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When is the least degree solution of a Bézout identity
nonnegative on the interval [-1,1]?

Tim N.T. Goodman and Charles A. Micchelli

Abstract. We give conditions such that the least degree solution of a Bézout identity is nonegative on
the interval [—1, 1].

¢Cuando es no negativa en el intervalo [-1,1] la solucidon de minimo grado
de una identidad de Bézout?

Resumen. Se dan condiciones para que la solucién de minimo grado de una identidad de Bézout sea
no negativa en el intervalo [-1,1].

1. Introduction
A function P satisfies the conjugate quadrature filter equation, if for all z on the unit circle, we have that
|P(:)P +|P(=2)” = 1. (1

Various applications to wavelet construction and filter design require solutions of equation (1) which are
polynomials of some fixed degree. A particularly noteworthy solution of this equation, which is prominently
used in [1] for wavelet construction, seeks a polynomial P of degree 2N — 1 which has an NV-fold zero at
minus one. To find this polynomial, we write it in the form

Poyoa(2) =27 N1+ 2)YQn-1(2),
substitute this expression into (1), set z = € and 2 = sin? §/2, with |§] < 7 to obtain the equation
(1 —a)¥gn-1(2) +2Vgn (1 —2) =1 )

where ‘
an—1(z) = |Qn_1(e”)|*. (3)

From this equation it follows that

N—-1

=Y <N+:—1>2k

k=0
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which is the least degree solution of this Bézout identity. Remarkably, the polynomial gn_1is strictly
positive on the interval [0,1] and so equation (3) can be solved for the polynomial Q1 by the Riesz
Lemma, see[1]. The existence of this solution of the CQF equation is the foundation for the construction
of an orthonormal wavelet of smallest support having N vanishing moments and, by adjusting /N, any
prescribed number of continuous derivatives.

In another direction, our effort to construct orthonormal spline projectors of maximum accuracy which
are local led us to consider the Bézout identity

pn(x)anl(-T) +pn(1 - x)‘]nfl(l - $) =1 (4)

for the polynomial ¢,,—1 of degree at most n — 1 where the polynomial p, of degree n is given with all
its zeros in [1, 00) and normalized to be nonnegative on [0,1]. This equation, under these circumstances,
also came up in [3] when we constructed a spline which has both orthonormal integer translates, is zero at
all integers except zero where it is one, has knots at half integers and decays exponentially fast at infinity.
Fortunately, even in this general circumstance, when p,, has all its zeros in [1, c0) and is normalized to be
nonnegative on [0,1], which includes the first example mentioned above, we showed in [3] that the least
degree solution of (4), is also nonnegative on the interval [0, 1], thereby allowing for the construction of the
desired splines described above.

Later, one of us used this general fact about the Bézout identity (4) to extend the Deslauries and Dubuc
[2] interpolatory subdivision by local symmetric polynomial interpolation to interpolatory subdivision using
local symmetric interpolation by exponentials with arbitrary real frequencies (with at least one being zero),
[6]. This result leads to the construction of orthonormal wavelets of smallest support with N arbitrarily
prescribed zeros on the imaginary axis and of orthonormal wavelets of compact support, with any prescribed
regularity, relative to any given Sobolev norm, [7].

All of these applications, including the first example, suggest the following problem. Given a poly-
nomial R, of degree n can we find a polynomial ()1 such that the polynomial Ps,—1 (= R,Qn—1
satisfies the CQF equation? Equivalently, the polynomials p,,(cosf) := |R,(e?)|? and ¢, _1(cosf) :=
|Q,,—1(e?)|? satisfy the Bézout identity

Pn(2)n—1(2) + Pu(=2)qn-1(—2) = 1. (5)

When the degree of (),,—; is not constrained to be of (least) degree n — 1 this was indeed shown to be
the case for some polynomial ) in [4] and later estimates for the degree of () were given in [5] as well as
multivariate versions of these results.

The zeros of a CQF influence properties of wavelets built from it. The point of view of constructing a
polynomial solution of the CQF equation with some prescribed zeros should be contrasted with the complete
characterization of [8] for the polynomial solution of the CQF equation. Unfortunately, this characterization
does not allow for the specification of zeros, even in the special case mentioned above.

In this paper, we provide necessary and sufficient conditions on a given polynomial R,,,with zeros
constrained to be either on the real axis or on the unit circle, equivalently all the zeros of p,, are on the real
axis, for which P,,,_; can be constructed to satisfy the CQF equation. That is, we shall provide conditions
on the polynomial p,, so that the least degree solution of the Bézout identity (5) will be nonnegative on the
interval I := [—1,1].

2. Preliminaries and the case n = 2,3

We start with a polynomial P written in the form P = RS. The polynomial R is given and assumed to be
of degree n with real coefficients. We consider the square of its modulus and express it in the form

R(z)R(z7") := pn(%(z + %))
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where the polynomial p,, is likewise of degree n, in particular,
|R(e))? = p,(cosh).

In what follows we will primarily be concerned with the case that the zeros of R are either real or on the
unit circle. Note that the zeros of R on the unit circle correspond to zeros of p,, on the interval [ = [—1,1],
the nonnegative zeros of R correspond to zeros of p,, on [1, c0) and the nonpositive zeros of R to the zeros
of p,, on the interval (—oo, —1]. Let us now do the same reduction for the modulus of S, that is, write it in
the form

1S(€))? = gn_1(cosh)
where in this equation we demand that both S and ¢,,—1 are of degree at most n — 1 and the polynomial
qn—1 satisfies the CQF equation (5). In other words, we have that

Pn(2)an-1(2) + pu(=2)gn-1(-2) = 1. 6)

As stated in the introduction, we know when p,, only has zeros in the interval (—oo, —1] and is normalized
to be nonnegative on [ then the unique least degree solution ¢,, 1 of (6) is also nonnegative on I and hence
a polynomial S of degree n — 1 exists so that P satisfies the CQF equation. We shall improve on this result
and demonstrate that this conclusion still holds even when p,, has some of its zeros inside the interval I;
how far inside will be determined below.

We let P,, be the class of all monic polynomials p,, of degree n which are nonnegative on the interval /
. When pj,(z) and p,, (—z) do not have any common zeros in the complex plane, we let ¢,,—1 be the unique
polynomial of degree at most n — 1 which satisfies the Bézout identity (6). We want to identify conditions
on p, € P, under which ¢, 1 € P,,_;. We recall the following fact proved in [3] and already referred to
above.
Lemma GM If p,, € P, and the zeros of p,, are in the set {x : @ < —1} then ¢p,—1 € Pp_1 .

Our first observation deals with the case when n = 2, 3.

Lemma 1 Ifp, € P,,, n = 2,3 and the zeros of p,, are in the set {z : Re z < —%} then g1 € Pp_1 .

PROOF. The case n = 2 is easily handled. Indeed, if p(z) = 2%+ az + bis in P, then 1 (2) = 557 (a—z)
is nonnegative on the interval I when a > 1.

In general, since p,, € IP,, all of its odd multiplicity negative zeros must be < —1. Therefore, in view
of Lemma GM, for n=3, we need to consider only the case when ps has one real zero at some —a; with
a; > 1 and two complex zeros at some ay = —a — i3 and ag = —«a + i3, where a > % . We observe for
p3(z) = 2% + az® + bz + c that

1

9 ¢
= (22— b——

q2(2) 5l 5)(,z az + a)

and so it suffices to show when the roots of of the polynomial 22 — az + b — < are real, they lie outside

(—1,1). Indeed, if the roots are real then a® > 4(b — £) and we have that

c ai(a? + 2
02 — 4(b — E) = (041 —+ 2@)2 — 4(2@1@ + O[2 + ﬂ2 — %)
8a(a? + 3?)
=Qa—a;)? - 2 P (2 — )2
(2a — ay) o T % < (2a— ay)

Consequently, the smaller root of ¢- satisfies the inequality
1 c 1
E{a— a2—4(b—a)}> §{a1+2a—|2o¢—a1|}

= min{a;,2a} >1. A

The above result is sharp. Indeed, for n = 2 the proof above shows ¢,,_1 € P, if and only if the zeros
of p, are in the set {z : Re z < —%} . Forn = 3, if ¢,_1 € P, we let the real root —a; of p,, go to —oc
and fix its complex root to have negative real part, that is, Rea > 0. In the limit, it follows that Rea: > %
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3. The general case

In this section we consider the case that n > 4. We begin by recalling the method of finding the polynomial

¢n—1 by interpolation. To this end, we suppose that the zeros of p, are at —aq, ..., —ay, . According to
the Bézout equation (6), the polynomial vs,, 1 := ppgn_1 of degree 2n — 1 is determined uniquely by
conditions

v2n71(_ai) :05 i= 17"'5” (7)
and

’Ugn_l(ai) = 1, 1= 17...,’117 (8)

where repetition of a; means that we include the appropriate derivatives of va,, 1. Note that the polynomial
Vo1 — % is an odd function and so we may write it in the form

1 1
von—1(2) — 3= Ezrn_l(zQ)7 )
where r,,_ is the unique polynomial of degree at most n — 1 which interpolates the function g(z) := 22
ata?, ..., a2 (possibly with multiplicity). Here we take the branch of =~z which gives (a2) 2 = a%_, i=
1,...,n.

Let us consider the special case of this reduction for the polynomial ps(2) = (2 + 3)*, ie.aq =+ =
Qg = % In this case, since the cubic polynomial r3 is the Taylor polynomial of the function g about the
point % it is given by the formula

1 1 1
=2—4(z— =) +12(z — =)? —40(z — -)3
ro(2) =2 =4z — 1) +12(: = ) —40(: = )

from which we conclude that 73(1) < —1 and therefore v7(1) < 0. In particular, we have that ¢5(1) < 0,
which shows that Lemma 1 fails in the case n = 4.

Henceforth, we assume that the roots of p,, are all negative, thatis, a; > 0,5 = 1,...,n. Recall that
if o; has odd multiplicity then a; > 1. We now show that the addition of zeros < —1 will preserve the
conclusion that ¢,_1 € Pp,_1

Proposition 1 Ifp, € P, with q,—1 € Py,_1 and pp11 € Py with a1 > 1 then g, € Py,

PROOF. Recall that r,,_; interpolates the function g at o, ..., a2 and r,, interpolates g at af, ..., a2 .
Thus, we conclude that

ra(@) = o1 (@) + (2 —0f) - (2 = ap)lad, .. aq g,

In this equation we use the standard bracket notation for the divided difference. The points within the brack-

ets are the places at which the divided difference of the function g is computed. Since [a?, ..., a2 11)9 =
LgM(t) for some t > 0 we obtain that (—1)"[a},....a2,,]g > 0. Remember, if c; for some j =
1,...,n 4+ 1 occurs with odd multiplicity then or; > 1 . This fact allows us to conclude for < 1 that

(=1)"(x —a?)---(z — a?) > 0. Combining these two inequalities we have for < 1 that r,(x) >
rn—1(2). Hence, making use of equation (9) for 0 < x < 1 we obtain that

1 1 1
Vont1(x) = = + zxrp(z) > = + zar,—1(z) = vap_1(x) > 0.
2 2 2 2
Now, equations (7), (8) and Rolle’s Theorem, applied to the polynomial vy, implies that its deriva-
tive vanishes precisely once between any two distinct adjacent elements of {—ay,..., —a,41} and of
{ai,...,anpy1} . Therefore, we obtain that vap, 11 € Pap—q from which it follows that ¢, € P,,. W

From Proposition 1 we see that the critical case occurs when all the zeros of a polynomial p,, in IP,, are
in the interval (—1,0). In this case, all its zeros have even multiplicity. To address this important case, we

210



When is the least degree solution of a Bézout identity nonnegative on the interval [-1,1]?

set n = 2m, choose points a1, ..., a, such that 0 < a; < --- < a, < 1 and for each positive integer
k < m we define the monic polynomial ps;, by the formula

k
por(z) == H(z + aj)z. (10)
i=1

We let go5, 1 be the least solution the Bézout identity (5) determined by the polynomial poj, and correspond-
ing to its zeros form the quantity ro5_1 (1), as explained after equation (9).

Proposition 2 If ps;, and qop 1, k = 1, ..., m are the polynomials defined in equation (10) then gap 1 €
Pop—1 fork=1,...,mifand only ifrop—_1(1) > —1, fork =1,... ,m.

PROOF. From equation (9) we see that if ¢,,_; € P,,_q thenr,_4(1) > —1.

The converse is prove by induction on m where n = 2m . To this end, for later use we observe that
equations (7), (8) and Rolle’s Theorem applied to the function vs,,_1 imply that its derivative vanishes
precisely once between any two distinct consecutive elements of {—a,y,,..., —a;} and of {ay, ..., am}
and so vo,—1 () > 0, for z € [—1, o] and va,,_1 is decreasing on the interval [, 00).

Let us first consider the case m = 1. If (1) > —1 we conclude by equation (9) that v3(1) > 0.
Moreover, by our remarks above, we know that the cubic polynomial v3 is nonnegative on the interval
[—1, a1 ] while it is decreasing on the interval [a, 1]. Therefore , we have that v3(x) > v3(1) > 0 on this
interval and thus ¢; € IPy.

Now, we assume that the result is true for some integer n = 2m and suppose that r,,_; (1) > —1 for
n =2k, k=1,...,m+1. By our inductive hypothesis, we conclude that go;,_1 € Poj,_1 fork =1,....m.
On the other hand, using the definition of the polynomial r,,_; we obtain the formula

Pamt1(2) = rom-1(2) + (z —a})® - (2 —a})?[0], 0}, ,ab, b, ar, ]9
+(z - 0‘%)2 s = azn—i-l)[a%va%a . ~a04$n+170¢$n+1]9-

a2.a? lg= ﬁg@m) (t) for some t > 0, we conclude that

2

: 2 2
Since [a7, a7, ..., a0,

[af,a],....a%. a0, a2y i1]g > 0.

Similarly, we obtain that the divided difference [af, o3, ..., a2, a2, ]9 is negative. Therefore, we
have shown for z < a2, that 735,41 (2) > r2m—1(x). Hence equation (9) shows for z in the interval
[0, appt1], that vap,41(x) > ve,—1(x). However, our induction hypothesis implies that ga,;,—1 € Pop—1
and so we conclude that ga,,+11s nonnegative on the interval [0, @;,+1]. Our induction hypothesis also
insures that r,,,41 (1) > —1 and so, by equation (9), we obtain that vo,,41 (1) > 0. But we already pointed
out that the polynomial vo,, 11 is decreasing for > ay,+1 and so vapt1(x) > 0, apmyr < @ < 1. Thus
@2m+1 € Pay,—1 and the induction step is complete. W

The conditions 7,_1(1) > —1 is an explicit algebraic condition on ay,...,a,. Below we provide
simpler sufficient conditionon ay, . . ., a,, for which r,,_; (1) > —1. For this purpose, we use the recursion
for divided differences

2 2 2 2 2 2
2 2 2 2 _ [alv"'vam+1’am+1]g_[alaala"'vaerl]g

[ ]

alaala"'vam+1’am+lg_ a? —042
m—+1 1

from which we get that
2 2 2 2 2 2 2 2 2
[ala alv e 7am+1]g + (am+1 - al)[ala alv e 7am+1’ am+1]g > 0

If1—0a2, <a2, ., — ai, weuse this inequality to prove that

[a%aa%a . 7a$n+1]9 + (1 - a$n+1)[a%7a%a .- ~a04$n+17a$n+1]9 >0
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and by the recursion above relating 72,11 and r9,,—1 we conclude that 79, 11(1) > ray,,—1(1). Therefore,
ram—1(1) > —land 202 ., > 1+ af, imply that 73,41 (1) > —1.
These facts prove the next result.

Corollary 1 If poy, k = 1,...,m, are the polynomials defined in equation (10) with a; > % and for

J=2,...,m 205 > 14 aj then g1 € Poy 1 fork=1,...,m. O

Our next lemma will lead us to our main result.

Lemma 2 For any positive integer k and 3 € (0,1], let roy._1(+|3) denote the Taylor polynomial of degree
2k — 1 for the function g at 3% . There exists a unique value oy, € (0 1] such that rop—1 (*|ag ) (1) = —1.

Moreover, the sequence {ay, : k > 1} strictly increases, a; = 1 ,ad < 4k 3 and limy o0 f, = %

PROOF. For(0< <1, (with1-3-.-(—=1) := 1) we have that

2%k—1 . 4
1-3- 5 2 —1) (—1)7p—@i+1) )
Fok_1 1|/8 Z .7 ) ( ) ﬁ.' 1 —ﬁ2)]
j= 7
k_11.3.5...4'_1 —(4i+1) .
_ Z (4i ) B (1— p2)%
2 9% 20)!
_ kz_:l 1-3-5---(4i+1) g~ it3) (1— g2+t
2 GRIER] i+ 1)
k—1

_ 1-3-5---(4—-1)1/1 24 . fitl
_,»— 22i+1(24 4 1)! E(@_Q {8@+3_7}_

=0

2%
Now, for all ¢ > 0, % (61_2 - 1) {4;;51 — (8 + 3)} is a strictly decreasing function of /5 on (0, 1].
Thus rox_1(1|) is a strictly increasing function of 5 on (0, 1].

Since ro5—1(1|1) = 1 and limg_,o72x—1(1|3) = —oc there is a unique value ay, € (0,1] such that
rak—1(1]ay) = —1. Also, because r1 (1|f) = 55(3 — 55), we have a; = 3.
We shall prove by induction on k that a2 < 3]/:—_3 This is valid for £ = 1. Suppose it is true for some

k > 1. We conclude that of < 35=3 < g’;ié and by the equation for 71,1 (1]3) we obtain that

1-3.5---(4k—-1)1 /1 2k 4k +1
T2k+1(1|,8) = TQk_1(1|,8) + 22k+1(2k(+ 1)! )E (@ — ]) <8k +3 - ﬂ_; ) .

We evaluate this formula for § = «4, and obtain the inequality rog+1(1]ag) < rop—1(1|ag) = —1.
Since 79541 (1]-) is a strictly increasing function on the interval (0, 1], we have that a1 > ay, thereby
establishing by induction that ay, strictly increases with k. On the other hand , for p? := gﬁié we get that
Tok+1 (1) = rog—1(1|p) > —1, since u > ay. Thus we obtain that y1 > ag41. In other words, we have
confirmed that o3 < ;“]:—E ,which advances the induction step.

So far, we know that limy_, o a = v for some v < % It remains to prove that v = \% To this

end, we choose any < % and note that the terms in the expansion for ro;_ (1|/3) can be written, with

m = 21, as
0 1-3-5---2m+1)1 i—l ™ (4m+3 1
P amEl(m 4 1)) B\ 32 2m+1 p2J°
From this formula it follows that lim; , o @; = —o0 and so limg_,o0 72x—1(1]|3) = —o0. So, for all large

enough k, ro_1(1|3) < —1 = rog_1(1]ax) and so B < ay. Thus f < -y and so y = 7_ [ ]
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Lemma 3 Ifk is a positive integer, a € (0,1) and pay(x) = (z + a)?* then qay—1 € Pog_y if and only if
a > ap.

PROOF. If a < ay, then ro_1(1]a) < —1 and by Proposition 2 it follows that gop—1 € Por_1 does
not hold. If & > ay, then fori = 1,...,k, @« > «; . Therefore , we get that ro;_;(1Ja) > —1 and by
Proposition 2 we conclude that go—1 € Pop—; . W

Theorem 1 For positive integers k,n such that 1 < k < %n and p,, € P, with all negative zeros which
has at most 2k zeros in (—1,0) that lie in (=1, —ay] then q,—1 € P,,_1 holds. Conversely, if for some a,
Gn—1 € P,_1 whenever p,, € P, has at most 2k zeros in (—1,0) which are in (—1, —a] then a > «y,.

PROOF. Foranyn > 2 and tq,...,t, in (0, 1), let r,_1 denote the polynomial of degree n — 1 which
interpolates g at ¢4, . .., t, (possibly with multiplicity). As before we have that

Tn-1(2) = rpoa(2) + (@ —t1) - (2 = tp1)[tr,- .-, ta]g

and so for some 7 € (0, 1) it follows that

0
—rn_l(x) = ($ — tl) e (x — tm—l)[th ey tn_17tn7tn]g
Oty
1
= (o= t1) (o~ tt) g™ (7).
Thus, for n even, we have that %Tn—l (1) > 0,. Since r,_1(1) is a symmetric function of ¢1, ..., ¢,
it is a strictly increasing function of all its variables ¢4, ...,t,, when n is even. Now, suppose for 1 <

m < k, that po,,, has 2m zeros in (—1, —ay]. Let ra,,—1 of degree 2m — 1 interpolate g at the squares
of the zeros of pa,, and ra,,—1(1|a;,) be as in Lemma 2. Since —ay, < —au,, we have that ro,,_1(1) >
Tom—1(1|am) = — 1. It then follows from Proposition 2 that if py,, € Payy, then gay—1 € Py, 1. Next,
suppose that pj, is as in the statement of the Theorem and has at most 2k zeros in (—1, —ay]. Then, from
our above result and Proposition 1, we get that ¢,—1 € Pp_1.

Finally, take an a < ay, so that by Lemma 3, g2z 1 € Paz_ 1 does not hold for poy (7) = (2 + a)?*, i.e.
there is some 2 in (=1, 1) with g2 1 (2) < 0. Now, for § > 0, consider p, () = (§+1)"**(z+a)**, and
let g1 be the corresponding polynomial as in (5). Then by continuity, limg_, oo ¢n—1(2) = gax—1(2) < 0.
So, for large enough 3 we have that ¢o, 1 € P4 does not hold . Thus, if ¢,_1 € P,_; holds whenever
pn, has at most 2k zeros in (—1, —a], thena > ay,. W

Recalling from Lemma 2 that q, increases and limy_, o a = % gives immediately the following.

Corollary 2 If that p, € P, has all its zeros in {x : x < —%} then qn—1 € P,_q. Conversely, if

there is a positive constant ¢ such that whenever p, € Py, has all its zeros in {x : x < c} it follows that
qn-1 € P, 1 thenc < —%_
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