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The distance of a curve to its control polygon

J. M. Carnicer, M. S. Floater and J. M. Pena

Abstract. Recently, Nairn, Peters, and Lutterkort bounded the distance between a Bézier curve and its
control polygon purely in terms of differences in the control points. We show how such bounds easily
extend to many of the curve types used in Geometric Modelling.

La distancia entre una curva y su poligono de control

Resumen. Recientemente, Nairn, Peters y Lutterkort han acotado la distancia entre una curva de
Bézier y su poligono de control en términos de las diferencias entre los puntos de control. Mostramos
c6mo extender dichas cotas a muchos tipos de curvas utilizadas en el Disefio Geométrico.

1. Introduction

In [5], Nairn, Peters, and Lutterkort derived a new bound on the distance between a Bézier curve and its
control polygon. The new aspect of the error bound is that it depends purely on second order differences of
control points, rather than on derivatives, typical in previously derived error bounds. As one might expect,
the bound tends to zero as the polygon tends to a straight line, reflecting the fact that the Bernstein basis has
linear precision. Later, Reif [6] extended some of the results of [5], via a different approach, to bound the
distance between a spline curve and its control polygon.

The purpose of this paper is to further generalize the work of [5] to deal with much larger classes of
curves suitable for computer aided design. Drawing on some earlier work on linear precision and convexity
preservation of [3], we show that under very mild and sensible assumptions on the curve type, the main
results of [5] are extendable, namely to error bounds in terms of divided differences, or scaled divided
differences. Our tools can be used, not only for bounding the distance of a curve to its control polygon, but
also for comparing different curves. This analysis allows us to compare different representations associated
to different bases.

2. Auxiliary results and a first example

Let (ug, ..., up) be a system of functions defined on [a, b]. We may define the collocation matrix of the
system (ug, - . . , Uy, ) at any sequence of points g < x1 < * -+ < Ty, by
UQ,y -.-,Un
M( ):: (2 e .
20, Tm ( ]( z))z 0,...,n;5=0,...,m
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We say that (ug, - . -, uy) is a blending system if all functions u;, ¢ = 0, ..., n, are nonnegative and they
sum up to 1. So, a system is blending if and only if all its collocation matrices are stochastic.
In computer-aided geometric design we use blending systems of functions to obtain curves

y(z) = ZPz-ui(fv» x € [a,b]. (1)

The polygon P, - - - P, formed by the ordered sequence of points P; € R¥, i = 0,....n, is called the
control polygon. It is well known that a curve (1) generated by a blending system satisfies the convex hull
property, that is, the curve lies in the convex hull of its control polygon. A common property required by
the designers is linear precision, which means that the parametric representation of a line segment with
uniform speed is a curve + generated by some control polygon. More precisely, (ug, . .., u,) are said to
have linear precision if there exists a sequence of real numbers g < - - - < a, such that

Z au(x) = . 2)
i=0

Under this assumption, the graph (z,u(z)) of a given function u(z) = Y., c;u;(x) is itself the curve
v(x) in (1) generated by the control polygon (ag,cq) - - - (@n, ¢n). Both Bernstein polynomials and B-
splines have the property of linear precision.

Another useful property is convexity preservation. We say that the system (uo, . .., uy,) is convexity
preserving if any function

f@) = ciui(x)
i=0

is convex whenever its control polygon (g, cg) - - - (e, ¢, is convex, i.e. when

Ci — Ci—1 Ci—1 — Cj—2 .
oc; := — >0, 1=2,...,n. 3)
Qi — Q1 Qi1 — Q2

A further usual property is that of endpoint interpolation, which is equivalent to the property that ag = a
and «,, = b, provided that linear precision holds. In Theorem 3.1 of [3] it was proved that a blending system
(ug, - - -, up) which has both linear precision and endpoint interpolation is convexity preserving if and only

if all the functions
n

vi(x) = Z(aj —aj_1)uj(z), 1=2,...,n, 4
J=t
are convex.
We are interested in bounding the distance between a curve «y and its control polygon, and the simplest
way to do this is to represent the polygon parametrically. A natural way to parameterize the polygon is as
the parametric curve 7 : [a, b] — R¥, defined by

m(z) = Mpi_l + wpi aic1 <z < ay,
Q; — Q1 Q; — Q1
fori=1,...,n, and we will find ways to bound the distance ||y(z) — 7(z)||, for an arbitrary norm || - || of

R Note that we can further represent 7 using the basis functions
( —ai—1) /(i —aj-1), ifai—1 <z <ay,

Ni(z) == (a1 — ) /(i1 —aq), ifay <o <agqa, &)
0, elsewhere,
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fori =0,...,n, where a_1 := a and ay41 := b, so that
n
= PiN(x). 6)
i=0

Thus the curve v and its polygon 7 are two curves generated by the same control points, but different
systems of functions, namely (ug, . - ., uy), and (No, ..., N,) respectively. This motivates the following
proposition.
Proposition 1 Let (uo,...,u,) and (o, . . ., @y, ) be two blending systems defined on [a, b] and let v and
7 be the two corresponding curves of the form (1) generated by given points Py, . ... P, in R¥. Suppose
further that Y7, aui(z) = x and Y a;ti;(x) = x for some common sequence of values ag, . . ., ay,

with a; # a;—1, 1 = 2,...,n. Define

n n

Vi = Z(aj — ai_l)uj(x), Vi = Z(aj — ai_l)ﬂj(x), 1=2,...,n. @)
Jj=ti j=i
and P, — P, P, P,
§p, =t il Tl i —9 . (8)
Qi — Q1 Qi1 — Q-2
Then for any sequence ds, . . . , d,, of positive numbers we have
@

de — vi()] ©)

(@) = 7@ <

16{2

(i) If, in addition, v;(x) > v;(z), for all x € I, then

OF;
< 5(x) — 1
@) =5@) < _max | %] () — s, (10)
where . .
= oiui(x), §x) =Y osii(x), (11
i=0 i=0
and the sequence oy, . . . , 0, is uniquely defined by

og = o, =0, bo; = —d;, 1=2,...,n. (12)

PROOE. We use the fact thata sum Y-, A; B; with 3. B; = 0 can be rewritten as

> AiBi=) (Ai—Ai1)> By (13)
i=0 i=1 k=i

By (13), we can write

n n

ZP i—i) =3 (P - Py (uk—ak)zz%((ai—ai_l) (i — ) ).

i=1 k=i i=1 - k=i
We again apply (13) to the last formula and obtain

; Z‘SPZ i~ aj-1) (Uk—’ak):z(séji di(vi — ;).

k=j i=2
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Taking norms, formula (9) follows.
If v;(x) > 0;(x) for all € I we can write

n

Zd|vl ) — 0(x )|:( (z — ap) Zdvl )—( (x—ao)—Zdivi(z)),

i=2

where 3 = (a,, — ag) ™' 3L, di(a, — ay—1). Let us show that s(z) = B(z — ag) — >, divi(x). In
fact,

Bz — ap) E:dm 62} — ag)u( E:dE: i — Qi1)
ZBZ( — ag)ui(z szl i — Q1)
i=1

=2 (=2

Clearly the coefficient of ug is 0 and the coefficient of w,, is 3(c,, — ap) — 27:2 di(an, —ay—1) = 0. Now,
it can be checked that §[3(a; — ag) — Y y_p di (i — ay—1)] = —d;. Therefore S(a; — ag) — > _, di(c; —
1) = 04,0 =0,...,n. Analogously 5(z) = 8(z — ag) — >, d;0;(x) and (ii) follows. W

Remark 1 If we take in Proposition 1 @; := Nj; defined in (5), then we have v;(x) > v;(x). In fact,
(x,v;(x))T and (2, v;(x))7 can be regarded as curves generated by two different blending systems and the
same control polygon Wy - - - W,,, where

—_— R CTHUL ifj <4,
7 (Oéjﬂ)éj — ai_l)T lf] Z i.

b

The points Wy, ..., W;_; are collinear and W;_,, W, ..., W, are also collinear, and then W, ..., W, lie
in a two-sided polygon: WoW;_1W,,. The curve (z,;(z))? describes the polygon WoW; 1 W,,. On the
other hand, the curve (2, v;(x))7 is included in the triangle with vertices Wy, W; 1, W,, by the convex hull
property. So we have seen that v; > ¥; and we can apply Proposition 1 (ii)). W

3. The distance of a blending curve to its control polygon

Let us first apply Proposition 1 to the problem of bounding the distance of a Bernstein-Bézier curve

- iZ:;Pi (’;) 1—a2)" ! zelo1],

to its control polygon, parameterized by
n(z) = > PiNi(z), x€l0,1],

where N;(x) is defined by (5). In this case a; = i/n,i =0,...,n. We choose d; = 1/n,i=2,...,n and
then §P; = nA%P;_5,i=2,...,n, where A’P; := P;,» — 2P, + P; is the usual second order forward
difference. We also have that the ¢;’s defined in (12) take the form

in—1i)  ai(1—ay)
m2 2 '

g; =

(14)
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Let us define the Bernstein operator
n n .
B = ol (1 —x)" 2t 0,1],
) = 3 St ()=t weton
and the operator
P[f)() =Y flai)Ni(z), = €0,1].
i=0

Due to Remark 1, we can apply the bound (10) of Proposition 1, which, from the form of the o, reduces to

Ib(z) = w(a)| <n? _mmax AP x (Pla(1 = 2)/2] - Bla(1 - 2)/2)). (15)

Hence our problem is reduced to the problem of bounding the function
D(z) := Plz(1—=)/2] — Blz(1 —2)/2].
Since D(z) is piecewise convex, we can apply the maximum principle to each interval and deduce that

D = D(a;).

Since Blz(1 — x)/2] = Az(1 — )/2, with A = 1 — 1/n, we may write
D(oz,) = C(i(l - C(,)/2 - )\Ozl(l - C(,)/2 = (1 - )\)04,(1 - Ozi)/Q,

and so

ai(l—ai) < 1-) :i'

- 8 8n

If the degree n is even, then this bound for D(x) is attained at z = av, ;> = 1/2. Otherwise for odd degree
n = 2k + 1, it is attained at + = «,, and then

R

1 im—i) 1 k(k+1) 1
D = — = — —_
Jhax D(v) = 0 max =5 5= =5, 2k+1? " 3

Thus through (15), we have shown that for any n,

max ||b(z) — 7(2)|| < < max72||A2PZ-||. (16)

1=0,..

|3

This is the error bound established in [S]. However, the point is that the arguments we have used are
more general and apply to types of curves other than just Bézier curves. Indeed, consider next the extension
of the above analysis to curves generated by more general blending systems. Let (uq, . . ., u,) be a blending
system satisfying (2) and assume that the endpoint interpolation property holds. Given a control polygon
Py -+ Py, we consider its parameterization 7 (6) and the curve v (1) generated by the blending system.

Taking into account (10) and Remark 1 we have
n n
‘ 1> i Nj(z) = ojuy(x)
j=0 j=0

where the o; are defined in (12) and the functions N; in (5). Defining

OP;
d;

|v(z) = 7(2)]| < max : (17)

i€{2,...,n}

D(z) := Z oiNi(z) — Z oiui(z) (18)
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and taking into account that (o, o) + -+ (an, )7 is a concave polygon, we derive from the convex hull
property that
n n
i=0 i=0

i

So (17) becomes

D(x). (19)

Formula (19) provides a pointwise bound for the distance between the points of a curve and the pa-
rameterization (6) of its control polygon. Let us interprete formula (19) from another point of view. The
magnitude max;e s, ..,y [[0P;/d;|| can be seen as the maximum of a weighted discrete curvature. When
the maximum weighted discrete curvature is zero, that is, d P; = 0 for all ¢ we say that the polygon is linear;
in this case the curve and the control polygon coincide. When the maximum weighted discrete curvature in-
creases the distance of the curve and the control polygon may grow. Formula (19) means that for nonlinear

polygons the ratio
|7 (z) — 7 ()|

max;e (o, ..o} [|0P;/dil|

[7(@) = m(2)]| < emax

(20)

is bounded by the function D(z) defined in (18). This definition shows that D(x) is precisely the distance
betwen the control polygon oy - - - 0, and the corresponding curve. Therefore, the ratio (20) equals D(x)
for the particular control polygon oq - - - 0,,. So we can write

[7(x) — 7 (2)]

=D 21
PO..I~III33)€(NL maxie{gﬁ_"’n} ||(5P,/d2|| (x)’ ( )

where IV L stands for the set of nonlinear polygons.
The next result provides a global bound for convexity preserving systems.

Proposition 2 Let (ug,...,u,) be a blending system satisfying (2), the endpoint interpolation and the
convexity preserving properties. Let v(x), w(z) be given by (1) and (6). Then
max ||y(z) — 7(z)| < max ‘ OB, max _ D(a;), (22)
z€[a,b] —ie{2,..n}l d; Il ief{1,...,n—1}
where 6 P; and D(x) are defined in formulae (8) and (18).
PROOF. By (19), it is sufficient to show that
max D(x) = max D(ay). 23
z€[a,b] ( ) i€{0,...,n} ( Z) 3)
Since (ug, ..., uy) is convexity preserving, the function — "7 | o;u;(x) is convex and D(z) is therefore
a convex function in each subinterval [a;, @;11], @ = 0,...,n — 1. Since a convex function defined on

[, 1] must attain its maximum at the endpoints «;, a;+1, (23) is confirmed. Finally, the end interpola-
tion property implies D(ag) = D(a,) =0. B

Analogously to the derivation of (21) from (17) and (18), formula (22) can be interpreted as follows.

The maximum value in (20) can be seen as the maximum of the discrete set of values D(a1), ..., D(ap—1),
that is,
maxgeq ) —m(x
max €la.b] ”7( ) ( )” = max D(ay), 24)
Py--P,€NL MaXie(a,.. n} [10F;/di] i€{l,...n—1}
It is not clear in general how to choose the weights d;, ¢ = 2,...,n, in order to obtain sharp bounds.

In the abscence of any special information on the basis, one could simply set d; = d, for some constant
d > 0. This was our choice for analyzing the Bernstein case at the beginning of this section. Another
natural choice would be d; = a; — a;—2, which makes 6 P; /d; in (19) a second order divided difference.
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4. Comparing different bases

This section is devoted to the problem of comparing the bounds of the distance of a curve to its control
polygon corresponding to different blending bases. Let us start by measuring the distances for concave
control polygons gg - - - 0, because these distances provide bounds associated to any other control polygon.

U Otl OL2 o 3 o 4
Figure 1. Comparing the distance of a concave polygon with two different curves

Proposition 3 Let ag < --- < ay and let K = (kij); j=o,... n be a stochastic matrix such that Ka = a,

where a = (g, ..., an)7T.

(i) For any concave vector o = (0y,...,0,)", thatis, 60; < 0,i=2,...,n, we have Ko < 0.

(i) Let (ug, . . ., up), (o, . . . , Uy ) be two blending systems of functions on [a, b] such that - a;u;(z) =
xand Y a;u;(x) = x. Let us assume that M(ZEZ:) = M(ZEZ: )K Then

n n
Zdiﬂi(ag’) < Zaiui(aj) <o, j=0,...,n
i=0 =0

(iii) Let (uq, - - ., up), (Qo, - - ., Up) be two blending bases of a space of functions defined on [a, b] such that
Yoo aiui(x) = @, Yo, a;ui(x) = x and satisfying the endpoint interpolation property. Let us assume
that (ag, . .., Uy) = (ug, - .., un) K. Then

n n n
E o3ty < E oiu; < E o;N;.
=0 i=0 i—0

PROOF. (i) Let us consider the control polygon Sg - - - S,,, S; = (i, 07)7. Let S; := Z?:o ki;Sj. =
0,...,n. Since K is a stochastic matrix all the points .S; are in the convex hull of the polygon Sy, ..., Sy.
Using the fact that Ko = a, we see that S; = (a;,5;), 4 = 0,...,n where (5,...,5,)" = Ko. Since
So - -+ Sy is a concave polygon, it follows that ; < o;.

(ii) Let M := M(“O“") Then M is stochastic with M« = «. From (i) we obtain Ko < o.

QQ .. Op
Taking into account that M is a nonnegative matrix M Ko < Mo. Applying again (i), Mo < o. Taking
components in M Ko < Mo < g, (ii) follows.

(iil) For any points 29 < -++ < @y in [a,b], let M = M(‘;gg: ) Then M is an stochastic ma-
trix. From (i) and the nonnegativity of the matrix M we see that, similarly as in the proof of (ii), we
see that M Ko < Mo. Taking components we obtain Y. o o;;(z;) < Y7 osu;(z;). Since the
points x; are arbitrary we have Z?:o oitl; < Z?:o o;u;. On the other hand, taking into account that
the curve (z, >, o4u;(2))” must be contained in the convex hull of its control polygon Sy, ..., S, we
have "1 oyu;(z) < S, 0iNi(z) for all z € [ag, o). By the endpoint interpolation property ag = a,

a,=>0. N
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Let us derive some consequences of the previous result. If we have two different curves v(z), J(x)
generated by different systems (uo, ..., u,), (4o, ..., d,) with the same control polygon m(z). Then we
can bound the maximum distance of each of the curves to its common control polygon using formulae (21)
and (24). Proposition 3 (ii) implies that the bound of the maximal distance corresponding to the curve v is
lower than the bound corresponding to 7.

Theorem 1 Ler oy < -+ < a, and (ug, ..., uy,), (Uo,...,Un) be two blending convexity preserving
systems of functions defined on [a,b] such that 3" a;ui(x) = x and Y., a;ti;(x) = x satisfying the
endpoint interpolation property. Let us assume that M (Zg’:::’Z" ) =M (22’:::’2" )K for some stochastic
matrix K. Then

max MaXgzela,b] ||’7($) - 7T(:E)” < MmaXyela,b] ||’7(I) - 7T(:E)” 0
PoPa€NL MaXijefa .} [|0Pi/dill ~ PoPue€NL maXjeqs . oy 0P /dil
If we have two different bases (uq, . .., u,), (Qo,...,q,) of the same space related by an stochastic

matrix K, we can bound the pointwise distance of each of the corresponding curves 7, 7 to its common
control polygon using formulae (19), (21). Proposition 3 (iii) implies that the pointwise distance bound
corresponding to the curve -y is lower than the corresponding to 7.

Theorem 2 Ler ag < --- < au, and (ug, ..., uy,), (lo,...,U,) be two blending bases of a space of
functions defined on [a,b] such that 3"\ cu;(x) = z and Y\, ouu;(x) = x satisfying the endpoint
interpolation property. Let us assume that (g, - . . ,Un) = (Uo, - - ., un) K, for some stochastic matrix K.
Then

o p@esal  Jh@ -]
Po--Pa€NL MaXe(2,... n} |0P;/di]] = Po--Pa€NL max;cgs . n} |[0F;/di]|’

Vo €la,b]. O

A common source of examples for the situation described in the hypotheses of the previous result is
provided by totally positive bases of blending functions, usually called NTP bases ([4]).

Definition 1 A basis of functions (ug, . .., u,) is normalized totally positive (NTP) if it is blending and

all its collocation matrices M ( ot ) are totally positive, that is, all their minors are nonnegative.

This concept corresponds to a usual requirement in computer-aided geometric design: the curves gen-
erated by a NTP basis from a control polygon F, - - - P,, preserve many shape properties of it. A space with
a normalized totally positive basis has a special basis called a normalized B-basis, which has optimal shape
preserving properties (see [1], [2]). A normalized B-basis (by, . . ., b,,) is the unique NTP basis of a space
such that for any other NTP basis (uq, ..., u,) the matrix K such that (ug,...,u,) = (bg,...,b,) K is
stochastic and totally positive. Examples of normalized B-bases with linear precision properties are the
Bernstein basis of the space of polynomials and the B-spline basis of the corresponding spline space. As
a consequence of Theorem 2 we may say that the Bézier curve is the closest to a given control polygon
among all curves generated by shape preserving representations in the space of polynomials. A similar
consequence can be derived for B-spline curves in the corresponding spline spaces.
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