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Hermite Interpolation: a Survey of
Univariate Computational Methods

G. Mihilbach

Abstract. Hermite interpolation of functions by univariate generalized polynomials is considered. Our
aim is to show that computational techniques well known for polynomial interpolation quite naturally
extend to interpolation by generalized polynomials. As an application of the general results interpolation
by rational functions with prescribed poles is discussed in some detail. Here polynomial interpolation is

contained iff all poles are prescribed at infinity.

Interpolacion de Hermite: una revision
de métodos computacionales en una variable

Resumen. Se considera la interpolacion de Hermite de funciones de una variable mediante poli-
nomios generalizados. Se pretende mostrar que técnicas computacionales conocidas para interpolacién
polinémica se pueden aplicar también a interpolacién mediante polinomios generalizados. Como apli-
cacion se estudia con cierto detalle la interpolacion mediante funciones racionales con polos prefijados.
La interpolacién polinémica corresponde al caso particular en que todos los polos prefijados estdn en el

infinito.

1. Interpolation by generalized polynomials

1.1. Introduction

Generally speaking, the problem of interpolation arises if we want to replace a given "complicated” function
f by a simpler one subject to the condition that the latter matches some given data of f. In this survey we
understand interpolation in its classical sense due to Hermite. The simple function we are looking for, also
called interpolant, has prescribed values of all its derivatives up to certain orders at certain points which are

called interpolation points or nodes. We assume that their number is finite.
There are three questions to be discussed:

(i) What kind of ”simple functions” can serve as interpolants?
(il) How to compute an interpolant?

(iii)) How to control the interpolation error?
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A first choice for a class of simple functions well suited for interpolants are the algebraic polynomials. The
particular interest in approximation by polynomials is easily understood: they are extremely smooth and
they can be evaluated using only additions, subtractions and multiplications. Of course, this fact and that
there is no need of a division has been really important in the pre—computer time. Today, computational
difficulties are no longer a real obstacle. So in many problems it seems to be quite natural to ask for other
classes of ”simple functions” which can serve as interpolants as well as algebraic polynomials. Depending
on the function f to be interpolated and on the information we have about (for instance: |f| is decaying to
zero for |z| — oo, or f(x) has an asymptotic expansion if = approaches a certain point, etc.), there may be
other classes of interpolants more natural than algebraic polynomials.

1.2. Ordinary and generalized polynomials

Algebraic polynomials of one real or complex variable, with real or complex coefficients, respectively, can
be constructed by

(i) multiplication, or by
(ii) integration.

ad (i): If all zeros z1,...,x, counting multiplicities of a polynomial p of one variable and its leading
coefficient ¢ are known, by the Fundamental Theorem of Algebra it is completely determined: p(z) =
c-(z—mx)-...-(x—x,).

ad (ii): The polynomials of degree n — 1 at most form the solution space of the homogeneous linear
differential equation

and %wn solves the initial value problem
D"y(xz)=1, D"y(0)=0 (v=0,...,n—1).
We use the notation 7;(z) := 27 for the monomials and
11, := span{mo, ..., 7}

for the linear space of polynomials of degree n at most with coefficients in the field K where K = R or
K = C depending on the context.

Whereas the factorisation property is particular to the algebraic polynomials, it is the second property
which is shared by many more families of functions.

We suppose for the whole paper that 2 is a real interval of positive length or a non void region in the
complex plane. A system (fo,..., fn) of continuous functions f; : Q2 — K is referred to as a Cebysev—
system of order n. + 1 on €, also called a T-system (from the German spelling of the name Tschebyscheff)
provided every element different from the zero element of the linear space

F’n = SpanK{an“'afn} (1)

has at most n zeros in €. Equivalently, for every choice of distinct points z, ..., z, € Q the generalized

Vandermonde matrix
foo oo S\ . p\yi=0,0m
v( P ) =g

where L; are the evaluation functionals (L;, f) := f(x;) is nonsingular. Evidently, by the Fundamental
Theorem of Algebra (g, ..., m,) is a complex (resp. real) T-system on every region  C C or on every
interval 2 C R, respectively.
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If £, ¢ C"(;K),Q € Kand K = R or = C, respectively, then (fg,..., f,) is referred to as an
extended real or complex CebySev—system or an ET-system of order n + 1 on {2 provided every element
different from the zero element of F), has at most n zeros in €2, counting multiplicities. Equivalently, for

every system (zo, . .., T,) of possibly repeated nodes in Q) the generalized confluent Vandermonde matrix
foo oo fn =0,...,
L S E () i @
is nonsingular where L; are the Hermite functionals
d Hi (11)
with
wi(x) := multiplicity of z in (xq, ..., x;—1)- @)

It should be noticed that p;(x) and the functionals L; essentially depend on the sequence of nodes which is
not reflected by the notation. By

fo o fa
V‘LO ... Ly

::detV(I]jE o f;);éo 5)

we denote the generalized confluent Vandermonde determinant. A T-system (resp. an ET-system) of order
n+1(fo,..., fn) onQ such that forevery k = 0,...,nalso (fo,..., fr) is a T-system (resp. ET-system)
of order k + 1 on (2 is called a complete T-system or a CT-system (resp. an extended complete T-system or
an ECT-system).

Again, as a consequence of the Fundamental Theorem of Algebra the best known example of a complex
ECT-system is II,,. In case of real functions defined on a real interval Q2 every ECT-system (fo, ..., f»)
on ) can be constructed from certain real “weight” functions w; € C"/(Q;R)(j = 0,...,n) having no
zeros in {2 such that for a fixed a € €2

fo(z) = wo(x)
fie) = wolx) / wn ()t + aso - folx)

£@) = o) [Cwin) [ wadidn + o) + an i@
©)
fuln) = wo(x)/ wl(tl)/ w2(t2).../"7 wn(t)dtn . diy
+ 3wy (@)
=0

where ay, ; are certain real coefficients which are uniquely determined by the conditions that for every
k=0,...,n

k—1
vp(z) = fk(x)—Zak,-fj(x)

z t1 th—1
- wg(x)/ wl(tl)/ wQ(tQ).../ wi(t)dty - diy o)

solves the initial value problem

Lkvkzl’ L'U’Uk(a)zo NZO’...7I€_1 (8)
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and Fj,_y := span{fo,..., fr—1} is the solution space of the homogeneous linear differential equation
LFv =0, ©)
where
Lo = 17
Wo
1d 1 d (1
Lky = —— i —v )] k=1,...,n. 10
Y wy, dv (wk_l dv <w0v> > el (19)
If all weight functions are positive then the system (7) is referred to as a real ECT-system on () in its
canonical initial form. Then all Wronskians of subsystems (vo, ..., v;) for j = 0,...,n of (7) are positive
in

W (vo,...,v;)(z) := det (D" (vi(x));_, 0:- 7] >0 x € (.
Consequently, if (fo, ..., fn) is a real ECT-system on €, then there are unique sign factors og,...,0, €
{—1,1} such that every subsystem (fy, ..., f;) of

(for---. fn) = (00fo,- - Onfn)

has a positive Wronskian in (2. Moreover, the weight functions can be computed from the Wronskians

wo(z) = fo(x),

Wk F
U)l(l') — (.{t:Oa.)(ll)2(‘T)7 (11)
[fo()]
W(an RS fk—?)(x)W(an ) fk)(x)
W (fo,- s fi1)(2)]?

It should be noted that for complex ECT-systems nothing similar is known. If (fo, ..., f,) is an ET-
system on 2, then the elements of its span (1) often are called generalized polynomials of order n + 1 at
most. Clearly, iff all weight functions w; are constant, then F;, = IL,.

From its definition (10) we see that the differential operator L* is a linear combination of the opera-

, k=2,...,n.

tors (i)] of ordinary j—fold differentiation for j = 0,...,k, With coefficients depending on the weight
functions wy, . . ., wg. Clearly, the leading coefficient of Lk is . It has no zeros in ).

Conversely, under certain conditions, each Hermite functlonal (3) can be written as a linear combination
of some differential operators (10) evaluated at a node. More precisely, we now assume that the node system

(l’o,...,fﬂn) = (505"'7505515"'5515"'agpflvgpa"'agp) (12)
Yo V1 Vp
is consistently ordered with §y, &1, ...,&, € €1 pairwise distinct and vy + ---v, = n 4+ 1. Then we can
switch from the one—index notation
d \ M) d\"
L= () v = () vie) = a (13)

to a two—index—notation where
{0,....n} 30 = onp)=vo+-+v—1+p (14)
p=0,...,vr=0,...,p,

is injective, and conversely. Then LPv(&,.) according to (10) can be solved for d?v yielding

p
Li, :dﬁ = a,iLU )3 15
(Li,v) = dfv ;),6’ i(f) (15)

with real coefficients 3, ; and 3, ; = w, (&) # 0.
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1.3. Unisolvency of ET-systems

Suppose that (fo, ..., fn) is an ET-system on 2. Then, by definition, every problem of Hermite interpola-
tion

- given nodes xy, . . ., z, € (), possibly repeated
- given a function f : @ — K which is sufficiently often differentiable at the multiple nodes

- find a generalized polynomial

p=> ar-fr€F, (16)
k=0
satisfying o) o)
d Hi (T4 d Hi(Zq )
(5) wer=(g) sl i=oim a7

where y1; () is defined by (4), has a unique solution. We denote the solution of (17) by any of the following
more and more detailed notations

p=0f =pof =pflans.a =pf | F0 ] (18)

where the last one shows all data p is depending on. Clearly, p is a symmetric function of the nodes, i.e. for
any permutation (z,,, ..., 2,, ) of (zo,...,2n)

foo oo | _ fo o Jn
p{xo .. Ty =P Tyy --- Ty, |
Moreover, p does depend only on the space F,, := span{fo,..., f,} and not on the basis chosen. Never-

theless, its representation severely depends on the basis, and also the method of computation depends on
the ordering of the basic elements. For these purposes the detailed notations are useful.

How to compute p?

If (fo,..., fn) actually is an ECT-system on (2, then every formula for interpolation by algebraic poly-
nomials has a counterpart, a similar formula for interpolation by generalized polynomials. This will be
shown and proved in the next sections.

1.4. Newton’s procedure generalized

Suppose we are given an ECT-system (f, - . ., f) on Q. Given a system (xyo, - . . , &) of possibly repeated
nodes in (2, then the interpolation remainders (o, . . . , p, ) Where
vo = fo
o N foo fin |, | fo o i o
wj = rf; Zo ... Biy = f; —pfj Zo ... Biy j=1,...,n (19)
also constitute a basis of F;,. Itis called Newton’s basis. ¢; has zeros zy, . . ., x;_1, counting multiplicities.

It should be noticed that in case of interpolation by algebraic polynomials
Jj—1
i@ =[[@-z), j=0,....n. (20)
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The coefficients c; of the interpolant p developed in the Newton basis

fn

_ _ 0
p—pnf—pf[xo v

0,...,n. They are denoted by

fo

Lo

i

Tj

$o
o

C]‘:ij:|:

-]

Evidently, ¢,, = a,, in the normal representation (16) of p in the basis ( fo, . -

_ ¢
}—pf[xg

are called (generalized) divided differences of f with respect to (fy, - .

n
o } =Y cig @D
., fj) and the nodes (xq, ... ,x;),j =
”oj}f j=0,....n. (22)
Lj

., fn), butin general, ¢; # a;

forj =0,...,n — 1. Also, ¢, f is a symmetric function of its nodes as can be seen from its determinantal

representation which results from Cramer’s rule

V‘ fO fn—lf ‘
L Ly_1L
enf = fo fn f= 0 n-lmm | (23)
To Tn Vv fO fnfl fn
LO Ln—an
From (23), by elementary column operations, we get
fO fnfl
v %o Son—l’rf [ Zq 1
LO Lnfan
[ oo dn } f= , 24)
0 n % ®o Pn—1¥n
LO Lnfan
where we denote the interpolation remainders for j = 1,...,n + 1 by
v fo fi-n  f
. ‘ Ly ... Ly L,
rf[ 0 f]—1:|::f_pf|:f0 f]—1:|: 0 J=1 J (25)
o Tj-1 o Tj-1 v fo fi—1
Lo Lj_q
andby rf[]:= f, for j = 0. Since the matrices whose determinants occur in the right hand side of (24)
are lower triangular, we also have
d Hn (mn)
_ ,rf fO fn—l (-/I:n)
fo fn dx Zg Ty
x f= @) . (26)
0 Tn d J f
0 n—1
@) ele v e
Moreover, by applying the same argument to the permuted nodes =xg,...,Ti—1,%it1,
..., Ty, ; we likewise get forevery i € {0,...,n}
<i>un(zi)rf [ fo fn-1 :| (z:)
fO fn f . dx o ---Lj—1 Lit1---Ln ! (27)
zg Tn NI
) |, it )
da " 2o i Tit1 .. T ¢
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If we are dealing with a real ECT-system as in (6) and if (o, ..., x,) after being ordered consistently is
identical with (12) we get from (26) and (27) in view of (15)

L£Tf|:x fox' o fn,1 . :|
[ R 5 DR

o -.- Ip Lp |: fO fn_l :|

’f‘lrfn
Zo, .. 5 Ti—1 Tit1y--+5Tn
For an arbitrary ECT-system (fo, . . ., f) from (21) we have the recurrence
Jo _ P f(@o) )
pf[xo] = cf %_fo(xo) Jo

A B ol R R PR B RS

Therefore, what is said in (23)—(28) for ¢, f does hold accordingly for every divided difference c; f, j =
0,...,n. Newton’s generalized recurrence relation (29) constitutes a procedure to compute the interpolant
pn f recursively since also the generalized divided differences (22) can be computed recursively, as we are
going to show now. This is well known for interpolation by algebraic polynomials where

(4)
f (xO) lffl}'] = xj—l =...=2x
|
o c.. T J:
o ... f= T ... Ti-1 f_[ﬂo le}f
L1 ... Zj To ... Tj—1 i ?é -
T; — o e; #x0,7=1,...,n.

(30)
By the symmetry of divided differences as function of their nodes if not all nodes are identical we may and
we do assume that ; # x¢. The denominator actually is

o vl T o v T
e I el O I £ e

since in view of (27) the difference on the right hand side equals

d Hi—1(25) T .. Tj—2 d #i=1(2o) T ... Tj—2
(%) T/]Tj |: X1 xj_l :| (I]) _ (%) T/]Tj [ X1 xj_l :| (Io)

d Hi-1(;) T ... Tj—2 d #i-1(zo) o ... Tj—2
<%> rmj—1 [ 21 ... Ty } (;) (%) -1 [ 21 ... Ty } (w0)
= (zj—a)— (z0— ).

This results by applying Leibniz’ rule (32) to

—_ [ o .e. Tj—2 }(x): TG

il B . |
and to

il B . |

j—1
k=1
with a certain a € K which both follow from the Fundamental Theorem of Algebra.
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Since it is a basic tool here and also later let us recall Leibniz’ rule for derivatives of higher orders:

(%)N 0@ =3 (V) (%)kum (%)va (2

k=0

There is also a Leibniz rule for ordinary divided differences

o ... T . — - o ce. Ty . o cee Tp—j
[a:o xn](u v) Z%[l“o xj}u [:vj . Tp }v. (33)
]:
Both are easily proved by induction. Inserting (31) into (30) and replacing the system (7o, ..., 7,) by
(fo,- .., fn) we formally are lead to

()8 B e

. ifa; = 1= =
d\’ fo o fia B
{fo o ]f: (%) Tfj[xo ;:0 ](xo)
To ... Ty |:f0 fj_1:|f—|:f0 fj_1:|f
Tl T To ... Tj-1 ifo; #x0,j=1,...,n.
|: f(] fj—l :| f _ [ fo fj—l :| f
L T T; J o .- Tj—1 J

(34)
The first line of (34) is clear from (26) and the second line is proved by induction on j. The proof starts
with

V‘ fo  f
{fo h ]f _ Lo Li | _ fo(wo)f(w1) = fo(w1)f (o)
To T V‘ fo A fo(zo) fr(@1) — fo(w1) f1(20)
Ly Iy
flx1) — flzo)
— fo _ | fo
_ Jol@1)  fo(xo) [wl]f [%]f if 20 # 11,
fl(xl) _ fl(xO) I:O{O] fl _ [9{0] fl
fo(z1)  fo(zo) ' °
Assume now that (34) has been proved for all systems of nodes zg,...,z; in . Let j > 1 and
xo,.-.,%j,Tj+1 € (2 be arbitrary, but 41 # x¢. According to (29) we write p;1 f in two different ways
with respect to the unions (1, ...,2;) U (2j41) U (zo) and (21,...,2;) U (2o) U (2j41):
A el e R N A el )
o e P e
il B B AR VA A
o B PR B
Subtraction yields the equation
foo oo fj foo oo fj Joo oo fim
<[I1 .T]i] f_|:.1'0 .Tj:|f>frf‘7|:££1 ].T] :|
fo o fin , fo o fj ‘ fo o fj _
[a:o, x;H f <pf]+1 To ... IZ ] —pfit [ T ... x];]H >_O' (35)
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Comparing coefficients of f; gives the second line of (34) with j replaced by j + 1 provided it can be
shown that when z ;1 # o the denominator

fO o f] ) . [ f(] A f] | )
|: 1 .. Tj41 f]+1 | To .. T | f.7+1 ;é 0 (36)
is different from zero. If (36) fails to hold then by (35)
fO o f] [ f(] A f] T
J— — 0
[fvl cee Tjp f | Lo --- xj_f

for every f € C7(£; K) which obviously is false. For instance, take f = P € Fj1 solving the interpola-
tion problem

d pi—1(zi)
<—> P(xz;) =0 fori=1,...,7,

dx
d O\ M (@o)
<%> P(Io) = 0,

pg(x) := multiplicity of x in (24, ...,2), and
d O\ P+ (i)
() Plejn) =1
with
Hj+1 (xj+1) = multlphclty of Tjt1 in (xl, ce T, x0)7
= multiplicity of z;41 in (21, ..., 2;),

since xj41 # xo by assumption. Then according to (23)

% fo o fim
fo o P_[fo f,-]P: Ly ... L —0
r1 .. Tj41 r1 ... Xy v fO fj—lfj ’
L1 Lj_le

which contradicts (5).

Since the denominators in the second line of (34) themselves can be computed recursively using the
same recurrence relation (34) with j replaced by j — 1 and f by f;, Newton’s generalized procedure has
complexity O(n?). It reduces to O(n?) if the denominators of (34) are known explicitly in terms of the
nodes as is true for interpolation by algebraic polynomials or by rational functions with prescribed poles.

We close this section by proving a mean value theorem for generalized divided differences with respect
to a real ECT-system (fo, ..., f) on a real interval {) as in (6). Then for any function f € C"(Q;R) in

the convex hull C' := con{zg, ..., z,} of zg, ..., x, there exists a point £ such that
foo oo fa| s n
E e Ea i) @7
To prove (37) consider r := r f [ ig e ]WhiCh by construction has zeros zg, . . . , £, counting mul-

tiplicities. By application of Rolle’s theorem to wior one finds that L'r has at least n zeros in C, counting

multiplicities. Applying Rolle’s theorem again to L'r one sees that L?r has at least n — 1 zeros in C, etc.
Finally, L™r must have at least one zero ¢ in C. On the other hand from (8) and (29)

T e P e eI

g ... Tp-—1 o ... Inp o ... Tp—1

O=L"r¢)

Wﬂ@—[g . “}f
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as claimed.
For interpolation by algebraic polynomials (37) is Cauchy’s mean value theorem
To ... ARG ,
- f= for a certain £ € con{xzg,...,x,}. (38)
0 .- n!

Also, (38) is an immediate consequence of the Hermite—Genocchi formula

1 t1 tn—1
[ o .. Zn ] f= / dtl/ dts . / .f(n) (w0 + (x1 — wo)t1 + - + (Tn — Tp—1)tn) dtn,  (39)
n 0 0 0 ~~

Zo

which is valid also in the complex case. It is easily proved by induction on n. From (39) it is clear that
ordinary divided differences are continuous functions of their nodes provided the function is sufficiently
smooth.

If the real function f is merely continuous and the nodes all are simple then Popoviciu’s mean value

theorem says that in con {xy, ..., z,, } there exists a point £ such that in every neighbourhood of £ there are
equidistant points yo, Yo + b, . .., yo + nh, h # 0, such that
fo oo fa foo i oo fn
= . 40
[a:o L. Tp f Yo,Y% +h ... yo+nh f (40)

Nothing similar to (37) or (40) is known for complex ECT-systems.

1.5. Interpolants are continuous functions of their nodes

In this section we are going to show that also generalized divided differences of a sufficiently smooth

function are continuous functions of their nodes: if (fy,..., f,) is an ET-system on @ C K and f €
C™(Q; K), then in the natural topology of K1
i fo fn]f:[fo fn}f' ah
Q15 (Yo, yn) = (0seeszn) | TO -+ T, g ... Tp

As remarked above, for ordinary divided differences this follows from the Hermite—Genocchi formula.
Unfortunately, for generalized divided differences no formula of Hermite—Genocchi type is known. Never-
theless, we can prove (41) by making use of the continuity of ordinary divided differences.

Since divided differences are invariant under permutations of the nodes we may assume that (zo, . . ., &)
is consistently ordered as in (12). From (23) we see
v fo fn_12 f1
vo—1 Vp — Vp—
{fo f”]f _ dy dy ... dy° 4 dy L dy dp
g -.- Ip v fo fnfl fn
g dy ...odet d) oL &S L dyT d”fl
v fo .. UUR S ‘
RS T N R S fp,...,sp
v fo ... coo faa ‘
(o] - [bo---&] [&] oo [&] - §p, e ,Ep
Since (Yo, -+ Yn) = (Cose-r &0, €1y vy Ep1,Eps - - - &) in the natural topology of K" we must have
Yo Vp
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the limit relations

Wos -y Yro-1) —  (S0,-+-50)
——’
Vo
(yV07'~-7yl/0+V1—1) - (517“-’51)
——’
v
(yl/o+---+up,1v-'-7yn) - (gpa'-'agp)'
———
Vp

Grouping the nodes according to their limits by elementary column operations it follows that

fO fn
[ Yo --- Yn :| f
V‘ f(] fn,1 ‘
_ [yO] [yOa--~ayVo—1] [ylfo] [yVo+---+Vp—1] [yl/0+ +Vp 17'-'7yn
V‘ fo e P f’l’l*l ‘
ol o [WososUmo1] [Wwo] oo [Yrot.try ] [yu0+ v orre s Yn]
tends to
fo - coifnor  f ‘
o] - ool (6] o [l o [yl Al
fo ... coifact fa ‘ To ... Ty |7
(o] - [éo,---2&] [&] - &1 oo (& &)

Here we use the facts that ordinary divided differences are continuous functions of their nodes, that deter-
minants are continuous functions of their entries, and that all denominator determinants are nonzero since
(fo,---, fn) is an ET-system on .

As a consequence of (41), (19) and (21) we have: if (fo,..., fn) is an ECT-system on Q and if f €
C™(Q); K), then the interpolant p,, f is a continuous function of its nodes:

lim f [
Q7 +15(yo,..Yn) = (2055 2n) Yo ... yn Ty

pointwise in € and uniformly on every compact subset of 2.

1.6. The interpolation error

As a function of = € () the interpolation error is

R L R (e Il [ B I el TR
with @, () defined as in (19), if (fo,--., fn, fnt1) is an ECT-system of order n + 1 on 2. This is
immediate for x € Q, 2 # {xo,...,x,} from (29) if we take j = n + 1 and ,,41 = x as a new node. Of
course, (42) trivially holds true if x is a node.

As a corollary to (42) by applying (37) with n replaced by n + 1if (fo, ..., fnt1) is a real ECT-system
in canonical form with associated differential operators L7

‘rf [ iﬁ o I ] (x)‘ <

, x €.

(43)

|Ln+1f £)|

e | 2 I )

g ... Ip

max
gecon{xo,...,xn, 2}

Nothing similar is known for the case of interpolation by a complex ECT-system.
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1.7. The generalized confluent Vandermonde determinant

The generalized confluent Vandermonde determinant has been considered already in (5). By elementary
column operations it follows that

fo e fn _ (100 e (,On
Vit .=V .. L, @4)
where ¢y, . . ., pp, is the Newton basis (19) of F, := span{fo, ..., fn}. Now the matrix
Yo - Pn
V(o)
is lower triangular. Its diagonal entries are
d I/«i(mi)
Li,ei) = | == i(zi) # 0. 45
Lopd= () wiw) (s)
Hence o)
foo oo a1 (4N L[ fo o fima .
v LO .. Ln N H dx rfl X9 ... Ti—1 (zl) (46)

i=0

1.8. The general Neville-Aitken formula

It is easy to see that the well known Neville—Aitken formula for interpolation by algebraic polynomials can
be written in the form

S BT B [

T T o ... Tp—1 x
pf[xg x”}(l«): ™ 7rn T ﬂ'n
. n 0 .- n—1 0o --- n—1
"'Tn [ Lo ... Tp_i ] () = [ 1 ... Tn ()

| 2 e @ [ T @)

T1 Tn

_m"[ﬂo Wnl](x)_mn[;ro wnl}(x)

o --. Tp-—1 ) In

(47)

forz € Q\{zo,...,zn} if &, # 0. Indeed, the right hand side of (47) results from the usual Neville—
Aitken formula

@oaepf [T ™ )

pf[m Wn}(x):

2o ... Tn :En;ito _ (48)
0 .- Tn-1
@oapr [T T @)
Tn — X0

for x:, # xo by multiplying its numerator and denominator by (x — 1) ... (x — x—1), because of

el T T e T T e
=(z— 21 T —xp_1) - [(x —xo) — (& — )]
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If in (48) formally the monomials (7, . . ., 7, ) are replaced by an ECT-system (fq, . . ., f,) the following

recurrence formula for z € Q\{z,...,z,} and z,, # z( obtains:
[l I
A R A [
I (R R [ e
S Bl S e L
I RS FA A [
Of course, we have to prove (49). In contrast, if all nodes are identical, x,, = z,,—1 = ... = xg, then from
(29) and the first line of (34) directly
fo o B[ o ks Tho o fim
results.

Before showing (49) let us look for a simple proof of (48). Denote by ¢(xz) its right hand side. It suffices
to show that if x,, # z¢ then

To ... Tp
Qw)=pf | | @ - a@) 51

0 --- I
is a polynomial of degree n at most having zeros xy, ..., z,, counting multiplicities. Obviously, @ €
IT,, has zeros x1,...,x,—1 counting multiplicities. Moreover by Leibniz’ rule (32) it is easily shown

(%)H"(zo) Q(x0) = 0and (%)H"(z") Q(x,) = 0. This proves (48). There is no easy way to use this
idea in proving also the general result (49) for several reasons. Notice first, that the right hand side of (49)
which again we call ¢(z), when considered as a function of x, seems to be a rather complicated generalized
rational function of z. It is well defined for x € Q\{xo,...,z,} since then its denominator certainly is

different from zero. Indeed, the denominator equals

o | B B @ | B P ),

I e Tn o ... Ip—1

hence it is a linear combination of fy, ..., f,—1 thathas n — 1 zeros x4, . .., z,—1, counting multiplicities.
Moreover, due to the assumption x,, # g it is nontrivial, since the coefficient of f,,_1 is

[fO fn—1:|fn_|:f0 fn_1:|fn750

L1 e Tn i) cee Tp—1

as was shown in (36). Consequently, it has no other zeros. It is by no means obvious that ¢ € F), on
O\{zo,...,zn}. Atleastin general, it will not be possible to ’factor out” the common zeros of denominator
and numerator of (49). We are coming to see that this is possible in case of interpolation by algebraic
polynomials; and we are going to see in the next chapter that this is likewise possible in case of interpolation
by rational functions with prescribed poles. On the other side, application of Leibniz’ rule to ¢ no longer
gives a simple result. Nevertheless, we claim that g(x) = pf(z) for every x € Q\{zo,...,xn} . Then, we
can extend ¢ and its derivatives into the nodes continuously defining

() aw= (1) se im0 (52)
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hence ¢ = pf.
Proof of (49): Observe, that the right hand side of (49) is a generalized arithmetic mean

o | B Pl @@ | 2o e @ aawmwr | 2o B ),

g ... Inp I In g ... Tp—-1

with weights adding to one, where

| P

o ... Tp—1
Az) = 7 7 7 7 ; (53)
0 - n—1 _ o --- n—1
" fn [ To ... Tp—i ] (@) =rfn [ T1 ... Ip ] ()
depending on z and on the nodes xg ...z, is not necessarily nonnegative. For x € Q\{xg,...,2,}

arbitrary but fixed, consider the mappings

posit o= o[ B I
ponf = | B i,

Obviously, as functions of f both mappings are linear functionals that are linear combinations of the func-
tionals L;(i = 0,...,n);

n d pi(zq)
Y Y O

i=0
n d wi(ws)
Tz - Bz - i)y
feyn(y) s
where p;(z;) < n — 1 for all ¢ due to the assumption z,, # =z, with coefficients Ao, ..., A, (resp.

By,...,B,) depending on x but independent of f. S, and T, agree on F,,, since for f = f; (j =
0,...,n—1)
T.fj = fi(x) = Sa f;

because the weights add to one. But S, and T, also agree for f = f,, as is easily checked using the
explicit representation (53) of the weights. Since (fo, ..., f,) is an ET-system on (2, necessarily A; = B;
fori = 0,...,n, and therefore S, f = T, f forall f € C"(Q;K). This proves pf(z) = ¢(x) for all
feC™(;K) and all x € Q\{xo, ..., x,} as claimed.

It should be noticed that both terms of the denominator of (49) can be computed recursively again by
(49) with o, . .., x, replaced by xg,...,xp_1 Or z1,...,x,, respectively, and by replacing f by f,. The
complexity of the whole procedure is O(n?). Tt reduces to O(n?) if the denominators of the right hand
side in (49) are known explicitly as in the cases of interpolation by algebraic polynomials or by rational
functions with prescribed poles.

1.9. The general Lagrange—Hermite formula and the inverse of the gener-
alized confluent Vandermonde matrix

Given an ET-system (fy, ..., f,) on  and a system of nodes (zy, ..., z,) in {2, possibly repeated, with
associated Hermite functionals (3), then the corresponding generalized Lagrange—Hermite basic functions
l; € F, (j =0,...,n) are uniquely determined by the biorthogonality conditions

<Li,lj> = (Si,j Z,] = 0,. .., n. (54)
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Accordingly, the basis (lg, - .., l,) is defined to be the dual basis in F:* of the basis (Ly,..., L,) of F}.
Here, as usual, we denote by E* the dual space of a finite dimensional linear space F, and we use that E**
is canonically isomorphic to E. Formally,

<L07f0> <L07fn>
1 <Li717f0> <Li717fn>
li = fo cos fn (55)
detV
¢ (Lit1, fo) - (Liv1, fn)
<Ln7f0> <Ln7fn>
where V is the generalized confluent Vandermonde matrix (2). The numerator determinant is defined by its
formal Laplacian development along the row labelled i (: = 0,...,n).

For later use let us introduce a more detailed notation for the basic Lagrange—Hermite functions. If
(-’Ej)?:o is a sequence of possibly repeated nodes in {2 we associate with it the sequence of Hermite func-
tionals (3). For0 < k <nand 0 < m <n — k we define

v fo .- fi e I
. Ly ... Lpyi1i L Lpyivr oo Ljyk i=0 i
l;n’ (.T) = v fo ... fi e T ’ R (56)
Lm e Lerifl Leri Lm+i+1 e Lerk
0, for all other ¢
if the denominator is different from zero. L is the evaluation functional at the point x
fr—= (L, f) = f(z)
where z ¢ {zg,...,x,} is assumed.
Evidently, the linear functionals (Ly,+ ;) j=o, .. x and the functions (l:mk) \ are biorthogonal:
i=0,...,
(L ) =635 4.5=0,... k. (57)
Accordingly,
f f -
_ 0o - k . ) m,k
p=pf| 0 ot ] =2 (Lmeis N (58)
solves the interpolation problem
<Lm+iap> = <Lm+zaf> 1= Ov"'vk' (59)

An immediate consequence of the biorthogonality relations (57) is the Lagrange—Hermite interpolation
formula

pf[io i"}zz@i’fwf” (60)
0O .- n i
Obviously, knowing the coefficients d; ;, of the expansion
ljzzdjkfk j:O,...,n (61)
k=0
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it is easy to get an explicit representation of the adjoint of V. In fact, by its definition the adjoint of V' is

Vagj = detV - DT, D = (d;;,). (62)
As a consequence,
vt =DT. (63)
Remark: If another basis uy, . . ., u, of F}, is used instead of fy, ..., f,, then the inverse of the correspond-
ing generalized Vandermonde matrix
_ Ug Lo. Up _ ) )
v=v(po ) =
in the same way is obtained from explicit representations of the basic Lagrange—Hermite functions
=Y ejpur j=0,...,n (64)
k=0
according to
V' =ET E=(ej). (65)

1.10. A recurrence relation for the generalized basic Lagrange functions

It is not so well known that for simple nodes also the generalized basic Lagrange functions (55) can be
computed recursively.

Let (fo,-.., fn) be a CT-system on  and let (xq,...,x,) be a system of simple nodes in ) with
associated functionals (L;, f) := f(z;). Then the basic Lagrange functions

V fO P e fn—l
0.n—1 LO A Li—l L Li+17 ey Ln—l
L () = i=0,....,n—1
V fo e e fnfl
LOa ) Li*l Lz Li+1 cee Lnfl
as well as
v fo ... I
_— Ly ... Li L Lys ... Ly
L (x) = 1=0,....,n—1
v fo ... cor fna
Ly ... Lz Li+1 Li+2 c.. Ln
are well defined, i.e. their denominators are nonzero. For every z € Q\{zo,...,z,}
l?’n(x) = /\(:v)lj;"l_l(:v) + (1 - /\(x))l?’n_l(x) i=0,...,n, (66)
where
Er=Ye) =0, 9" Y(2):=0 (67)

and where \(x) is defined by (53). The recursion (66) starts with n = 1 and lé’o (z) = J{t)"((j)) ,1=0,...,n.
Proof of (66): Consider the recurrence relation (49) for the simple nodes zg, . . ., x, € §2. We insert for

the interpolants on both sides the generalized Lagrange interpolation formula, thus deriving

|
—

n n

|
-

n

UL HE @) = AMa) D (Lagi, A" @) + (1= M@) - D _(Li, ) - 17" (@)
=0 =0 =0
= L) (M@ @)+ 1 =A@ @),
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due to the definition (67). Putting in here f = 12’" (k=0,...,n), from the orthogonality relations
<Li, lg’n> = 5i,k i, k=0,...,n

we obtain that
") = M2) " @) + (A= A@) " (@) k=0,....n

as claimed.

It should be noted that the recursion (66) does not extend by continuity to multiple nodes, for the basic
Lagrange functions l?’” are not continuous functions of the nodes, at least in general. This is easily seen
from the Lagrange basic functions for polynomial interpolation.

1.11. Notes and Remarks

The various classes of Cebygev-systems have been studied extensively in the monograph of S. Karlin and
W.J. Studden [13]. The formulas (11) for the weight functions there are given on p. 380. An earlier
treatment can be found in papers of T. Popoviciu, for instance in [25]. Newton’s generalized interpolation
formula (21) for pairwise distinct nodes is due to H.E. Salzer [28]. However, there is an earlier approach
by the French astronomer and mathematician H. M. Andoyer dating back to 1906, cf. [6]. The remainder
representation (25) and generalized divided differences were first discussed by T. Popoviciu [25]. The
recurrence relation (34) for generalized divided differences with respect to ECT-systems and multiple nodes
was given by G. Miihlbach, for real functions in [14] and in [15], for complex functions in [22]. A proof of
(34) for simple nodes using Sylvester’s determinantal identity is due to Cl. Brezinski [4], another one via
Gaussian elimination can be found in [11].

The recurrence relation (34) can be generalized considerably to the situation where the Cebygev-system
has a subsystem that again is a Ceby3ev-system [18]. This covers also trigonometric interpolation, a topic
not treated in this paper.

The representation (27) of a generalized divided difference as a quotient of remainder terms was given in
a more general context in [19] and later in [20]. The formula (28) seems to be new. The mean value formula
(38) can be found in [15]. The classical Hermite-Genocchi formula is proved in every comprehensive
textbook on Numerical Analysis, for instance in [12].

The material of section 1.5 is from [22]. The general Neville-Aitken formula is due to G. Miihlbach [16],
see also [17]. Particular cases used for extrapolation were used earlier [29] and later [3], [10], see also [31].
Actually, Brezinski’s E-algorithm which is a rather general extrapolation method can be derived directly
from the general Neville-Aitken algorithm [5]. The recurrence relation for the general basic Lagrange
functions can be found in [19], see also [20].

2. Interpolation by rational functions with prescribed poles

2.1. Cauchy-Vandermonde systems

Let B = (bg,by ...) be a sequence of not necessarily distinct points of the extended complex plane C :=
C U {oo}. They will be the prescribed poles. With B we associate a sequence U = (ug,u; . ..) of basic
rational functions defined by

x"j(bj) if bj = 0

w={ 1o )
@pymtom et i=01...

Here denotes
vj(b) := multiplicity of b in the sequence (by, ..., bj_1). (69)
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The system U/ is called the Cauchy—Vandermonde system (CV-system, for short) associated with the pole
sequence BB. For any fixed nonnegative integer n with the initial section of B

By = (bo, ..., bn) (70)

there is associated the basis
Up = (o, .. Up) (71)

of the Cauchy—Vandermonde space (CV-space)
U, :=span U,,. (72)

Clearly, iff all poles b; are at infinity, then U,, = II,, for every n . As an application of the general theory
developed in chapter 1 we are going to show that CV-systems are complex ECT-systems hence well suited
for Hermite interpolation. The following notation will be useful. For any z € C we denote by

" {1 ifz=o000rz=0

T 2 ifzeCz£0. (73

If 29, ..., 2, € Cthen
n n
H 2= H 2. (74)
=0 j=o

With the pole sequence (70) we associate the polynomial
Bn(x) :zf[*(a:—bj)7 zeC (75)
j=0

and call it the pole polynomial associated with B,,.
When X = (xq,21,...) is any sequence of not necessarily distinct points in the complex plane which
will serve as nodes, with the section
Xn = (x(]axla"'vxn) (76)

we associate the polynomial
Q= H(x —xj) a7

and call it the node polynomial associated with X,.

2.2. Unisolvency of CV-systems

In order to prove that CV—systems are complex ECT-systems we reduce the interpolation problem with
CV-systems to polynomial interpolation.
Consider the problem of Hermite interpolation with a CV—system:

e given a CV-system U,, = (uo, ..., u,) with associated pole sequence B,, = (bo, ..., by),
e given a system X, = (vo,...,xn) of possibly repeated nodes x; €
(C\{bg, ) bn}’

e given a complex function f which is defined and sufficiently often differentiable at the multiple nodes
e find a rational function p in the CV—space U, satisfying
d O\ P d O\ M)
() se=(g)  f@r= s i=om 9)
where p;(x) is defined by (4).
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We are going to show that this problem always has a unique solution

pzpfzpnfzpf[;‘g N Z:]. (79)
Therefore, every CV—system U/, is an ECT-system on every subset of C not containing a pole of the asso-
ciated pole sequence B,,.

In fact, there is a unique polynomial ¢ € II,, that interpolates 3,, - f on X,, in the sense of Hermite.
Then a partial fraction decomposition yields p := Bi" € U,. Moreover, p interpolates f on X, since

d Hz(mz)
(@) (f=p)(z)=0 i=0,...,n (80)
is equivalent with
d Hz(mz)
() G U-mE)=0 i=0.m 1)

This is a consequence of Leibniz’ rule because a,, and 3,, are prime. Thus, the confluent Cauchy—Vandermonde

matrix (1)
pi(zs
. Up ... Up L _ L AVI=0sn d (s
v .—V< e .1 ) = (Vi u))i=g n = ((m«) u;(m)) (82)

is nonsingular. Moreover, the interpolation remainder is

Uy ... Up _ap(w) Mo o-r Tn, Tntl
f(iE) pf[ T . Tp :| (.T)— ﬂn(-r) |: 0 Tn, T :| (ﬂn f)a (83)

which results if (42) is applied to (fo, . - ., fn+1) = (70, - - ., Tp+1) and the function 3, - f.

If it is assumed that all poles are real or at infinity every CV-system Uf,, associated with them naturally
is also a real ECT-system. Then we may ask: What is its canonical form (6)? Which are the weights?

It is not a deep result to find the answers. It is more a technical exercise, for it is known from (11)
that the weights can be expressed explicitely as quotients of Wronskian determinants of subsystems of 4,,.
Once the confluent Cauchy—Vandermonde determinant

Up .. Up

Vit ... L,

L Ug Un
‘_detV<L0 Lﬂ) (84)

is known explicitly as a function of the poles and the nodes, the weights can be calculated. This will be
done in section 2.5 when (84) will be available.

2.3. Newton’s procedure and the interpolation error

Let U, = (uo,-..,u,) be the CV—system with associated pole sequence B, = (bg,...,b,). If X,, =

(2o, ...,2p) is any node system in C\{by, . .., b, }, the interpolation remainders
Yo = U andforj=1,...,n
Vv Uo Uj—1Uj
i = ru Up ... Uj—1 — u; — pu; Up ... Uj—1 _ o Tj—1 (85)
J J 2o xj_l J J 2o xj_l V Ug uj71
i) Tj-1
are ;
_ @) Bialb) g (86)
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Indeed, by partial fraction decomposition of the right hand side of (86) one sees that it is a linear combi-
nation of ug, ..., u; with leading coefficient 1 for u;, having zeros xg, ..., 2;_1, counting multiplicities.
According to (85) this property characterises ¢; completely.

The coefficients

Y U --- Uy
C]_c]f_[xg xj]f 87)
of the interpolant
_ Ug e Un _ . )
p—pf[xo xn}—ch] @i (88)
]:
are the divided differences of f with respect to the ECT-system (uo, . . ., u;) and the nodes (zo, . . ., x;). If
all nodes coincide, ; = £;_; = ... = xg, then according to (34) we have
d i U .. Uj—1
{uo uj}f_(dx> Tf[xo co. &g (o) (89)
o .. 2 ]' ) ijl(bj)
Bj(wo)  avj—1(b;)
by Leibniz’ rule (32). If not all nodes are identical we may assume that x; # xo. Then
[UU ’u,j1:| _[UO Uj1:|f
|:’U,0 U]:|f: 1 : 7 ' ' OA‘ ‘]1 7 (90)
o ... Ty Tj — Xo . ﬁ]_l(b]) . Oé]_g(b]_l)
(zj = bj)* aj1(bj) Bj—2(bj-1)
where 6;_ is the node polynomial associated with the node system X’j,z = (21,...,25-1). Forj =0,1,
Xj_2 = @and &j_Q = 1, ﬂj_Q = 1.
For z € C\{bo, ..., by} the interpolation remainder is
Ug ... Up L . Ug ... Unp
A I O B [ )
_ Mo -v. TnTptl . an ()
a [mo B (Bn - £) B (z)
with
n
o coe TpTp41 . _ o vl TG o oo TpTp—j41
[:po TnT ](ﬁ" f)_zg[xo xl]ﬁ"[:vl TnT ]f ©2)
1=
. o v TpTp41
+f(@) [xg c. Tpw B,

where the last summand is zero if at least one pole is at infinity. Moreover, if b,,,; € C is chosen arbitrarily,

Tf[uo un}(x):[uo ununH] (@) Bulbasr) o

To ... Tp To ... Tpx Brt1(®) - an(bns1)

Before giving the proofs we remark that Newton’s whole procedure for computing the interpolant as a
rational function with prescribed poles in U,, has complexity O(n?) just as for polynomial interpolation.

Observe, that (91) already has been derived in (83). Equation (92) results by application of Leibniz’
rule (33). By comparison of (91) and (93) we find the following relation between ordinary and generalized
divided differences with respect to a CV-system

Ug ... UpUp+t1 f _ (x % Oén(bn-l-l) . o .- TnpTptl

To .. aaw ) e L ae  wer | B O
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Clearly, (94) holding for all 2 € C outside of {zg,...,2,} U {bo, ..., by}, it remains true for & = xp41 €
C\{bo, . ..,by,} by continuity of divided differences as functions of their nodes. Using this from (94) with
the replacement n + 1 = j we find that forall j = 0,1, ...

U ... Uy _ ‘_b‘*ozj,l(bj) |:7r0 s T :| ] 95
[ To ... Tj ] f=(rj=b) Bi_i(b,) | w0 ... = (Bj-1f). 95)
In order to derive (90) from (34) we have to show that for j > 1 and x; # x¢
[ Uy ... Ujq :| e — [ Uy ... Ujq ] W = T; — o ﬂj—l(bj) &j—2(bj—1).
woew PP Lwe [ (g = 0)" g (b) B2 (bi-1)

The ordinary divided difference on the right hand side of (94), if ; # ¢, according to (30) can be written

o cee T

o ,U:](ﬁj_lf):[xl ot en-[n o m e

Zo Tj — Xo

If Leibniz’ rule (33) is applied to each of the two terms of the numerator we get

[WO ng }(53-1]0):[”0 o ]((x—bjl)*ﬂjz'f)

L1 il ce Zj

o

— (= ;0)" | T e[ T2 e

€Lj

[ To ... TWj—1 ](@-lf)z

o ... Tj—1

o cee Tl

(0 = bj1) .|:$0 T

[Graner | 2 G,

L1 cee Ty

In view of (95) which must be applied accordingly to each term, subtraction yields
o cee Ty )
ALY

() = bj—1)" [ o W;;I ] (Bj—2f) = (w0 — bj—1)" [ o W]:_i ] (Bj—2f)

— 1 To ... T
B Ij — X9
Bi-2(bj-1) [ Uo e Ujol } g Gi2(biza) [ Uo . U }
_ OA[]'*Q(bjfl) Iy ... Tj OAZJ;Q(b]‘,l) To ... T
B Tj — Zo

Inserting this in (95) we finally arrive at
Uo ... Uy
[ o .- Ty :| f

e s (R Ll RS Ay )

which is equivalent with (90).
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2.4. The confluent Cauchy-Vandermonde determinant

In order to get simple sign factors in the determinantal formula we are going to derive we now assume
that the nodes X,, = (xo, ..., %) are consistently ordered as in (12). Also, we suppose that the poles are
consistently ordered according to

B = (b07"'ab’n) = (nOa“'77707771a~"anq—17nqa"'anq) (96)
Ho K
with 9 = oo, m1,...,n, € C pairwise distinct and pg + - -- + p, = n + 1 with 5,, N X,, = . Then

the confluent Cauchy—Vandermonde determinant (84) can be expressed in terms of the nodes and poles
involved

1(-T1) j:O,...,n
Ug CoUp | d . o _
Vv Lo L. |= det ((dx) u](x,)> = 97
i=0,...,n
II e =2 T = — b))
k,j=0 k=0
= mult(Xn) : k;J k,;J
II "G =0 ] “r —2))
k,j=0 k=0
k>j k>j
where
n
mult(X,,) = H i) (98)
=0

is a measure of multiplicities of the nodes.
Note that (97) readily follows from (46) observing

d ui(@:) Ug ... Uij—1 ﬂ,;l(bi) d wi(@i) Qi1
(%> T [ o ... Tim1 ] (z:) = a;—1(b;) (%> Bi (z:)

TT " e — o) TT (0 — )
= Ni(xi)'kzo f_:lo

IT i = be) T " (0i = )

k=0 k=0

by Leibniz’ rule (32).

2.5. The canonical form of a real CV-system

Suppose that the poles are consistently ordered according to (96) such that
o<m<m<a<z<b<m<n...

where the prescribed poles 19 = 00,71,12,. .., 1, have multiplicities y, pt1, ..., g > 0 adding up to

n + 1. Notice that this distribution of poles is not a particular one since the multiplicities are allowed to be

equal to zero. If U, = (uo, . . ., uy) is the CV-system associated with (96) then

Vn = (vo,...,vn) = (0oUg, - - ., Onln)
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has the canonical initial form (7) where the sign factors o; and the positive weight functions w; for j =
0,...,n are given by

o; =1 1 = O,“.,po——l
ONgati = (—1)Hotnattuante i = 0,..., 191 — 1
ONori14i = (_1)#2+---+M2,\+i+1 i = 0,.. o Hoage — 1
where fors =0,...,¢q Ng:= o+ pu1 + ...+ us and
Wo 1 k =0
wy =k Eo= 1,...,00—1
2X
L1105 = m2aga)¥ ( o
j=1 Nax — &) AT _
N () = Noa A , . (x = nargr) Nt Bo=
I (2 = i)™
j=1
() = (Nox +1) - —— =1 |
w i(x) = 1) —————————— i = _
Nox+i 2\ (I — 7’}2>\+1)2 3 ’p’2)\+1
2A+1
I (2as2 — mj)* ( . )
_ Jj=1 T = M) M _
Wy i (2) = Naxgr - =5 ‘ s — o)V E = No
H(’h‘ = M2rt1)"
=1
, 1 .
WNyy 4y +i () = (Nary1 +1) - m i = 1,...,oxy2 — 1

This follows by an elementary but lengthy calculation from the explicit formulas (11) of the weight func-
tions in terms of the Wronskians of the subsystems of Uf,, whose values are known from (97).

2.6. The Neville-Aitken formula

The Neville—Aitken formula for interpolation by linear combinations of CV—systems is easily derived from
the general Neville-Aitken recursion (49) since we are able to compute the weight factors explicitly in
terms of the nodes and poles. In fact, from (85) and (86) for x,, # x¢ we get

run[uo Un—1:|(.r)

() = To ... Tp-1 _ (=20)(bn — xn) (@)
Ug ... Un—1 Ug ... Un—1 (zn — x0)(bp — x)*
TUp (z) — run (z)
o ... Tp-1 &1 Tn
hence if 2, # xo
U PR Un _
prf it = (100)
(= a)bo—zo)pf | 207 | @ = @ s =) |t @)
(@n = 70)(bn — )"
If all nodes coincide, x,, = ©,—1 = ... = g, then according to (86) —(89) we have the generalized
Taylor’s expansion of f with respect to (ug, - . ., uy) at xq
n j :
Uy ... Uy d Uy ... Uj (. — o) Bj(xo)
= — . . . 101
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(101) constitutes a mean to compute the Taylor interpolants

Ug Uy ... Up
pf[%y---,pf[zg l‘o}

recursively from the data zg, (%)j f(x0)(j = 0,...,n), and from the poles with arithmetical complexity

O(n?).

2.7. The Lagrange—Hermite formula and the inverse of the confluent Cauchy-
Vandermonde matrix

Given a CV-system U,, = (uo, ..., u,) with associated pole sequence 53,, = (bo,...,b,), and a system
Xp = (xo,...,2,) of possibly repeated nodes in C\B,,, we want to find the basic Lagrange—Hermite
functions /; € U, (j =0, ..., n) such that the interpolant pf € U, of a function f € C™(Q; K) is

n

pfzpf[ oo ] =3 (L 1)l (102)

T
n =0

The general theory was treated in section 1.9. In order to get simple formulas when it is applied to CV-
systems we assume that the node system after being consistently ordered is given by (12). We claim that

(@) = Lo (&) = () = ;’f"; Prp(@) v (@), (103)
where i = ¢(r, p) and ¢ is defined by (14) and
p
we(@) =[] @-&)" r=0...p (104)
po
Uy, p(2) (x—p!ﬁr)" p=0,...,0, —1;7r=0,...,p (105)
&t n A 7 d 7
o= 3 @ (2) L2 = (1) we (106)
o=0 r :

the Taylor’s polynomial of order v,, — p — 1 of the function g—" developed at the point &,..
If all nodes are simple the basic Lagrange functions (103) simplify to
wi(x)  Bnlxs) .
li(z) = . 1=0,..
0= G B

which, when all poles are at infinity, are the well known basic Lagrange functions for polynomial interpo-
lation.
To prove (103) it is sufficient to show that

<Li7lj> = <dap~aw[>\> = 5(1‘,,0),([,)\) = 57‘,[ : 6p,)\ 27.7 = 07 .. "nvi = (p(fra p)a] = (;9(17A) (108)

But (108) is easily verified by making repeatedly use of Leibniz’ rule (32). If r # [, then according to (32)

dfw = 0, since then w;* contains the factor (z — &,)"". Suppose now r = [. We must show d?w;} = 5, ».

Again, this is clear if p < A\. When p > \ this is equivalent with d?(u - v) = J, » where we have set
wr P\

Bn

n (107

U= and v = v, . Using Leibniz’ rule (32) repeatedly we find

e = (= ()5 (7)) omrmn ()

pu=0
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Clearly, d?=A~H P, \ = d°=A~H ('g—") Hence,

d(u-v) = (i) dﬁ_A <i—n . %) =0p -

Suppose now that the pole system 3,,, after being consistently ordered, is as in (96). Then there is a
one—to—one mapping

(s,0)—=j = Y(s,0)=po+...+pus—1+o (109)
o = 1,...,us, s=0,...,q
such that forevery j = 0, ..., n there is precisely one pair (s, o) such that
x0-71 SZOaJZ ’ » MO
uj (@) = ts o (v) — s=1,...,q;0=1,...,us (110)
(x —ns)”

If the coefficients d; ; of the expansion
n
li=> dij-u; i=0,....n (111)
j=0
are known, then according to section 1.9 for the confluent Cauchy—Vandermonde matrix V' as in (82)
Vagj = det V- DT, D = (d;) (112)

vt =DT. (113)

It is a simple but somewhat tedious exercise to determine the coefficients AY2 of the partial fraction

decomposition
q K
W=D N AT ug, (114)

s=0o0=1

expressed in terms of the nodes and poles. Then by (113)

V' =D, D=(dy), dij= Azi*lg))'

2.8. Recurrence relation for the basic Lagrange functions of CV-systems

In this short last section we give a recurrence relation to compute the basic Lagrange functions with respect
to a CV-system and to simple nodes. From (66) and (100) we find

l?,n(x) _ (2 —20) (b — 1) it

(zn - x)(bn - -TO)* 0,n—1 T
T (xp —x0)(by —2)* T (z)

(@n — 20)(by — 2)* * i=1...,n (115

where
M) =0, 19" a) =0,

The recursion (115) starts with n = 1 and

lg,O(x) — U(](x) ll,O(x) U0($) )
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2.9. Notes and Remarks

Cauchy—Vandermonde systems are in use since the times of Cauchy to whom the computation of the deter-
minant (97) is credited when all poles are in C and simple and all nodes are simple [8]. In [26], see also
[24], this determinant has been calculated for multiple poles and simple nodes. In [9] the determinant (97)
was computed for multiple poles and multiple nodes. A different proof can be found in [7].

The proof of unisolvency of the Hermite interpolation problem with CV—systems is due to J. Walsh [30].

The recursion (90) of divided differences with respect to CV-systems is due to G. Miihlbach [23]. There
also the remainder formula (93) was derived.

The Neville-Aitken formula (100) for interpolants with respect to CV—systems was first given in [9].
For different proofs see [7] and [23].

The Taylor formula (101) with respect to CV—systems seems to be new. Using this formula in combina-
tion with algorithm 1 given in [9], that calculates the derivatives

(&) () e

it is possible to compute the Taylor interpolant
Ug --- Up
pf |: o --- X0 :|

with O(n?) arithmetical operations.

The weight functions and the canonical representation of real CV—systems given in section 2.5 are new.

The basic Lagrange—Hermite functions with respect to a CV-system were derived in [21], see also [23].
In that paper also an explicit formula for the inverse of the confluent CV-matrix is given.

A method solving a system of linear equations with a confluent CV-matrix recursively can be found in
[23].

The recursion (115) for the basic Lagrange functions with respect to CV—systems and simple nodes is
new.

For a theory of convergence of rational interpolants with prescribed poles to analytic functions as n —

oo confer [1]. Recently, interpolants from CV-spaces have been proved useful for approximation of transfer
functions of infinite-dimensional dynamical systems [27].
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