11)

Now it is easy to find the limit curves for an admissible value of sin2 θ, by substitution of

sin2 θ = 1 and sin2 θ = 0 in (11). Thus, we find

sin2 θ = 1 −→ 32[−1 + 3δ(β − ω)]3 − 6561J3

2
ω4 = 0, (12)

sin2 θ = 0 −→ 864J3

2
ω4 − 32[1 − 2δ(β − ω)]2 = 0. (13)

These two curves lie in the area of the plane (δ, ω) where the polynomial equation (10)

has two positive real roots. Even more, all the lines are tangent at the points (δt, ωt) given

by

ω4

t =
4

243J3

2

, δt =
5

6(β − ωt)
,

as it is depicted in Figure 4.

The plane (δ, ω) is divided into different regions where the number of halo orbits

change. In this way, there are no halo orbits between the curve limiting the existence of

positive real roots of (10) and the curve (12), for sin2 θ = 1. There is a unique halo orbit
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Figure 4.— Conditions for the existence of halo orbits. The inner curve gives the limit

for the existence of real roots in equation (10). The next curve gives the condition for

sin2 θ = 1 and the outer one gives the condition for sin2 θ = 0. Encircled, the number

of halo orbits in the region.

in the region between (12) and (13) and two halo orbits below (13) for δ > 0 and (13) for

δ < 0.

It is important to remark that the lines depicted in Figure 4 do not constitute para-

metric bifurcation lines. In fact, in the region where two halo orbits exist they share δ and

ω, but not the radius of the orbit. As a consequence, the corresponding third component

of the angular momentum Pφ is different for the two orbits, and they do not exist at the

same time for fixed values of the external parameters. These orbits sharing δ and ω are

located at the same latitude, but at different altitudes from the equator, when

6δ(β − ω) = 5.

On the other hand, there is an effective boundary for halo orbits similarly to what

happens for the equatorial orbits. In order to really have halo orbits, their radii must be

greater than sin θ. This effective boundary can be calculated by substituting r by sin θ

in (10) and in the first equation of (6) and then eliminating sin θ from the two equations.

As a result it is obtained an algebraic curve of degree eight in ω and seventh degree in δ.

This curve is depicted in Figure 5 joint to the curve (12) and it lies on the region where

two halo orbits exist. For positive charged particles only one of the two halo orbits is not

admissible below the limit. For negative charged particles the situation is similar, but the

occurrence of the two halo orbits now is not admissible above the limit curve.
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Figure 5.— Effective boundary for the existence of halo orbits (black line).

4 Stability

Stability for both equatorial and halo orbits follows from their character as critical

points of the effective potential. In this way, they are stable if they are local minima of

Ueff, that is, the Hessian matrix at an equilibrium point gives rise to a positive defined

quadratic form [1]. The Hessian matrix is given by the second order partial derivatives of

the effective potential Ueff and they are

∂2Ueff

∂r2
=

(δ2 + 2βδr3 − 6δωr3 + 3ω2r6) sin2 θ + 18J2r cos2 θ − 6J2r − 2r3

r6
,

∂2Ueff

∂θ2
=

2(δ + ωr3)2 + [2δ2 − 3J2r + ω2r6 + 2δ(β + ω)r3] cos 2θ

r4
,

∂2Ueff

∂r∂θ
=

−2δ2 + 9J2r − 2δ(β − 2ω)r3 + 2ω2r6

r5
sin θ cos θ.

Due to the complex expressions arising, we satisfy ourselves by computing the boundaries

of stability which appear in the case that the determinant of the Hessian matrix is equal

to zero.

4.1 Stability for equatorial orbits

For equatorial orbits it must be θ = π/2 and then the crossed derivative
∂2Ueff
∂r∂θ

vanishes.

Thus, stability boundaries arise when one of the elements in the principal diagonal of the

Hessian matrix is equal to zero, that is

∂2Ueff

∂r2

∣

∣

∣

∣

equatorial
= 0 or

∂2Ueff

∂θ2

∣

∣

∣

∣

equatorial
= 0.
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Figure 6.— Stability zones for equatorial orbits (in grey).

For the first equality we get

− 64 δ4 (1 − 2 β δ + β2 δ2 − 2 δ ω + 2 β δ2 ω − 2 δ2 ω2)
3

+ 864 J3

2
(−1 + 5 β δ − 10 β2 δ2 + 10 β3 δ3 − 5 β4 δ4 + β5 δ5

+ 11 δ ω − 44 β δ2 ω + 66 β2 δ3 ω − 44 β3 δ4 ω + 11 β4 δ5 ω

− 48 δ2 ω2 + 144 β δ3 ω2 − 144 β2 δ4 ω2 + 48 β3 δ5 ω2

+ 105 δ3 ω3 − 210 β δ4 ω3 + 105 β2 δ5 ω3 − 118 δ4 ω4

+ 118 β δ5 ω4 + 58 δ5 ω5) + 729 J6

2
ω4 = 0

(14)

and it determines the bifurcation of equatorial orbits into the equatorial plane. This is a

saddle-center bifurcation, the tangent bifurcation mentioned in [1].

The second equality involves bifurcation of equatorial and halo orbits, as the variation

of the angle θ is taken into account. It is not surprising that we get the limit curve for

the existence of halo orbits given by sin2 θ = 1, that is

6561 J3

2
ω4 − 32 (−1 + 3 β δ − 3 δ ω)3 = 0. (15)

The corresponding bifurcation is a pitchfork one, as two symmetric halo orbits merge with

an equatorial orbit.

The two curves given by (14) and (15) determines a partition between stable and

unstable orbits in the plane (δ, ω), as it is depicted in Figure 6.

We note that no significant differences with the case J2 = 0 are appreciated although

the regions of stability are slightly modified. Indeed, if J2 = 0, equations (14) and (15)

recover the stability boundaries established in [1]. Nonetheless, we remark the gap for

stable orbits in the range of charge-mass ratio between 1.3 and 7.2, approximately.
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Figure 7.— Stability zones for halo orbits (in grey).

4.2 Stability for halo orbits

For the halo orbits the crossed derivatives do not vanish and the computation of the

stability boundaries is not so easy. However, a standard procedure of successive steps to

eliminate r and θ from the determinant of the Hessian matrix yields the desired result.

We obtain an algebraic equation in δ and ω composed by two factors. The first one

corresponds to the pitchfork bifurcation addressed in the previous section. The other one

corresponds to a saddle-center bifurcation, and it is given by the equation

32768 δ15 (β − ω)5 (1 + 2 β δ − 2 δ ω)2 (β2 − 4 β ω + ω2)
3
+

J3

2
Q1(δ, ω; β) + J6

2
Q2(δ, ω; β) + J9

2
Q3(δ, ω; β) − 61509375 ω12J12

2
= 0,

(16)

where Q1(δ, ω; β), Q2(δ, ω; β) and Q3(δ, ω; β) are polynomials in δ and ω whose coefficients

are listed in Table 1.

The first term of equation (16) is a product of different factors. Each factor equated

to zero defines a curve in the plane (δ, ω) which is a bifurcation line in the case J2 = 0.

However, only the factor β2 − 4βω + ω2 is in the existence domain of halo orbits. Thus,

the bifurcation lines for J2 6= 0 will be close to these ones if J2 is small enough, as it is

the rule for real planets. In fact, it is not difficult to see that the stability boundaries are

asymptotic to β2 − 4βω + ω2 = 0 as δ tends to infinity. In this way the most noticeable

deviations for the case J2 = 0 take place for δ small, as it is observed in Figure 7, where

the deviation from the straight line ω = β(2 +
√

3) is appreciated for negative charged

dust particles when, δ is small.
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Q1 δ10 δ11 δ12 δ13 δ14 δ15

ω0
−442368β10 1769472β11

−1769472β12 0 0 0

ω1 3538944β9
−19464192β10 24772608β11 0 0 0

ω2
−774144β8 66797568β9

−141115392β10 0 0 0

ω3
−55627776β7

−36716544β8 448118784β9 0 0 0

ω4
121487360β6

−231442432β7
−933756928β8

24182784β9
−58392576β10

23887872β11

ω5
47087616β5

625272832β6
1472823296β7

−245071872β8
334430208β9

−119439360β10

ω6
−298927104β4

−1222539264β5
−1893486592β6

812408832β7
−745832448β8

238878720β9

ω7
285958144β3

1705388032β4
2246459392β5

−1235902464β6
788299776β7

−238878720β8

ω8
−123454464β2

−1336324096β3
−2346143744β4 881418240β5

−338411520β6 119439360β7

ω9 26941440β 554913792β2 1665630208β3
−172744704β4

−47775744β5
−23887872β6

ω10
−2587648 −118319104β −666210304β2

−128360448β3 90243072β4 0

ω11 0 10663936 135839744β 76750848β2
−23887872β3 0

ω12
0 0 −11161600 −13049856β 1327104β2

0

ω13
0 0 0 368640 0 0

Q2 δ5 δ6 δ7 δ8 δ9 δ10

ω4
149084928β5

−925793280β6
2224696320β7

−2548039680β8
1433272320β9

−322486272β10

ω5
640949760β4

−2710195200β5
3792199680β6

−2587852800β7
716636160β8

0

ω6
271939680β3

−1363132800β4
6592337280β5

−8510054400β6
5016453120β7

−1209323520β8

ω7
−684326880β2

−1292803200β3 1025308800β4
−2983495680β5 2194698240β6

−403107840β7

ω8 340511040β 2854137600β2 409363200β3
−1811980800β4 2225180160β5

−868700160β6

ω9
−64758528 −1398798720β −3223653120β2 2528686080β3

−691960320β4 48107520β5

ω10 0 273585600 1693422720β 356659200β2
−612956160β3

−20321280β4

ω11
0 0 −309674880 −470361600β 90823680β2

16865280β3

ω12
0 0 0 42439680 −3939840β −6635520β2

ω13
0 0 0 0 −207360 829440β

ω14
0 0 0 0 0 −27648

Q3 δ0 δ1 δ2 δ3 δ4 δ5

ω8
−553584375 246037500β 1109902500β2

−1119744000β3
93312000β4

163296000β5

ω9 0 2214337500 −1016955000β −2122848000β2 1912896000β3
−513216000β4

ω10 0 0 −2690010000 1043928000β 699840000β2
−166212000β3

ω11 0 0 0 922914000 −148716000β −96228000β2

ω12 0 0 0 0 −5832000 32076000β

ω13 0 0 0 0 0 −2916000

Table 1.— Coefficients of the polynomials Qi ≡ Qi(δ, ω;β), i = 1, 2, 3.
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5 Conclusions

We have studied the occurrence of equatorial and halo periodic orbits of charged

particles around a magnetic planet, where the perturbations taken into account include

the gravity potential with the oblateness coefficient.

The main novelty of our approach is that if the oblateness coefficient is included there

is always a circular equatorial orbit whose stability character depends on δ and ω.

Outside of the equatorial plane, for given values of δ and ω there may appear a couple

of halo orbits symmetric to the equatorial plane whose stability depend upon the specific

values of δ and ω.

Our analysis generalises the work by Howard et al. [1] and exhibits a richer dynamics

due to the effect of the oblateness of the planet.
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# BFM2002-03157), Gobierno de Navarra (Resolución 18/2005) and Ministerio de Edu-

cación y Ciencia (Project # MTM2005-08595) from Spain.

References
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